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ON THE FIRST AND THE SECOND

CONJUGATE POINTS

W. J. KIM

Three properties of conjugate points and extremal solutions
of an nth-order linear ordinary differential equation are
discussed. Also, a connection between the zero distribution and
the factorization of an nth-order differential operator in the
interval (a, r)2(a)) is established.

1. Introduction. We shall be concerned with the nth-order
differential equation

(1.1)

where the coefficients are real-valued functions which are continuous
on an interval / and p π ( x ) / 0 , x 6 ί . A differential equation of the
form (1.1) is called nonsingular on /. A solution y of (1.1) is said to
have a zero of order k at c E / if y(c) = y'{c) = = yik~ι\c) = 0; if in
addition yik)(c) / 0, we say that y has a zero of order exactly fcatc. A
zero of order exactly one is called simple. The mth conjugate point
ηm(a) of a point a E / is the smallest number b > a, b E J, such that
there exists a nontrivial solution of (1.1) which vanishes at a and has
n + m - 1 zeros (counting multiplicities) on [α, b] [6]. Obviously, we
have the relation τ/1(α)^η2(fl) = * * A nontrivial solution of (1.1)
which has n zeros on [α, τji(α)] is called an extremal solution for the
interval [α, 7/1(0)]. A nontrivial solution of (1.1) is said to have an
iΊ - i2— - - - ij distribution of zeros on / if it has a zero of order ik at
xk E /, JC, < JC2< <xh k = 1,2, ,j.

So far as the study of zero distribution of solutions [1-5, 8-11, 14]
is concerned, it is convenient to divide the problem into two cases:
ηι(a) = η2(a) and ηι(a)<η2(a). In a recent paper, Gustafson [2]
obtained an interesting result for the case η}(a) = η2(a). Evidently,
ηι(a) < Ύ]2{a) for any second-order differential equation of the form
(1.1). However, for higher-order equations both cases η\(a) = η2(a)
and Ύ)x{a) < η2(a) occur. For example, Tĵ α) = r\2{a) = τ/3(α) for the
equation y ( u 0+ 10/' + 9y = 0 [1], while 17,(0) < τj2(α) for

r > 0 , p > 0 , r<ΞC\
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according to a result of Leighton and Nehari [6]. Other equations with
the property

(Pi) η](a)<η2(a)

have been observed by Peterson [10].

Suppose Eq. (1.1) has an extremal solution for [α, η i(α)]. Then it
is well-known that (1.1) has an extremal solution for [a, η\(a)] which
does not vanish on (a, η^a)) [12]. Of particular interest is the equation
which has the property

(P2) No extremal solution for [α, τji(α)] vanishes on (α,

For example, it can be easily shown that y'" + y = 0 and y'" - y = 0 have
the property (P2). In fact, every extremal solution of y'" + y = 0 has a
2-1 distribution of zeros. On the other hand, every extremal solution
of y'" - y = 0 has a 1-2 distribution of zeros. These two equations also
have the property (P,).

As it turns out, closely connected with (P,) and (P2) is the property

(P3) There do not exist two (not necessarily distinct) extremal
solutions for [α, τ/i(α)] with zero distributions (n - k)-k and
(n - k - 1) - (k + 1), respectively, where k is a fixed number,

In §2 we prove that (P3) implies (P,) and (P2). Conversely, (P,) and
(P2) taken together imply (P3). Moreover, we shall show that in general
(P,) neither implies nor is implied by (P2). As the last result of this
section we shall exhibit a class of differential equations which has the
properties (P,), (P2) and (P3).

In §3 we assume (Pi) and investigate the zero distribution of
solutions on the intervals [a, ηι(a)] and (α, τ/2(α))> and their
consequences. In particular, we discuss a connection between the
zero distribution and the factorization of (1.1) on the interval (α, τj2(α)).

In the sequel we shall have an occasion to use the function
w ( x ; x \ k ] \ x l 2 2 ] , - ,xfp]) d e f i n e d a n d u s e d i n [ 5 ] . L e t y ί 9 y 2 9 ' ° ' , y n b e n
linearly independent solutions of (1.1). Then the function w is defined
by
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(1.2) yiOd)

y?'""(jc,)

yn(χi)

yn{χP)

^ p ^ n — 1, fci + fc2 + + fcp = n — 1. Obviously, this function w is a
solution of (1.1) with a zero of order kt at JC,, ί = 1,2, ,p.

it is continuous function of xί9x29'' ',xP

Moreover,

2. Proper t ies ( P , ) , (P 2 ) a n d ( P 3 ) . Suppose (1.1) has an
extremal solution Y for [α, τ/,(α)] with an iλ — i2 — // distribution of
zeros, i.e., Y has a zero of order ik at xk, k = 1,2, , j , ί, -I- i2 + - + // =
n, α = Jd < x2 < - - < XjΪ = ηi(β). Numerous results have been ob-
tained for the zero distribution of Y [2,5,9,10,12]. Of particular
importance in this section is the following result which will be fre-
quently referred to in the proofs.

THEOREM 2.1 [5]. // Y has a zero of order exactly im at jcm, 2 ^ m ^
j - 1, then (1.1) has an extremal solution for [a, ηι(a)] with an ix —

L-\ ~ {im - 1) - i'm+1 h distribution of zeros and an additional zero
at an arbitrary point ξ G [a, ηι(a)].

A simple application of this theorem shows that (P3) implies
(P2). This result can then be used to prove that (P3) also implies
(PO. On the other hand, if (1.1) does not satisfy (P3), it is easily
confirmed that (1.1) must violate either (PO or (P2).

THEOREM 2.2. Eq. (1.1) has the property (P3) if and only if it
satisfies (P,) and (P2).

We shall illustrate by means of examples that in general (P,) neither
implies nor is implied by (P2). The nonsingular equation
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,„ _ θsinjc cosx (COS2JC -sin2jc) „
y 3 sin2jc COS2JC - 2 y

(2.1)
9sin2jc COS2JC + 14 , _ ~
3 sin2jc COS2JC - 2

has as a fundamental set of solutions sin2jc cos JC, COS2* sin x, and 1
[1, 13]. The Wronskian W of these three solutions is given by W =
3 sin2* cos2* - 2 < 0, and the corresponding adjoint equation

„, /όsinjc cosjc (cos2x -sin 2 x)
\ 3 sin JC cos JC - 2

(2.1)*
(9sin2jc COS2JC -f 14 \, Λ

\ 3 sin JC cos JC - 2 /

has a fundamental set of solutions sin22jc/W, (2sinx -3sin3x)/W, and
(3 COS3JC - 2 cos JC )/ W. It is easily confirmed that η i(0) = τ/2(0) = ΊT\2 for
(2.1)* and no extremal solution for [0, η,(0)] of (2.1)* vanishes in
(0, τ7i(0)). This shows that (P2) does not in general imply (P,).

To see that (Pi) does not in general imply (P2), consider the
nonsingular equation

(2.2) ( 6 J C 2 - 8JC + 3)yU v )- (12JC - 8)y'" + 12y" = 0,

for which 1,JC, JC(1 - JC)2, and X ( 1 - J C ) 3 form a fundamental set of
solutions, ηi(0) = 1, and of which no extremal solution for [0, 1] has a
3-1 distribution of zeros [4]. Moreover, no extremal solution for [0, 1]
can vanish more than once in (0, 1). It is easily verified that (2.2) has
no nontrivial solution with zeros of order 2 and 3 at x = 0 and JC = 1,
respectively. From these facts we can readily deduce i7!(0)<
τj2(0). On the other hand, x(λ - J C ) ( 1 -xf, 0 < λ < 1, is an extremal
solution for [0, 1] which vanishes at A, 0 < λ < 1.

An obvious consequence of these examples is that (P3) is not in
general implied by either (Pi) or (P2) alone.

In view of Theorem 2.2, it is clear that any differential equation
which satisfies (P3) will also satisfy (P,) and (P2). Consider a differential
equation of the form

(2.3) Lny+py = 0,

where the operator Ln is successively defined by
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Loy = poy, Lky = ρk(Lk-xy)\ k = 2,3, ,n.

The functions po,pi, ,pn are assumed to be positive, ρk^Cn~k,
k = 0,1, , M, and p is assumed not to vanish. Eq. (2.3) was exten-
sively studied by Nehari [7], who established the following result: If a
nontrivial solution of (2.3) has zeros of order k and n - k at x = a and
x = b, respectively {a <b), then n - k is even or odd, according as
p < 0 or p > 0. Evidently, this result implies that Eq. (2.3) satisfies
(P3). Hence, we have the following theorem.

THEOREM 2.3. Eq. (2.3) has the properties (P,), (P2), and (P3).

3. Zero distribution and factorization. In this section
we exclusively consider a differential equation of the form (1.1) with
property (Px). Let Y be an extremal solution of (1.1) for [a, ηx(a)] with
an ί, - ί2 ij distribution of zeros, a = JC, < x2 < < x, = η(a),
ii + i#2+ * + ij = n. Then Y has a zero of order exactly ik at xk9k =
1,2, •••,/. This is because ηx(a)<η2(a). Therefore, by a repeated
application of Theorem 2.1, we obtain

THEOREM 3.1. Suppose (1.1) has the property ηx(a)<η2(a) and

has an extremal solution for [a, ηx(a)] with an ix-i2 /, distribu-

tion of zeros, ί, + i'2 + + /, = n. Let kuk2,-,kp be arbitrary positive

integers such that kλ + k2 + + kp = n, and let a = ξl9 ξ2, ••-,$,= η\(a)

be distinct points in [a, ηx(a)]. If ix ̂  kλ and i} ̂  fcp, then (1.1) has an

extremal solution for [a, ηx(a)] which has a zero of order exactly km at

ξm,m = 1,2, •••,/?.

As is clear from Theorem 3.1, the zeros of solutions in (a, η^a))
can be moved to an arbitrary point in (α, ηx(a)), or can be separated into
lower-order zeros in (a, ηx(a)). However, no such statements can be
made in general for the zeros at the end points a and r/,(α). On the
other hand, the zeros of an extremal solution for [a, ηx(a)] can be
simultaneously separated into simple zeros in [a, η1(α)-he), e > 0
[4, 14]. By using a slight modification of the arguments given in the
proof of Theorem 1 in [4], we shall establish the following result.

THEOREM 3.2. // (1.1) has a nontrivial solution with an (n - /) - /
distribution of zeros in (a,η2(a)), then (1.1) has a nontrivial solution
with the zero distribution

(3.1) y-lΓllj;1-/-! — — 1, i'+j+fc = n,

in (a, τ / 2 ( α ) ) , p r o v i d e d i ^ n - I o r k ^ l .
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Proof. Consider the case i^n - I. Let y be a nontrivial solution
of (1.1) which has zeros of order n -I and / at x = b and x = c,
respectively, a<b <c <η2(a) and suppose / is maximal. Consider
the function

w(x) = f w(x;ciπ-']) if / = n -
w(x;b[n~ι~ι\ cm), otherwise

defined in §1. This function w cannot vanish identically; for if w = 0 it
would imply the existence of a nontrivial solution with a zero of order
n -1 -1 at b and a zero of order / +1 at c, contrary to the
assumption. Therefore, w is a nontrivial solution of (1.1) with a zero
of order exactly n -1 at b and a zero of order exactly / at
c. Consequently, the n - I zeros at b and / - / (out of /) zeros at c can
be separated into n - j simple zeros in such a way that there are i simple
zeros to the left and k simple zeros to the right of the / th-order zero at c
(Cf. The proof of Theorem 1 [4]). This proves the theorem for the case
i^n-l.

The proof for the case k g / is similar.

REMARK. The above theorem can be restated as follows: If (1.1)
does not have a nontrivial solution with the zero distribution (3.1) in
(α, τj2(α)), then (1.1) does not have nontrivial solutions in (a, η2(α)) with
zero distributions ( n - l ) - l , (n - 2)-2, ,(n - k)-k, (n - k -j)-

We shall see that this result provides a link between the zero
distribution and the factorization of the differential operator L in (1.1).

Let yi,y2, * —,yn be n linearly independent solutions of (1.1) and
define

Wk = yi yί

,(*-')

= l,2, ,n.

It is well-known that Wp > 0 if and only if the operator L can be written
as L = LjL2, where Lx and L2 are nonsingular differential operators of
order n - p and p, respectively [15]. We require the following obvious
extension of this result.
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T H E O R E M 3 .3 . Eq. (1 .1) has k solutions y 1 ? y 2 , * ,yk such that
Wkι > 0, Wk2 > 0, , Wkι > 0, kx<k2<-<kι=k, if and only if the
differential operator L in (1.1) can be written as the product of I + I
nonsingular differential operators, i.e., L = Lι+xLι Lu where Lλ is of
order kx, Li is of order kι - fc, _,, i = 2,3, •,/, and Lι+ι is of order n - kh

Suppose (1.1) does not have a nontrivial solution with an (n -p)-
p distribution of zeros in {a, b). Let y,, yl9 , yn be solutions of (1.1)
such that y\n~i)(a+€) = δiJ9 6 > 0 , ij = 1,2, ,n. Then Wp>0 in
(α + €, b). Since e > 0 is arbitrary, we may assume that Wp > 0 in
(α, fc). Hence, we have L = L]L2, where L] and L 2 are nonsingular
differential operators of order n - p and p, respectively.

Likewise, from Theorems 3.2, 3.3, and the above remark we deduce

THEOREM 3.4. // (1.1) does not have a nontrivial solution with the
zero distribution (3.1) in (a,η2(a)), the differential operator L can be
written as the product of nonsingular differential operators,

•*-' = L* i+k + \ -L^i+k ' L\

in {a, η2(a)), where Lm, m^k + \,is of first order and Lk+ι is ofjth order.

Let

be the differential equation obtained from Ly = 0 through the change of
variable ξ = a + η2(a)~ x. Clearly, Ly = 0 has a nontrivial solution
with an i\- i2 ik distribution of zeros in (a, τj2(α)) if and only if
ilv = 0 has a nontrivial solution with an ik - ίk_, - ί, distribution of
zeros in (a, η2(a)). In particular, if Ly = 0 does not have a nontrivial
solution with the zero distribution (3.1), then &v = 0 does not have a
nontrivial solution with the zero distribution

I _ i 1 — j — 1 1, i + j + k = n,

in (a, η2(a)). Apply Theorem 3.4 to the nonsingular differential
operator 2: 2 can be written as the product of nonsingular differential
operators

(3.2) « = £ l + f c + , £ , + * • • • £ ,
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in (a, 172(0)), where ilp,p^ i + 1, is of first order and £ / + 1 is of /th
order. Transform the equation fit; = £ i + k + 1 £ l + k £,t; = 0 back to
Ly =0 by substituting x = a +η2(a)-ξ. Under this transformation
each differential operator fip, p = 1,2, ,ί + k + 1, in (3.2) remains
nonsingular. Moreover, the order of each £ p and the order in which
these differential operators appear remain unchanged. We summarize
this result in the following theorem.

THEOREM 3.5. If (1.1) does not have a nontrivial solution with the
zero distribution (3.1) in (a, 7/2(0)), the differential operator L can be
written as the product of nonsingular differential operators, L =
2ι+*+iSι+* * * Si, in (α, τj2(α)), where iip, p^ i + 1, is of first order and
ϋ,+i /s o/j th order.
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