ON THE FIRST AND THE SECOND CONJUGATE POINTS

W. J. Kim

Abstract

Three properties of conjugate points and extremal solutions of an n th-order linear ordinary differential equation are discussed. Also, a connection between the zero distribution and the factorization of an n th-order differential operator in the interval ($a, \eta_{2}(a)$) is established.

1. Introduction. We shall be concerned with the n th-order differential equation

$$
\begin{equation*}
L y=\sum_{k=0}^{n} p_{k}(x) y^{(k)}=0 \tag{1.1}
\end{equation*}
$$

where the coefficients are real-valued functions which are continuous on an interval I and $p_{n}(x) \neq 0, x \in I$. A differential equation of the form (1.1) is called nonsingular on I. A solution y of (1.1) is said to have a zero of order k at $c \in I$ if $y(c)=y^{\prime}(c)=\cdots=y^{(k-1)}(c)=0$; if in addition $y^{(k)}(c) \neq 0$, we say that y has a zero of order exactly k at c. A zero of order exactly one is called simple. The m th conjugate point $\eta_{m}(a)$ of a point $a \in I$ is the smallest number $b>a, b \in I$, such that there exists a nontrivial solution of (1.1) which vanishes at a and has $n+m-1$ zeros (counting multiplicities) on [a,b] [6]. Obviously, we have the relation $\eta_{1}(a) \leqq \eta_{2}(a) \leqq \cdots$. A nontrivial solution of (1.1) which has n zeros on $\left[a, \eta_{1}(a)\right.$] is called an extremal solution for the interval $\left[a, \eta_{1}(a)\right]$. A nontrivial solution of (1.1) is said to have an $i_{1}-i_{2}-\cdots-i_{j}$ distribution of zeros on I if it has a zero of order i_{k} at $x_{k} \in I, x_{1}<x_{2}<\cdots<x_{i}, k=1,2, \cdots, j$.

So far as the study of zero distribution of solutions [1-5, 8-11, 14] is concerned, it is convenient to divide the problem into two cases: $\eta_{1}(a)=\eta_{2}(a)$ and $\eta_{1}(a)<\eta_{2}(a)$. In a recent paper, Gustafson [2] obtained an interesting result for the case $\eta_{1}(a)=\eta_{2}(a)$. Evidently, $\eta_{1}(a)<\eta_{2}(a)$ for any second-order differential equation of the form (1.1). However, for higher-order equations both cases $\eta_{1}(a)=\eta_{2}(a)$ and $\eta_{1}(a)<\eta_{2}(a)$ occur. For example, $\eta_{1}(a)=\eta_{2}(a)=\eta_{3}(a)$ for the equation $y^{(v)}+10 y^{\prime \prime}+9 y=0$ [1], while $\eta_{1}(a)<\eta_{2}(a)$ for

$$
\left(r y^{\prime \prime}\right)^{\prime \prime}-p y=0, \quad r>0, \quad p>0, \quad r \in C^{\prime \prime}, \quad p \in C
$$

according to a result of Leighton and Nehari [6]. Other equations with the property

$$
\begin{equation*}
\eta_{1}(a)<\eta_{2}(a) \tag{1}
\end{equation*}
$$

have been observed by Peterson [10].
Suppose Eq. (1.1) has an extremal solution for [$a, \eta_{1}(a)$]. Then it is well-known that (1.1) has an extremal solution for $\left[a, \eta_{1}(a)\right]$ which does not vanish on $\left(a, \eta_{1}(a)\right)$ [12]. Of particular interest is the equation which has the property
$\left(\mathrm{P}_{2}\right) \quad$ No extremal solution for $\left[a, \eta_{1}(a)\right]$ vanishes on $\left(a, \eta_{1}(a)\right)$.
For example, it can be easily shown that $y^{\prime \prime \prime}+y=0$ and $y^{\prime \prime \prime}-y=0$ have the property $\left(\mathrm{P}_{2}\right)$. In fact, every extremal solution of $y^{\prime \prime \prime}+y=0$ has a $2-1$ distribution of zeros. On the other hand, every extremal solution of $y^{\prime \prime \prime}-y=0$ has a 1-2 distribution of zeros. These two equations also have the property $\left(\mathrm{P}_{1}\right)$.

As it turns out, closely connected with $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ is the property
$\left(P_{3}\right)$ There do not exist two (not necessarily distinct) extremal solutions for $\left[a, \eta_{1}(a)\right]$ with zero distributions $(n-k)-k$ and $(n-k-1)-(k+1)$, respectively, where k is a fixed number, $1 \leqq k \leqq n-2$.

In §2 we prove that $\left(\mathrm{P}_{3}\right)$ implies $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$. Conversely, $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$ taken together imply $\left(\mathrm{P}_{3}\right)$. Moreover, we shall show that in general $\left(P_{1}\right)$ neither implies nor is implied by $\left(P_{2}\right)$. As the last result of this section we shall exhibit a class of differential equations which has the properties $\left(\mathrm{P}_{1}\right)$, $\left(\mathrm{P}_{2}\right)$ and $\left(\mathrm{P}_{3}\right)$.

In §3 we assume (P_{1}) and investigate the zero distribution of solutions on the intervals $\left[a, \eta_{1}(a)\right]$ and $\left(a, \eta_{2}(a)\right)$, and their consequences. In particular, we discuss a connection between the zero distribution and the factorization of (1.1) on the interval ($a, \eta_{2}(a)$).

In the sequel we shall have an occasion to use the function $w\left(x ; x_{1}^{\left[k_{1}\right]}, x_{2}^{\left[k_{2}\right]}, \cdots, x_{p}^{\left[k_{\rho}\right]}\right)$ defined and used in [5]. Let $y_{1}, y_{2}, \cdots, y_{n}$ be n linearly independent solutions of (1.1). Then the function w is defined by
$w\left(x ; x_{1}^{\left[k_{1}\right]}, x_{2}^{\left[k_{2}\right]}, \cdots, x_{p}^{\left[k_{p}\right]}\right)$

$$
\equiv\left|\begin{array}{lllr}
y_{1}(x) & y_{2}(x) & \ldots \ldots & y_{n}(x) \tag{1.2}\\
y_{1}\left(x_{1}\right) & y_{2}\left(x_{1}\right) & \ldots \ldots & y_{n}\left(x_{1}\right) \\
y_{1}^{\prime}\left(x_{1}\right) & y_{2}^{\prime}\left(x_{1}\right) & \ldots \ldots & y_{n}^{\prime}\left(x_{1}\right) \\
& \ldots \ldots \ldots \ldots \ldots \ldots & \\
y_{1}^{\left(k_{1}-1\right)}\left(x_{1}\right) & y_{2}^{\left(k_{1}-1\right)}\left(x_{1}\right) & \ldots & y_{n}^{\left(k_{1}-1\right)}\left(x_{1}\right) \\
y_{1}\left(x_{2}\right) & y_{2}\left(x_{2}\right) & \ldots \ldots & y_{n}\left(x_{2}\right) \\
& \ldots \ldots \ldots \ldots \ldots \ldots & \\
y_{1}\left(x_{p}\right) & y_{2}\left(x_{p}\right) & \ldots \ldots & y_{n}\left(x_{p}\right) \\
& \ldots \ldots \ldots \ldots \ldots \ldots \ldots & \\
y_{1}^{\left(k_{p}-1\right)}\left(x_{p}\right) & y_{2}^{\left(k_{p}-1\right)}\left(x_{p}\right) & \cdots & y_{n}^{\left(k_{p}-1\right)}\left(x_{p}\right)
\end{array}\right|,
$$

$1 \leqq p \leqq n-1, k_{1}+k_{2}+\cdots+k_{p}=n-1$. Obviously, this function w is a solution of (1.1) with a zero of order k_{i} at $x_{i}, i=1,2, \cdots, p$. Moreover, it is continuous function of $x_{1}, x_{2}, \cdots, x_{p}$.
2. Properties $\left(P_{1}\right),\left(P_{2}\right)$ and $\left(P_{3}\right)$. Suppose (1.1) has an extremal solution Y for $\left[a, \eta_{1}(a)\right]$ with an $i_{1}-i_{2}-\cdots-i_{j}$ distribution of zeros, i.e., Y has a zero of order i_{k} at $x_{k}, k=1,2, \cdots, j, i_{1}+i_{2}+\cdots+i_{j}=$ $n, a=x_{1}<x_{2}<\cdots<x_{j}=\eta_{1}(a)$. Numerous results have been obtained for the zero distribution of Y [2,5,9,10, 12]. Of particular importance in this section is the following result which will be frequently referred to in the proofs.

Theorem 2.1 [5]. If Y has a zero of order exactly i_{m} at $x_{m}, 2 \leqq m \leqq$ $j-1$, then (1.1) has an extremal solution for $\left[a, \eta_{1}(a)\right]$ with an $i_{1}-\cdots-$ $i_{m-1}-\left(i_{m}-1\right)-i_{m+1}-\cdots-i_{j}$ distribution of zeros and an additional zero at an arbitrary point $\xi \in\left[a, \eta_{1}(a)\right]$.

A simple application of this theorem shows that $\left(\mathrm{P}_{3}\right)$ implies $\left(P_{2}\right)$. This result can then be used to prove that $\left(P_{3}\right)$ also implies $\left(P_{1}\right)$. On the other hand, if (1.1) does not satisfy $\left(P_{3}\right)$, it is easily confirmed that (1.1) must violate either (P_{1}) or $\left(\mathrm{P}_{2}\right)$.

Theorem 2.2. Eq. (1.1) has the property $\left(\mathrm{P}_{3}\right)$ if and only if it satisfies $\left(\mathrm{P}_{1}\right)$ and $\left(\mathrm{P}_{2}\right)$.

We shall illustrate by means of examples that in general $\left(P_{1}\right)$ neither implies nor is implied by $\left(P_{2}\right)$. The nonsingular equation

$$
y^{\prime \prime \prime}-\frac{6 \sin x \cos x\left(\cos ^{2} x-\sin ^{2} x\right)}{3 \sin ^{2} x \cos ^{2} x-2} y^{\prime \prime}
$$

$$
\begin{equation*}
-\frac{9 \sin ^{2} x \cos ^{2} x+14}{3 \sin ^{2} x \cos ^{2} x-2} y^{\prime}=0 \tag{2.1}
\end{equation*}
$$

has as a fundamental set of solutions $\sin ^{2} x \cos x, \cos ^{2} x \sin x$, and 1 [1, 13]. The Wronskian W of these three solutions is given by $W=$ $3 \sin ^{2} x \cos ^{2} x-2<0$, and the corresponding adjoint equation

$$
v^{\prime \prime \prime}+\left(\frac{6 \sin x \cos x\left(\cos ^{2} x-\sin ^{2} x\right)}{3 \sin ^{2} x \cos ^{2} x-2} v\right)^{\prime \prime}
$$

$$
\begin{equation*}
-\left(\frac{9 \sin ^{2} x \cos ^{2} x+14}{3 \sin ^{2} x \cos ^{2} x-2} v\right)^{\prime}=0 \tag{2.1}
\end{equation*}
$$

has a fundamental set of solutions $\sin ^{2} 2 x / W,\left(2 \sin x-3 \sin ^{3} x\right) / W$, and $\left(3 \cos ^{3} x-2 \cos x\right) / W$. It is easily confirmed that $\eta_{1}(0)=\eta_{2}(0)=\pi / 2$ for (2.1)* and no extremal solution for $\left[0, \eta_{1}(0)\right]$ of $(2.1)^{*}$ vanishes in $\left(0, \eta_{1}(0)\right)$. This shows that (P_{2}) does not in general imply (P_{1}).

To see that $\left(\mathrm{P}_{1}\right)$ does not in general imply $\left(\mathrm{P}_{2}\right)$, consider the nonsingular equation

$$
\begin{equation*}
\left(6 x^{2}-8 x+3\right) y^{(v)}-(12 x-8) y^{\prime \prime \prime}+12 y^{\prime \prime}=0 \tag{2.2}
\end{equation*}
$$

for which $1, x, x(1-x)^{2}$, and $x(1-x)^{3}$ form a fundamental set of solutions, $\eta_{1}(0)=1$, and of which no extremal solution for $[0,1]$ has a $3-1$ distribution of zeros [4]. Moreover, no extremal solution for [0, 1] can vanish more than once in $(0,1)$. It is easily verified that (2.2) has no nontrivial solution with zeros of order 2 and 3 at $x=0$ and $x=1$, respectively. From these facts we can readily deduce $\eta_{1}(0)<$ $\eta_{2}(0)$. On the other hand, $x(\lambda-x)(1-x)^{2}, 0<\lambda<1$, is an extremal solution for $[0,1]$ which vanishes at $\lambda, 0<\lambda<1$.

An obvious consequence of these examples is that $\left(\mathrm{P}_{3}\right)$ is not in general implied by either (P_{1}) or (P_{2}) alone.

In view of Theorem 2.2, it is clear that any differential equation which satisfies $\left(P_{3}\right)$ will also satisfy $\left(P_{1}\right)$ and $\left(P_{2}\right)$. Consider a differential equation of the form

$$
\begin{equation*}
L_{n} y+p y=0 \tag{2.3}
\end{equation*}
$$

where the operator L_{n} is successively defined by

$$
L_{0} y=\rho_{0} y, \quad L_{k} y=\rho_{k}\left(L_{k-1} y\right)^{\prime}, \quad k=2,3, \cdots, n
$$

The functions $\rho_{0}, \rho_{1}, \cdots, \rho_{n}$ are assumed to be positive, $\rho_{k} \in C^{n-k}$, $k=0,1, \cdots, n$, and p is assumed not to vanish. Eq. (2.3) was extensively studied by Nehari [7], who established the following result: If a nontrivial solution of (2.3) has zeros of order k and $n-k$ at $x=a$ and $x=b$, respectively $(a<b)$, then $n-k$ is even or odd, according as $p<0$ or $p>0$. Evidently, this result implies that Eq. (2.3) satisfies $\left(\mathrm{P}_{3}\right)$. Hence, we have the following theorem.

Theorem 2.3. Eq. (2.3) has the properties $\left(\mathrm{P}_{1}\right),\left(\mathrm{P}_{2}\right)$, and $\left(\mathrm{P}_{3}\right)$.
3. Zero distribution and factorization. In this section we exclusively consider a differential equation of the form (1.1) with property $\left(\mathrm{P}_{1}\right)$. Let Y be an extremal solution of (1.1) for [a, $\eta_{1}(a)$] with an $i_{1}-i_{2}-\cdots-i_{j}$ distribution of zeros, $a=x_{1}<x_{2}<\cdots<x_{j}=\eta(a)$, $i_{1}+i_{2}+\cdots+i_{j}=n$. Then Y has a zero of order exactly i_{k} at $x_{k}, k=$ $1,2, \cdots, j$. This is because $\eta_{1}(a)<\eta_{2}(a)$. Therefore, by a repeated application of Theorem 2.1, we obtain

Theorem 3.1. Suppose (1.1) has the property $\eta_{1}(a)<\eta_{2}(a)$ and has an extremal solution for $\left[a, \eta_{1}(a)\right]$ with an $i_{1}-i_{2}-\cdots-i_{j}$ distribution of zeros, $i_{1}+i_{2}+\cdots+i_{j}=n$. Let $k_{1}, k_{2}, \cdots, k_{p}$ be arbitrary positive integers such that $k_{1}+k_{2}+\cdots+k_{p}=n$, and let $a=\xi_{1}, \xi_{2}, \cdots, \xi_{p}=\eta_{1}(a)$ be distinct points in $\left[a, \eta_{1}(a)\right]$. If $i_{1} \leqq k_{1}$ and $i_{j} \leqq k_{p}$, then (1.1) has an extremal solution for $\left[a, \eta_{1}(a)\right]$ which has a zero of order exactly k_{m} at $\xi_{m}, m=1,2, \cdots, p$.

As is clear from Theorem 3.1, the zeros of solutions in $\left(a, \eta_{1}(a)\right)$ can be moved to an arbitrary point in ($a, \eta_{1}(a)$), or can be separated into lower-order zeros in $\left(a, \eta_{1}(a)\right)$. However, no such statements can be made in general for the zeros at the end points a and $\eta_{1}(a)$. On the other hand, the zeros of an extremal solution for $\left[a, \eta_{1}(a)\right]$ can be simultaneously separated into simple zeros in $\left[a, \eta_{1}(a)+\epsilon\right), \epsilon>0$ [4, 14]. By using a slight modification of the arguments given in the proof of Theorem 1 in [4], we shall establish the following result.

Theorem 3.2. If (1.1) has a nontrivial solution with an ($n-l$) - l distribution of zeros in $\left(a, \eta_{2}(a)\right)$, then (1.1) has a nontrivial solution with the zero distribution

$$
\begin{equation*}
\underbrace{1-1-\cdots-1}_{i}-j-1 \underbrace{-\cdots-1}_{k}, \quad i+j+k=n, \tag{3.1}
\end{equation*}
$$

in $\left(a, \eta_{2}(a)\right)$, provided $i \geqq n-l$ or $k \geqq l$.

Proof. Consider the case $i \geqq n-l$. Let y be a nontrivial solution of (1.1) which has zeros of order $n-l$ and l at $x=b$ and $x=c$, respectively, $a<b<c<\eta_{2}(a)$ and suppose l is maximal. Consider the function

$$
w(x) \equiv\left\{\begin{array}{c}
w\left(x ; c^{[n-1]}\right) \quad \text { if } \quad l=n-1 \\
w\left(x ; b^{[n-l-1]}, c^{[l]}\right), \text { otherwise }
\end{array}\right.
$$

defined in $\S 1$. This function w cannot vanish identically; for if $w \equiv 0$ it would imply the existence of a nontrivial solution with a zero of order $n-l-1$ at b and a zero of order $l+1$ at c, contrary to the assumption. Therefore, w is a nontrivial solution of (1.1) with a zero of order exactly $n-l$ at b and a zero of order exactly l at c. Consequently, the $n-l$ zeros at b and $l-j$ (out of l) zeros at c can be separated into $n-j$ simple zeros in such a way that there are i simple zeros to the left and k simple zeros to the right of the j th-order zero at c (Cf. The proof of Theorem 1 [4]). This proves the theorem for the case $i \geqq n-l$.

The proof for the case $k \geqq l$ is similar.

Remark. The above theorem can be restated as follows: If (1.1) does not have a nontrivial solution with the zero distribution (3.1) in ($a, \eta_{2}(a)$), then (1.1) does not have nontrivial solutions in $\left(a, \eta_{2}(a)\right)$ with zero distributions $(n-1)-1,(n-2)-2, \cdots,(n-k)-k,(n-k-j)-$ $(k+j), \cdots, 1-(n-1)$.

We shall see that this result provides a link between the zero distribution and the factorization of the differential operator L in (1.1).

Let $y_{1}, y_{2}, \cdots, y_{n}$ be n linearly independent solutions of (1.1) and define

$$
W_{k} \equiv\left|\begin{array}{cccc}
y_{1} & y_{2} & \ldots \ldots & y_{k} \\
y_{1}^{\prime} & y_{2}^{\prime} & \ldots \ldots & y_{k}^{\prime} \\
& \ldots \ldots \ldots \ldots \ldots & \\
y_{1}^{(k-1)} & y_{2}^{(k-1)} & \ldots \ldots & y_{k}^{(k-1)}
\end{array}\right|, \quad k=1,2, \cdots, n
$$

It is well-known that $W_{p}>0$ if and only if the operator L can be written as $L=L_{1} L_{2}$, where L_{1} and L_{2} are nonsingular differential operators of order $n-p$ and p, respectively [15]. We require the following obvious extension of this result.

Theorem 3.3. Eq. (1.1) has k solutions $y_{1}, y_{2}, \cdots, y_{k}$ such that $W_{k_{1}}>0, W_{k_{2}}>0, \cdots, W_{k_{1}}>0, k_{1}<k_{2}<\cdots<k_{1}=k$, if and only if the differential operator L in (1.1) can be written as the product of $l+1$ nonsingular differential operators, i.e., $L=L_{l+1} L_{1} \cdots L_{1}$, where L_{1} is of order k_{1}, L_{i} is of order $k_{i}-k_{i-1}, i=2,3, \cdots, l$, and L_{l+1} is of order $n-k_{l}$.

Suppose (1.1) does not have a nontrivial solution with an $(n-p)-$ p distribution of zeros in (a, b). Let $y_{1}, y_{2}, \cdots, y_{n}$ be solutions of (1.1) such that $y_{i}^{(n-i)}(a+\epsilon)=\delta_{i}, \epsilon>0, i, j=1,2, \cdots, n$. Then $W_{p}>0$ in $(a+\epsilon, b)$. Since $\epsilon>0$ is arbitrary, we may assume that $W_{p}>0$ in (a, b). Hence, we have $L=L_{1} L_{2}$, where L_{1} and L_{2} are nonsingular differential operators of order $n-p$ and p, respectively.

Likewise, from Theorems 3.2, 3.3, and the above remark we deduce
Theorem 3.4. If (1.1) does not have a nontrivial solution with the zero distribution (3.1) in ($a, \eta_{2}(a)$), the differential operator L can be written as the product of nonsingular differential operators,

$$
L=L_{i+k+1} L_{i+k} \cdots L_{1}
$$

in $\left(a, \eta_{2}(a)\right)$, where $L_{m}, m \neq k+1$, is of first order and L_{k+1} is of j th order.
Let

$$
\mathfrak{Z} v=\sum_{k=0}^{n} q_{k}(\xi) v^{(k)}=0
$$

be the differential equation obtained from $L y=0$ through the change of variable $\xi=a+\eta_{2}(a)-x$. Clearly, $L y=0$ has a nontrivial solution with an $i_{1}-i_{2}-\cdots-i_{k}$ distribution of zeros in $\left(a, \eta_{2}(a)\right)$ if and only if $\mathfrak{Z} v=0$ has a nontrivial solution with an $i_{k}-i_{k-1}-\cdots-i_{1}$ distribution of zeros in ($a, \eta_{2}(a)$). In particular, if $L y=0$ does not have a nontrivial solution with the zero distribution (3.1), then $\mathfrak{R} v=0$ does not have a nontrivial solution with the zero distribution

$$
\underbrace{1-1-\cdots-1}_{k}-j-1-\underbrace{-\cdots-1}_{i}, \quad i+j+k=n,
$$

in ($a, \eta_{2}(a)$). Apply Theorem 3.4 to the nonsingular differential operator $\mathfrak{R}: \mathbb{R}$ can be written as the product of nonsingular differential operators

$$
\begin{equation*}
\mathfrak{Z}=\mathfrak{Z}_{i+k+1} \mathfrak{Z}_{i+k} \cdots \mathfrak{Z}_{1} \tag{3.2}
\end{equation*}
$$

in $\left(a, \eta_{2}(a)\right)$, where $\dot{\mathbb{Q}}_{p}, p \neq i+1$, is of first order and \dot{Q}_{i+1} is of j th order. Transform the equation $\mathfrak{Z} v=\dot{Z}_{i+k+1} \dot{B}_{1+k} \cdots \dot{Z}_{1} v=0$ back to $L y=0$ by substituting $x=a+\eta_{2}(a)-\xi$. Under this transformation each differential operator $\dot{Z}_{p}, p=1,2, \cdots, i+k+1$, in (3.2) remains nonsingular. Moreover, the order of each $\dot{\mathscr{Q}}_{p}$ and the order in which these differential operators appear remain unchanged. We summarize this result in the following theorem.

Theorem 3.5. If (1.1) does not have a nontrivial solution with the zero distribution (3.1) in $\left(a, \eta_{2}(a)\right)$, the differential operator L can be written as the product of nonsingular differential operators, $L=$ $\mathfrak{Z}_{1+k+1} \mathfrak{R}_{1+k} \cdots \mathfrak{R}_{1}$, in $\left(a, \eta_{2}(a)\right)$, where $\mathfrak{Z}_{p}, p \neq i+1$, is of first order and \mathbb{Z}_{1+1} is of j th order.

References

1. J. H. .Barrett, Oscillation theory of ordinary linear differential equations, Advances in Mathematics, 3 (1969), 415-509.
2. G. B. Gustafson, Interpolation between consecutive conjugate points of an nth order linear differential equations, Trans. Amer. Math. Soc., 177 (1973), 237-255.
3. P. Hartman, Unrestricted n-parameter families, Rend. Circ. Mat. Palermo, 7 (1958), 123-142.
4. W. J. Kim, Simple zeros of solutions of nth-order linear differential equations, Proc. Amer. Math. Soc., 28 (1971), 557-561.
5. On the extremal solutions of nth-order linear differential equations, Proc. Amer. Math. Soc., 33 (1972), 62-68.
6. W. Leighton and Z. Nehari, On the oscillation of solutions of self-adjoint linear differential equations of the fourth order, Trans. Amer. Math. Soc., 89 (1958), 325-377.
7. Z. Nehari, Disconjugate linear differential operators, Trans. Amer. Math. Soc., 129 (1967), 500-516.
8. Z. Opial, On a theorem of O. Arama, J. Differential Equations, 3 (1967), 88-91.
9. A. C. Peterson, Distribution of zeros of solutions of a fourth order differential equation, Pacific J. Math., 30 (1969), 751-764.
10. The distribution of zeros of extremal solutions of a fourth order differential equation for the nth conjugate point, J. Differential Equations, 8 (1970), 502-511.
11. A. C. Peterson, On a relation between a theorem of Hartman and a theorem of Sherman, Canad. Math. Bull., 16 (1973), 275-281.
12. T. I. Sherman, Properties of solutions of nth order linear differential equations, Pacific J. Math., 15 (1965), 1045-1060.
13. _-, On a theorem of Azbelev and Caljuk, Proc. Amer. Math. Soc., 21 (1969), 63.
14. -, Conjugate points and simple zeros for ordinary linear differential equations, Trans. Amer. Math. Soc., 146 (1969), 397-411.
15. A. Zettl, Factorization of differential operators, Proc. Amer. Math. Soc., 27 (1971), 425-426.

Received February 5, 1974 and in revised form June 14, 1974.
State University of New York - Stony Brook

