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FRACTIONAL ELEMENTS IN
MULTIPLICATIVE LATTICES

RICHARD G. BURTON

An abstract study of the theory of fractional ideals of a
commutative ring is begun. In particular, the definition of
principal element in a multiplicative lattice L is used to define a
lattice of fractional elements, L*, associated with L. As one
application of this definition a theory of Dedekind lattices is
developed. This construction also allows the development of an
abstract theory of integral closure for a Noether lattice. This
theory will be presented in a further paper.

By a multiplicative lattice we mean a complete lattice L together
with a commutative, associative multiplication on L such that (i)
a(b U c) = ab U ac and (ii) ab S a Π b for all α, b, c in L. We further
assume that L has a greatest element e such that ea = a for all a in L
and a least element 0. We denote the meet and join of two elements
α, b in L by a U b and a Π b, respectively, and we use ^ to denote the
order relation on L. A lattice with a multiplication satisfying condition
(i) above is a lattice ordered semi-group.

An element m in L is join principal if (a U bm): m = a: m U b for
all a, b in L, meet principal if (a Π b: m)m = am Γϊ b for all α,b in L,
and principal if it is both join and meet principal. This definition of
principal element was given by Dilworth in [1].

The author wishes to express appreciation to Dr. William M.
Cunnea.

1. Definition and basic properties of J L * . Let L be a
multiplicative lattice and consider the set of all ordered pairs of the form
(p,q), where p,q EL and q is a principal nonzero divisor of L. We
define a relation, denoted by " ~ " , on this set as follows:

(P,q)~(p',qr) iff P<?' = <?P'

LEMMA 1.1. " ~ " is an equivalence relation on the set of ordered
pairs defined above.

Proof. It is clear that the relation is reflexive and symmetric. To
show transitivity, assume (/?, q) ~ (p', q1) and (p\ qf) ~ (p", q"). Then
pq'q" = qp'q" and since p'q" = q'p" this can be rewritten pq"q' =
qp"qf. Therefore,
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where the first and last equalities follow from the fact that q' is a
principal nonzero divisor in L.

Let L * denote the set of equivalence classes defined by the above
equivalence relation. We denote the equivalence class containing
(P>q) by (p,q). If (p,q) and (r,s) are elements of L* we define
(p,q)^(r,s) iff ps ^qr.

LEMMA 1.2. The relation " < ; " is a partial order on L*.

Proof. To show that " < Ξ " is well defined, assume that ( p , q ) ~
(p',qf) and ( r , s ) ~ ( r ' , s ' ) . Then pq' = qp' and rs' = sr ' . Now, sup-
pose ps ^ qr. Then

(p's')qs = s'q'ps ^ s'q'qr = (r'q')qs.

Therefore, since qs is a principal nonzero divisor in L,

and " ^ " is well defined.
It is clear the relation is reflexive and antisymmetric. To show

transitivity, suppose (p9q)^(r,s) and (r,s)^(r',sf). Then pss' S
'-^qsr1. Thus,

ps' = ps's: s ^qr's: s = qr'.

THEOREM 1.1. The set L * together with the relation ^ is a lattice
with least upper bound and greatest lower bound given by the following
equations:

(1) (p,q)U(p',q')
(2) (p,q)n(p',q')

Proof. Let (p, q) and (p', qf) be any two elements of L *. Then

pqq'^pqq' U qqp' = q(pqf U qp').

Therefore, (p,q)^(pqf U qp',qq'). Similarly, <p

Vqp,qq) Λ * , K A
Thus, (pq'UqpΊqq') is an upper bound for <p,(?) and

<p',<?'>. Moreover, if (p,q)^(r,s) and <p',<j'>^<r,s>, then ps ^ q r
and p's ^q'r. Therefore
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(pq' Uqp')s = pq's Uqp's ^qq'r Uqq'r = gg'r.

Thus, (pq' Uqp',qq')^(r,s) and (pq' Uqp\qq') is the least upper
bound for (p,q) and (p',qf).

Since g is a principal nonzero divisor,

(pqfΓ)qp')q = (pq'Π(qp'q): q)q =pqfq Πqp'q^qq'p.

Thus, (pq' Π qp',qq')^(p,q) and a similar argument shows that (pq' Π

<?p\OT'>^<p',<ϊ'>.
If (r,s)^ί(p,q) and (r, s )g(p ' ,q ' ) , then rq^sp and rq'^=

sp'. Therefore, since 5 is a principal nonzero divisor,

' Π qp')- spq' Π sgp' ̂  rqq' Π rgg' = rqq'.

Thus, (pg' Π qp',qqf) is the greatest lower bound of (p, g) and (p',q').

DEFINITION 1.1. The lattice L * will be called the lattice of frac-
tional elements of L.

We now define a multiplication on L* as follows: If (p, q) and (r, s)
are elements of L*, then

It is easy to see that this multiplication is well defined.

PROPOSITION 1.1. With the above multiplication, L* is a com-
mutative, associative lattice ordered semigroup. The element (e, e) is a
multiplicative identity.

Proof. For arbitrary elements (α, fr), (c, d), and (f,g) in L* we
have

(a,b)((c, d) U </,g» = <α,b)(cg U df, dg) = (αcg U αd/, bdg)

U adf),b{bdg)) = <αc, fed) U

where we have used the fact that

(b(acg U adf),b(bdg)) - (acg U adf, bdg).

Commutativity and associativity for multiplication are obvious as is
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the fact that (e,e) is a multiplicative identity.
We remark that L* is not a multiplicative lattice since it does not

satisfy the condition

The original lattice, L, can be embedded in the lattice L* as
follows: Let L be the sublattice of L* consisting of all elements of the
form (p, e), where p E L and e is the largest element of L. Then L is a
residuated multiplicative lattice. In fact,

<p,έ?>: (q,e) = (p: q,e).

The mapping φ: L —> L defined by φ(p) = (p,e) for all p in L is then a
lattice isomorphism of the residuated multiplicative lattice L onto the
residuated multiplicative lattice L.

PROPOSITION 1.2. L = {(p,q)<Ξ L*\{p,q)^(e,e)}. If (pnq)EU
then (p,q) = (p:q,e).

Proof. Clearly ( p , e ) ^ (e, e) for all p in L. If (p,q)^ (e, e), then
p =q. Therefore, since q is principal, (p:q)q =p Π q = p . Thus,
(p*q) = (q(p:q),q) = (p: q,e).

Let a EL and suppose that {fl,|/EJ} is a subset of L. Then
fl(Ule,fl,)= Uie/Λflf. This result can be found in [6].

THEOREM 1.2. Lei pf ELL such that there exists a principal non-
zero divisor A EL with a ^ p'. If q' is any principal nonzero divisor in
L, the residual (p,q): (p\q') exists for all elements (p,q) in L*.

Proof. For an arbitrary element (p,q)E L*, define

Λ={<r,s>|<r,s>eL* and <

Λ is nonempty since (0,e)EA. We will show that there exists a
greatest element, (c, d), in the set A. It is clear that if such an element
exists then (c,d) = (p,q): (p\qf).

We first show there exists a principal nonzero divisor d in L such
that

(i) <d,e><r,.s>^<έ?,έ?') for all ( r , s ) E A
Let α be a principal nonzero divisor such that afkp'. Then (a,e)^
(p\q') since aq' = p'qf ^ p ' . Therefore,
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for all (r,s)E A Hence

Therefore, if we set d = aq, (i) is satisfied.
With d defined as in the preceding paragraph, let c =

U{dr: s \(r9 s)G A}. This element exists si/ice L is a complete
lattice. With c and d defined as above, (c, d) is the greatest element of
A. To show this, let (r9s)EA. Then rp'q ^sq'p. Since (dr,s)^
(e,e), dr g 5. Combining this with the fact that s is principal gives

(dr: s)prqs = (dr Π5)p'q = drp'g ^kdq'ps

for all (r,5)EA Therefore,

(dr: s)pfq = [(dr: s)p'qfs]: 5 ̂ (dq'ps): s = dq'p

for all (r,s)E. A. Thus,

U ((dr:s)p'q)^dq'p
(r.s)GA

and so

'q= U ((dr: s)p'q)^dq'p.

Therefore, (c,d){pr,q')^k{p,q) and (c, d) is an element of Λ. If (r9s)
is an arbitrary element of A then, since dr: s^=c,

rd =

Thus, (r,s)^(c,d) so <c,d) is the greatest element of A.
We now investigate the existence of a multiplicative inverse for

elements of the lattice of fractional elements. If (p, q) is an invertible
element of L*, (p,q)~ι will denote the multiplicative inverse of (p,q) in
L*. This inverse is unique if it exists.

PROPOSITION 1.3. A nonzero element p ELL is invertible in L* //
and only if there exists an element q E L such that pq is a principal
nonzero divisor.
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Proof. lf(p,e)(x,y) = (e,e), then (px, y) = (e,e), i.e., px = y with
y principal. If there exists q E L such that pq = y is a principal
nonzero divisor, then (q,y) is the inverse of (p,e) in L*.

COROLLARY. Ei ery principal nonzero divisor in L is invertible in
L*.

PROPOSITION 1.4. Let (p, q)EίL* vWί/z p 0 nonzero divisor. If
(p,q) is invertible in L*, ί/ien (p,q)~ι = (e,e): {p,q).

Proof. Since (p, <j) is invertible, there exists (x, y) E L* such that
pjc = gy. Thus, px is a principal nonzero divisor and px ^
p. Therefore, by Theorem 1.2, (e,e): {p,q) exists.

Clearly, (p,q)~ι S (e,e): (p,q). Moreover,

Therefore,

The multiplicative lattice, L, is an M-lattice if and only if it satisfies
the following condition:

(M) If a and b are elements of L with a ^=b, there exists an
element c E L such that α = be.
We list here two important properties of such lattices:

(1) L is an M- lattice if and only if every element of L is meet
principal.

(2) An M-lattice is distributive.
For proofs of these properties as well as a more complete discussion of
M-lattices, see [3] and [7].

PROPOSITION 1.5. // the nonzero elements of L * form a group then
L is an M-lattice.

Proof. Let a and b be elements of L with a ^ b. Then there
exists (jc,y)EL* such that

(i) (b9e)(x,y) = (a,e).
Thus, bx - ay with y a principal nonzero divisor in L. Since atkb,
a = a Π b and so

bx = ay = (a Π b)y = ay D by = bx Π by.
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Thus, bx ̂  by and therefore JC ̂  y. Thus, by Proposition 1.2, (x9 y) =
(x: y,e). Therefore, (i) may be rewritten

(b,e)(x: y,e) = (a,e)

or, b(x: y) = a.

THEOREM 1.3. The nonzero elements of L* from a group if and
only if every nonzero element of L is a principal nonzero divisor.

Proof. If the nonzero elements of L* from a group then L is an
M-lattice by the previous proposition so that every element of L is
meet principal. To show every element is join principal, let a,b EL,
b^O. Then (ab:b)b ^ab which implies ab: b^a since b has an
inverse in L*. Since clearly a S ab: b, we have

(i) ab: b = a
for all a,b <EL, b^O.

Let a, b, c be elements of L with c ̂  0. Then

((a:c)Ub)c =(α: c)c U be =(aΠc)Ubc

since c is meet principal. Since L is distributive,

(α Π c ) U k = ( α Ubc)Π(c Ubc) = (α Ubc)Γ\c.

Thus,
(ii) ((α: c)Ufc)c = (a Ubc)Πc.

Using equations (i) and (ii) gives

(a: c)Ub =[((a: c)Ub)c]: c =[(a Ubc)Πc]: c

= {a Ubc): c.

Thus, every nonzero element of L is a principal nonzero divisor.
Conversely, if every nonzero element of L is a principal nonzero

divisor and if (p,(?>EL*, <p,<ϊ>^<0,e>, then <t?,p)EL*. Thus

so (p,q) is invertible in L*.

PROPOSITION 1.6. // every nonzero element of L is invertible in L *
then the nonzero elements of L* from a group.
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Proof. Let ( p , q ) 6 L * , p^ 0. Since p is invertible in L*, there
exists (x,y)E L* such that px = y. Then (xg, y) is the multiplicative
inverse for (p,q) in L*.

PROPOSITION 1.7. Suppose L satisfies the following conditions:
(1) Every element of L contains a principal element.
(2) L contains no zero divisors.
Then L is an M-lattice if and only if every nonzero element of L is a

principal nonzero divisor.

Proof. If every element is principal, L is clearly an M-
lattice. Suppose L is an M-lattice and let p E L, pj^ 0. Let q ^ p be
a principal element of L. Then q-pr for some r in L. Thus, /? is
invertible in L* by Proposition 1.3. The Proposition then follows from
Proposition 1.6 and Theorem 1.3.

EXAMPLE. Let L(R) be the lattice of ideals of a commutative ring
with identity JR. Let L(Q(R)) denote the lattice of fractional ideals of

R. If A GL(Q(R)), then A = ^ B , where B is an ideal of R. The

mapping φ: L(Q(R))->L* defined by φί-jBj = (B,(d)) is an isomorph-
ism of L(Q(R)) onto L*. Thus, in this case, the lattice of fractional
elements defined above is isomorphic to the lattice of fractional ideals
of R.

2. Dedekind lattices. Throughout this section we will as-
sume that L is a multiplicative lattice that satisfies the following
conditions:

(A) L is modular.
(B) Every element of L is a join of principal elements.
(C) If p is a principal element of L and p ^ U ιGίqt where each qι

is principal, then there exists a finite subset /' of I such that p ^ U ι e / q{.
(D) L contains no zero divisors.

L* will denote the lattice of fractional elements of L.
If L(R) is the lattice of ideals of a commutative ring with identity

JR, then L(R) satisfies (A) and (B). Since every principal element oί
L(R) is a finitely generated ideal of R ([3], p. 655), L(R) also satisfies
(C). We also remark that a Noether lattice satisfies (A) through
(C). A further discussion of (B) and (C) can be found in [6].

DEFINITION 2.1. A Dedekind lattice is a multiplicative lattice
satisfying (A) through (D) above in which every element can be written
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as a finite product of prime elements.

LEMMA 2.1. Let {pi\i = 1, ,n} be a set of elements of L. If
Π^ip, is invertible in L*, then each p{ is invertible in L*.

Proof. By Proposition 1.3, ΠUφi is invertible if and only if there
exists x, y E L with y principal such that xΠ"= 1p i=y. Then, for
i = l, ,n,

so Pj is invertible by Proposition 1.3.

LEMMA 2.2. For products of invertible prime elements of L, the
factorization into prime elements is unique.

Proof. Suppose a = n"=1p, — Π7=i<?/ where p, and qι are prime in L
and a is invertible in L*. Further, assume px is minimal among the set
{Pi\i = 1, ,n}. Then Π7=i<Z/=Pi so there exists qι such that qs^k
p,. Without loss of generality we may assume j = ί so that qλ ^
p,. Now, Π?= 1p t^q,. Thus, there exists an integer s such that
ps ^qx. Then ps ^qx^=px which implies qx = px since px was assumed
to be minimal among the ph By Lemma 2.1, px is invertible in
L*. Therefore,

n n m m

Π Pi= PTVI 0 p« = PT'PI Π ^ = Π ήfj

Clearly, n"=2P/ = Π7=2ίj is invertible in L*, so the above argument can
be repeated.

PROPOSITION 2.1. IfpEίLis invertible in L *, then p can be written
as a finite join of principal elements.

Proof. If p E L is invertible in L* there exists (r,s)EL* such
that (p, e)(r,s) = (e,e). By condition (B) on the lattice L, we can write

p = U p, and r = U ry
je./

where p, and ry are principal for all i E / and all j E /. Therefore,
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,e)(r,s) = { U P/^)< U rhe
ii ' \ j(ΞJ

= ( U (Pinh

Thus, 5 = Ufj(pfi/). Since s is principal, by condition (C), s can be
written as a join of finitely many of the elements p.η. Thus,

s = U

where, for all k, pk ^p and rktkr and pfc, rk are principal. Therefore
(e,e)= U!=,((pk,g>(rk,s» and so,

= U ((p,e)(r,s)(pk,e))= \J (e,e)(pk,e)

= U (pk,e).

Since pk^p for all /c,

n

P = U Pt

PROPOSITION 2.2. If p E L is invertible in L*, ί/ι̂ n qp: p = q for
all q G L.

Proof. Clearly q ^qp: p. Moreover, (qp: p)p ^qp and so,
since p is invertible,

qp:p = (qp: p)pp" ! ^ qpp"1 = q.

THEOREM 2.1. /n α Dedekind lattice every proper, nonzero prime
element is maximal in L and invertible in L*.

Proof. We first show that every invertible prime of L is
maximal. Because of condition (B) it will suffice to show that if q E L
is principal and q^ p, then p U q = e. Thus, assume q E L is principal
and g ^ p and consider the elements p U q and p U q2. Since L is a
Dedekind lattice
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(i) pUq = f \ p i
i = l

s

(ii) pU<?2=Π<7/
i = \

where p, and qϊ are prime. Clearly, p U q, p U q2 as well as the
elements p, and q} belong to the factor lattice Lip. We will denote
elements of Lip by α/p, fo/p, etc.

Since p is prime in L, L/p has no zero divisors and since q and q2

are principal in L, (p Uq)lp and (p Uq2)lp are principal in L/p.
Let (L /p )* denote the lattice of fractional elements of L /p. Since

( p U q )/p and (p U q 2)/p are principal nonzero divisors in L /p, they are
invertible in (Lip)* by the Corollary to Proposition 1.3. The elements
Pilp and q}lp are prime in Lip since they are prime in L. Thus (i) and
(ii) give (p U q)lp and (p U <?2)/p as a product of primes of Lip.

Since Πί=1(pf/p) = (p Uq)lp is invertible in (Lip)*, each p,/p is
invertible in (L /p )* by Lemma 2.1. Similarly, each qsIp is invertible in
(Lip)*.

We now note that p U(p U(j)2 = p Uq 2. Therefore, in Lip

Π (Pilp)2 = (p U <?)7p = ( P U <?2)/p = ί l (Φ/P).

Thus, since each p,/p and φ/p is invertible in (Lip)*, by Lemma 2.2 the
q,/p must be the pjp each repeated twice. Specifically, in Lip we
have s =2r and after a possible renumbering of the qh q2ilp = q2ι-\lp =
p(/p. Therefore, since pt^p for all ι and q} έ p for all /,

^2/ = fl2i-l = Pi

in the lattice L. Therefore, in the lattice L,

(Hi) p ^ p U q2 = Π * = Π Pi = (P U 4)2 = p 2 U q(p U ήf)

Since p is prime and qύp, rq^p implies that r g p . Therefore,
p-.q-^p and so p Π q = (p: q)q ^pq, where the first equality follows
from the fact that q is principal. Since L is a multiplicative lattice,
pq ^p Γ)q and therefore

(iv) pq = p Πq
By assumption, p is invertible. Therefore, by Proposition 2.2 and

(iv),
(v) q = qp: p =(qΓ\p): p =q: p.
We now establish the following equation:



46 RICHARD G. BURTON

(vi) (p2Uq):p = p2: p Uq: p.
By Proposition 2.2, (p2: p)p = p2 and by (iv) and (v), (q: p)p =

qp ~ q Π p. Therefore

(p2: p)U(q: p) = ((p2: p)U(q: p))p: p =((p2: p)p U(q: p)p): p

= (p2U(p Π q)): p = ((p2U q) Πp): p = (p2U q): p

where we have again used Proposition 2.2 as well as the fact that L is
modular.

By equation (iii), p ^ p2 U q. Therefore, using (vi) and Proposition
2.2 gives

e = p: p ^(p2U q): p = (p2: p)U(q: p) = p U(q: p) = p U q.

Therefore, p U q = e and every invertible prime is maximal. We
now show that every prime is invertible. Let p be prime and let q be a
principal element with q^p. Then q=Un

i=\Pi where each p{ is
prime. Since q is principal it is invertible in L*. Therefore pt is
invertible in L * for all ϊ. Thus, each p, is maximal in L by the first part
of the proof. But this implies that p4 = p for some / and so p is
invertible.

COROLLARY 2.1. In a Dedekind lattice, the factorization of an
element into a product of primes is unique.

COROLLARY 2.2. In a Dedekind lattice every nonzero element is
invertible in L*.

Proof. If α EL, α^O, then a =U%]pi with p, prime for all /.
By Theorem 2.6 and Proposition 1.3, there exists b{ E L such that

Pibi is principal. Then, if b - Π"=, bh ab is principal so a is invertible
by Proposition 1.3.

COROLLARY 2.3. A Dedekind lattice is a Noether lattice.

Proof. If L is a Dedekind lattice then every nonzero element of L
is invertible by Corollary 2.2. Thus, by Proposition 2.1 every element
of L can be written as a finite join of principal elements. By using
conditions (B) and (C) imposed on L one can prove exactly as in the
ring theoretic case, that L then satisfies the ΛCC. Thus, L is a
Noether lattice.

Dilworth [1] has noted a special case of the following theorem. By
using Corollary 2.3 and Theorem 1.3, his proof can be extended to the
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present case. It is also possible to give a proof using Theorem 5 of
[4]. We give a different proof.

THEOREM 2.2. A multiplicative lattice, L, satisfying conditions
(A) through (D) is a Dedekind lattice if and only if the nonzero elements
of L* form a group.

Proof. If L is Dedekind every element of L is invertible so the
nonzero elements of L * form a group by Proposition 1.6.

If the nonzero elements of L * form a group, every element of L is
principal by Theorem 1.3. Thus L is a Noether lattice. Let 5 be the
set of elements that cannot be written as a product of prime
elements. If S is nonempty it contains a maximal element, α, since L
is a Noether lattice. Now, a is not maximal in L since every maximal
element of L is prime. Let m be a maximal element of L such that
a^m. Such an element exists since L is a Noether lattice.

Consider a: m. Clearly a^a: m. Moreover a^ a: m. For
suppose a — a: m. Then, since m is principal and a is invertible in L *,

m = a~ιam = a~\a\ m)m = a~\a Π ra) = a~ιa = e.

Thus, α < a: m, so a: m is a product of primes, that is, a: m = pλ pn,
where each p{ is a prime. Then, since m is principal

a = α Π f f i = ( α : m ) m = p i ••• p « m

is a representation of α as a product of prime elements. The contradic-
tion establishes the Theorem.

The following result is an immediate consequence of the preceding
theorem, Proposition 1.7, and Theorem 1.3.

COROLLARY 2.4. A multiplicative lattice satisfying (A) through
(D) is a Dedekind lattice if and only if it is an M-lattice.

From the corollary to Theorem 6 of [3], it follows that an M-lattice
satisfying (A) through (D) also satisfies the ACC. In [8], M. Ward has
investigated M-lattices satisfying the ACC. By using the primary
decomposition, he has shown that every element of such a lattice has a
unique decomposition into a product of prime elements ([8], Theorem
5.2). This result, together with Proposition 1.5, could also be used to
prove Theorem 2.2. Using Corollary 2.4, we also obtain the following
restatement of Theorem 6.1 of [8].

THEOREM 2.3. A multiplicative lattice L is a Dedekind lattice if
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and only if it is a Noether lattice without zero divisors satisfying
(i) Every primary element of L is a power of a prime;

(ii) // p is prime, p ^q, and p^ <?, then qp = p.

For the following theorem, we use the definition of integrally closed
elements given in [5].

THEOREM 2.4. A multiplicative lattice satisfying (A) through (D)
is a Dedekind lattice if and only ifL satisfies the following conditions:

(1) L is a Noether lattice;
(2) Every nonzero prime element of L is maximal
(3) Every principal element of L is integrally closed.

Proof Assume L satisfies (1) through (3) and let p be a prime in
L. Let a ^ p be a principal element. By (2) p is a minimal prime
associated with a.

In [2], Furuyama has defined the nth symbolic primary power q{n)

of a primary element q associated with p to be (qn)p, where (qn)p

denotes the p- primary component of q \ He has then shown that if p
is a prime associated with a principal integrally closed element, the only
p-primary elements are the symbolic powers p ( n ). Thus, the symbolic
powers p ( r t ) are the only p-primary elements of L. Therefore, the
quotient lattice Lp is totally ordered, the only elements of Lp being the
powers [p]n of the maximal element [p]. By Theorem 6 of [6], this
implies that L is an M-lattice. Thus, by Proposition 1.7 and Theorems
1.2 and 2.2, L is a Dedekind lattice.

Conversely, suppose L is Dedekind. By Corollary 2.3, L is a
Noether lattice and by Theorem 2.1, every prime is maximal. Suppose
a is a -dependent on b (for a definition of this relation, see [5]). Then
there exists an integer n such that (a U b)n+ι = b(a U b)n. Since L is
Dedekind, every element of L is invertible in L*. Thus,

al)b=(aU b)n+ι(a U byn = b(a U b)n(a U b)~n = b.

Therefore, a S b, so b is integrally closed.
Since, by Corollary 2.3, a Dedekind lattice is a Noether lattice, the

following theorem is an obvious consequence of Theorem 5 of [4].

THEOREM 2.5. A Dedekind lattice is isomorphic to the lattice of
ideals of a Noetherian ring.

The following result follows from the corresponding ring theoretic
result by using Theorem 2.5. A lattice theoretic proof can also be given
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which is exactly analogous td the ring theoretic proof.

COROLLARY 2.5. Let L be a Dedekind lattice. Then every element
(a,b) of L* can be written uniquely in the form

(a,b)= Π PnpM))

PeL
p prime

where np ({a, b)) is an integer and np ((a, b)) = 0 for all but finitely many p
in L. The following equations also hold:

(1) np((a,b)U(c9d)) = min{np((a,b», np((c9d))}
(2) np((c
(3) np((c
(4) (a,b)^ (c, d) iff np((a,b)) ^ np((c, d)) for all primes p in L.
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