MUTUAL EXISTENCE OF SUM AND PRODUCT INTEGRALS

Jon C. Helton

Functions are from $R \times R$ to N, where R denotes the set of real numbers and N denotes a normed complete ring. If G has bounded variation on $[a, b]$, then $\int_{a}^{b} G$ exists if and only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$. If each of $\lim _{x \rightarrow p^{+}} H(p, x)$, $\lim _{x \rightarrow p^{-}} H(x, p), \lim _{x, y \rightarrow p^{+}} H(x, y)$ and $\lim _{x, y \rightarrow p^{-}} H(x, y)$ exists, G has bounded variation on $[a, b]$ and either $\int_{a}^{b} G$ exists or ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} H G$ and $\int_{a}^{b} G H$ exist and ${ }_{x} \Pi^{y}(1+H G)$ and ${ }_{x} \Pi^{y}(1+G H)$ exist for $a \leqq x<y \leqq$ b. If G has bounded variation on $[a, b]$ and ν is a nonnegative number, then $\int_{a}^{b} G$ exists and $\int_{a}^{b}\left|G-\int G\right|=\nu$ if and only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and

$$
\int_{a}^{b}|1+G-\Pi(1+G)|=\nu .
$$

J. S. MacNerney [4] defines classes $O A$ and $O M$ of functions such that the integral-like formulas

$$
V(a, b)=\int_{a}^{b}(W-1) \quad \text { and } \quad W(a, b)={ }_{a} \Pi^{b}(1+V)
$$

are mutually reciprocal and establishes a one-to-one correspondence between the classes $O A$ and $O M$. B. W. Helton [1] defines classes $O A^{\circ}$ and $O M^{\circ}$ of functions and shows that if G has bounded variation on $[a, b]$, then $G \in O A^{\circ}$ on $[a, b]$ if and only if $G \in O M^{\circ}$ on $[a, b]$, where $G \in O A^{\circ}$ on $[a, b]$ only if $\int_{a}^{b} G$ exists and $\int_{a}^{b}\left|G-\int G\right|=0$, and $G \in O M^{\circ}$ on $[a, b]$ only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and

$$
\int_{a}^{b}|1+G-\Pi(1+G)|=0 .
$$

The class $O A$ is a proper subclass of $O A^{\circ}$ and $O M$ is closely related to the class $O M^{\circ}$. In the following, we establish a related result and show
that if G has bounded variation on $[a, b]$, then $\int_{a}^{b} G$ exists if and only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$. This is not the same as the result of B . W. Helton since it is possible to construct a function G such that G has bounded variation on $[a, b], \int_{a}^{b} G$ exists, ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b, G \notin O A^{\circ}$ on $[a, b]$ and $G \notin O M^{\circ}$ on $[a, b][3]$. We then use this result and ideas from another theorem of B. W. Helton [2, Theorem 2, p. 494] to establish that if each of $\lim _{x \rightarrow p^{+}} H(p, x)$, $\lim _{x \rightarrow p^{-}} H(x, p), \quad \lim _{x, y \rightarrow p^{+}} H(x, y)$ and $\lim _{x, y \rightarrow p^{-}} H(x, y)$ exists, G has bounded variation on $[a, b]$ and either $\int_{a}^{b} G$ exists or ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} H G$ and $\int_{a}^{b} G H$ exist and ${ }_{x} \Pi^{y}(1+H G)$ and ${ }_{x} \Pi^{y}(1+G H)$ exist for $a \leqq x<y \leqq b$. Further, we show that if G has bounded variation on $[a, b]$ and ν is a nonnegative number, then $G \in O A^{\nu}$ on $[a, b]$ if and only if $G \in O M^{\nu}$ on $[a, b]$, where $G \in O A^{\nu}$ on $[a, b]$ only if $\int_{a}^{b} G$ exists and

$$
\int_{a}^{b}\left|G-\int G\right|=\nu
$$

and $G \in O M^{\nu}$ on $[a, b]$ only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and

$$
\int_{a}^{b}|1+G-\Pi(1+G)|=\nu .
$$

Finally, we show that if the norm used has the property that $|A B|=$ $|A||B|$ and if each of $\lim _{x \rightarrow p^{+}} H(p, x), \lim _{x \rightarrow p^{-}} H(x, p), \lim _{x, y \rightarrow p^{+}} H(x, y)$ and $\lim _{x, y \rightarrow p}-H(x, y)$ exists, G has bounded variation on $[a, b]$ and either $G \in O A^{\nu}$ on $[a, b]$ or $G \in O M^{\nu}$ on $[a, b]$, then there exist nonnegative numbers α and β such that $H G$ is in $O A^{\alpha}$ and $O M^{\alpha}$ on $[a, b]$ and $G H$ is in $O A^{\beta}$ and $O M^{\beta}$ on $[a, b]$.

All integrals and definitions are of the subdivision-refinement type, and functions are from $R \times R$ to N, where R denotes the set of real numbers and N denotes a ring which has a multiplicative identity element represented by 1 and has a norm $|\cdot|$ with respect to which N is complete and $|1|=1$. Unless noted otherwise, functions are assumed to be defined only for $\{x, y\} \in R \times R$ such that $x<y$. The statement that $G \in O B^{\circ}$ on $[a, b]$ means that there exist a subdivision D of $[a, b]$ and a number B such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D, then $\sum_{i=1}^{n}\left|G_{i}\right|<B$, where G_{i} denotes $G\left(x_{i-1}, x_{i}\right)$. When convenient, we use

$$
\sum_{J(l)} G \text { and } \prod_{J(I)}(1+G)
$$

to denote

$$
\sum_{i=1}^{n} G_{i} \text { and } \prod_{i=1}^{n}\left(1+G_{i}\right),
$$

respectively, where $J=\left\{x_{i}\right\}_{i=0}^{n}$ represents a subdivision of some interval. The sets $O A^{\circ}, O M^{\circ}, O A^{\nu}$ and $O M^{\nu}$ have been defined previously, and $G \in O A^{+}$only if G is an additive function from $R \times R$ to the nonnegative numbers. Also, $G \in O M^{*}$ on $[a, b]$ only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$ and if $\epsilon>0$ then there exists a subdivision D of [a, b] such that if $\left\{x_{l}\right\}_{i=0}^{n}$ is a refinement of D and $0 \leqq p<q \leqq n$, then

$$
\left|x_{x_{p}} \Pi^{x_{q}}(1+G)-\prod_{i=p+1}^{q}\left(1+G_{i}\right)\right|<\epsilon .
$$

The symbols $G\left(p, p^{+}\right), G\left(p^{-}, p\right), G\left(p^{+}, p^{+}\right)$and $G\left(p^{-}, p^{-}\right)$denote $\lim _{x \rightarrow p^{+}} G(p, x), \lim _{x \rightarrow p^{-}} G(x, p), \lim _{x, y \rightarrow p^{+}} G(x, y)$ and $\lim _{x, y \rightarrow p^{-}} G(x, y)$, respectively, and $G \in O L^{\circ}$ on $[a, b]$ only if $G\left(p, p^{+}\right), G\left(p^{-}, p\right), G\left(p^{+}, p^{+}\right)$ and $G\left(p^{-}, p^{-}\right)$exist for $p \in[a, b]$. Further, $G \in S_{2}$ on $[a, b]$ only if $G\left(p, p^{+}\right)$and $G\left(p^{-}, p\right)$ exist for $p \in[a, b]$. Finally, statements of the form $G>\beta$ should be interpreted in terms of subdivisions and refinements. See B. W. Helton [1] and J. S. MacNerney [4] for additional background.

We now establish an approximation theorem for product integrals. To do this, we initially develop a sequence of lemmas.

Lemma 1.1. If $\beta>0, G$ is a function from $R \times R$ to $N,|G|<1-\beta$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $G \in O M^{*}$ on $[a, b]$.

Proof. Let $\epsilon>0$. There exist a subdivision D of $[a, b]$ and a number B such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D, then
(1) $\left|G_{i}\right|<1-\beta$ for $i=1,2, \cdots, n$,
(2) $\prod_{i=1}^{n}\left(1+\left|G_{i}\right|\right)<B$,
(3) $\prod_{i=1}^{n}\left(1+\sum_{j=1}^{\infty}\left|(-1)^{i} G_{i}^{i}\right|\right)<B$, and
(4) $\left|{ }_{a} \Pi^{b}(1+G)-\Pi_{i=1}^{n}\left(1+G_{i}\right)\right|<\epsilon(3 B)^{-1}$.

Suppose $\left\{x_{i}\right\}_{1=0}^{n}$ is a refinement of D and $0 \leqq p<q \leqq n$. Let $Y=\left\{y_{i}\right\}_{i=0}^{\}}$and $Z=\left\{z_{i}\right\}_{i=0}^{s}$ be refinements of $\left\{x_{i}\right\}_{i=0}^{n}$ and $\left\{x_{i}\right\}_{i=q}^{n}$, respectively, such that

$$
\left|\prod_{Y(I)}(1+G)-{ }_{a} \Pi^{x_{p}}(1+G)\right|<\epsilon\left(3 B^{3}\right)^{-1}
$$

and

$$
\left|-{ }_{x_{q}} \Pi^{b}(1+G)+\prod_{Z(I)}(1+G)\right|<\epsilon\left(3 B^{2}\right)^{-1} .
$$

Further, let P and P^{\prime} denote

$$
\prod_{Y(I)}(1+G) \quad \text { and } \quad{ }_{a} \Pi^{x_{p}}(1+G)
$$

respectively, and let Q and Q^{\prime} denote

$$
\prod_{Z(I)}(1+G) \quad \text { and } \quad x_{x_{q}} \Pi^{b}(1+G)
$$

respectively. Note that P^{-1} and Q^{-1} exist and are

$$
\prod_{i=1}^{r}\left[1+\sum_{j=1}^{\infty}(-1)^{i} G^{j}\left(y_{r-i}, y_{r+1-i}\right)\right]
$$

and

$$
\prod_{i=1}^{s}\left[1+\sum_{j=1}^{\infty}(-1)^{i} G^{j}\left(z_{s-i}, z_{s+1-i}\right)\right]
$$

respectively.
Let W denote the subdivision $D \cup Y \cup Z$ of $[a, b]$. Thus,

$$
\begin{aligned}
& \left|{ }_{x_{p}} \Pi^{x_{a}}(1+G)-\prod_{i=p+1}^{q}\left(1+G_{i}\right)\right| \\
& \quad=\left|P^{-1} P\left[\Pi_{x_{p}}^{x_{a}}(1+G)-\prod_{i=p+1}^{q}\left(1+G_{i}\right)\right] Q Q^{-1}\right| \\
& \quad \leqq\left|P^{-1}\right|\left|P\left[_{x_{p}} \Pi^{x_{q}}(1+G)\right] Q-P\left[\prod_{i=p+1}^{q}\left(1+G_{i}\right)\right] Q\right|\left|Q^{-1}\right| \\
& \quad \leqq B\left|P\left[x_{p} \Pi^{x_{q}}(1+G)\right] Q-\prod_{W(I)}(1+G)\right| \\
& \quad=B\left|\left[P-P^{\prime}+P^{\prime}\right]\left[x_{x_{p}} \Pi^{x_{a}}(1+G)\right]\left[Q^{\prime}-Q^{\prime}+Q\right]-\prod_{W(I)}(1+G)\right|
\end{aligned}
$$

$$
\begin{aligned}
\leqq & \left.B\left|P-P^{\prime}\right|\right|_{x_{p}} \Pi^{x_{a}}(1+G)| | Q|+B|_{a} \Pi^{x_{a}}(1+G)| |-Q^{\prime}+Q \mid \\
& +B\left|{ }_{a} \Pi^{b}(1+G)-\prod_{W(I)}(1+G)\right| \\
< & B^{3}\left[\epsilon\left(3 B^{3}\right)^{-1}\right]+B^{2}\left[\epsilon\left(3 B^{2}\right)^{-1}\right]+B\left[\epsilon(3 B)^{-1}\right]=\epsilon
\end{aligned}
$$

Lemma 1.2. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $G\left(a, a^{+}\right)$and $G\left(b^{-}, b\right)$ exist.

Proof. We initially show that $G\left(a, a^{+}\right)$exists. Let $\epsilon>0$. There exist numbers c and B such that $a<c<b$ and if $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of $[a, c]$, then

$$
|-1|\left[\prod_{i=1}^{n}\left(1+\left|G_{i}\right|\right)\right]<B \quad \text { and } \quad \sum_{i=2}^{n}\left|G_{i}\right|<\epsilon\left(4 B^{2}\right)^{-1}
$$

Further, there exists a subdivision $D=\left\{z_{i}\right\}_{i=0}^{r}$ of [a, c] such that if J and K are refinements of D, then

$$
\left|\prod_{J(I)}(1+G)-\prod_{K(I)}(1+G)\right|<\epsilon / 2
$$

We now suppose $a<x<y<z_{1}$ and show that

$$
|G(a, x)-G(a, y)|<\epsilon
$$

Let $\left\{x_{i}\right\}_{i=0}^{m}$ and $\left\{y_{j}\right\}_{j=0}^{n}$ denote $D \cup\{x\}$ and $D \cup\{y\}$, respectively. Thus,

$$
\begin{aligned}
\epsilon / 2> & \left|\prod_{i=1}^{m}\left(1+G_{i}\right)-\prod_{j=1}^{n}\left(1+G_{j}\right)\right| \\
= & \left|[1+G(a, x)]\left[\prod_{i=2}^{m}\left(1+G_{i}\right)\right]-[1+G(a, y)]\left[\prod_{j=2}^{n}\left(1+G_{j}\right)\right]\right| \\
= & \mid[1+G(a, x)]\left[1+\sum_{i=2}^{m} G_{i} \prod_{k=i+1}^{m}\left(1+G_{k}\right)\right] \\
& -[1+G(a, y)]\left[1+\sum_{j=2}^{n} G_{j} \prod_{k=j+1}^{n}\left(1+G_{k}\right)\right] \mid \\
\geqq & |G(a, x)-G(a, y)|-B \sum_{i=2}^{m}\left|G_{i}\right|\left|\prod_{k=i+1}^{m}\left(1+G_{k}\right)\right| \\
& -B \sum_{j=2}^{n}\left|G_{j}\right|\left|\prod_{k=j+1}^{n}\left(1+G_{k}\right)\right|
\end{aligned}
$$

$$
>|G(a, x)-G(a, y)|-B^{2}\left[\epsilon\left(4 B^{2}\right)^{-1}\right]+B^{2}\left[\epsilon\left(4 B^{2}\right)^{-1}\right],
$$

and hence,

$$
\epsilon>|G(a, x)-G(a, y)| .
$$

Since the existence of $G\left(b^{-}, b\right)$ can be established in a similar manner, Lemma 1.2 follows.

Lemma 1.3. If $\beta>0, G$ is a function from $R \times R$ to $N,|G|<1-\beta$ on (a, b), $G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $G \in O M^{*}$ on $[a, b]$.

Proof. Let $\epsilon>0$. There exist a subdivision E_{1} of $[a, b]$ and a number $B>1$ such that if $\left\{x_{i}\right\}_{i=1}^{m}$ is a refinement of E_{1}, then

$$
\prod_{i=1}^{m}\left(1+\left|G_{i}\right|\right)<B
$$

and

$$
\left|{ }_{a} \Pi^{b}(1+G)-\prod_{i=1}^{m}\left(1+G_{i}\right)\right|<\epsilon .
$$

Let H be the function defined on $[a, b]$ such that

$$
H(x, y)= \begin{cases}G(x, y) & \text { if } x \neq a \text { and } y \neq b \\ 0 & \text { if } x=a \text { or } y=b .\end{cases}
$$

Thus, H satisfies the hypothesis of Lemma 1.1, and hence, there exists a subdivision E_{2} of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{m}$ is a refinement of E_{2} and $0 \leqq p<q \leqq m$, then

$$
\left|{x_{p}}^{\Pi^{x_{q}}}(1+H)-\prod_{i=p+1}^{q}\left(1+H_{i}\right)\right|<\epsilon(3 B)^{-1} .
$$

It follows from Lemma 1.2 that $G\left(a, a^{+}\right)$and $G\left(b^{-}, b\right)$ exist. Hence, there exists a point x, where $a<x<b$, such that if $\left\{x_{i}\right\}_{i=0}^{m}$ and $\left\{y_{i}\right\}_{j=0}^{n}$ are subdivisions of $[a, x], 1 \leqq r \leqq m$ and $1 \leqq s \leqq n$, then

$$
\left|\prod_{i=1}^{r}\left(1+G_{i}\right)-\prod_{j=1}^{s}\left(1+G_{j}\right)\right|<\epsilon(3 B)^{-1} .
$$

Also, there exists a point y, where $a<y<b$, such that if $\left\{x_{i}\right\}_{i=0}^{m}$ and $\left\{y_{j}\right\}_{j=0}^{n}$ are subdivisions of $[y, b], 1 \leqq r \leqq m$ and $1 \leqq s \leqq n$, then

$$
\left|\prod_{i=r}^{m}\left(1+G_{i}\right)-\prod_{j=s}^{n}\left(1+G_{j}\right)\right|<\epsilon(3 B)^{-1} .
$$

Let D denote the subdivision

$$
E_{1} \cup E_{2} \cup\{x\} \cup\{y\}
$$

of $[a, b]$. Further, suppose $\left\{x_{i}\right\}_{i=0}^{m}$ is a refinement of D and $0 \leqq p<q \leqq$ m. If $p=0$ and $q=m$, then the desired inequality follows from the existence of ${ }_{a} \Pi^{b}(1+G)$. If $p \neq 0$ and $q \neq m$, then the inequality follows from the properties of the function H. Suppose $p=0$ and $q \neq m$. There exists a subdivision J of $\left[a, x_{1}\right]$ such that

$$
\left|{ }_{a} \Pi^{x_{1}}(1+G)-\prod_{J_{(I)}}(1+G)\right|<\epsilon(3 B)^{-1} .
$$

Thus,

$$
\begin{aligned}
& \left|{ }_{a} \Pi^{x_{a}}(1+G)-\prod_{i=1}^{q}\left(1+G_{i}\right)\right| \\
& \quad<\left.\right|_{a} \Pi^{x_{1}}(1+G)-\left(1+G_{1}\right)| |_{x_{1}} \Pi_{x_{a}}(1+G) \mid+B\left[\epsilon(3 B)^{-1}\right] \\
& \quad<B\left|\prod_{J(I)}(1+G)-\left(1+G_{1}\right)\right|+B\left[\epsilon(3 B)^{-1}\right]+\epsilon / 3 \\
& \quad<B\left[\epsilon(3 B)^{-1}\right]+2 \epsilon / 3=\epsilon .
\end{aligned}
$$

If $p \neq 0$ and $q=n$, then a similar argument establishes the inequality. Therefore, Lemma 1.3 follows.

Theorem 1. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and $_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $G \in O M^{*}$ on $[a, b]$.

Proof. Since $G \in O B^{\circ}$ on $[a, b]$, there exists a subdivision $\left\{x_{i}\right\}_{i=0}^{m}$ of $[a, b]$ such that if $1 \leqq i \leqq m$ and $x_{i-1}<x<y<x_{i}$, then $|G(x, y)|<$ $1 / 2$. Hence, this theorem can be established by using Lemma 1.3 and the identity

$$
\prod_{i=1}^{n} a_{i}-\prod_{i=1}^{n} b_{i}=\sum_{i=1}^{n}\left(\prod_{j=1}^{i-1} b_{i}\right)\left(a_{i}-b_{i}\right)\left(\prod_{k=i+1}^{n} a_{k}\right)
$$

where $\Pi_{j=1}^{0} b_{j}=\prod_{k=n+1}^{n} a_{k}=1$.
We now use the approximation theorem to establish an existence theorem for sum integrals. In particular, we show that if G has
bounded variation on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} G$ exists. Several lemmas are required.

Lemma 2.1. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then

$$
\int_{a}^{b} G(u, v)_{v} \Pi^{b}(1+G)
$$

exists and is $-1+{ }_{a} \Pi^{b}(1+G)$.
Proof. Let $\epsilon>0$. There exist a subdivision E_{1} of $[a, b]$ and a number B such that if $\left\{x_{i}\right\}_{i=0}^{m}$ is a refinement of E_{1}, then
(1) $\sum_{i=1}^{m}\left|G_{i}\right|<B$, and
(2) $\left|\Pi_{i=1}^{m}\left(1+G_{i}\right)-{ }_{a} \Pi^{b}(1+G)\right|<\epsilon / 2$.

Theorem 1 implies that $G \in O M^{*}$ on $[a, b]$, and hence, there exists a subdivision E_{2} of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{m}$ is a refinement of E_{2} and $0 \leqq p<q \leqq m$, then

$$
\left|x_{x_{p}} \Pi^{x_{a}}(1+G)-\prod_{i=p+1}^{q}\left(1+G_{i}\right)\right|<\epsilon(2 B)^{-1} .
$$

Let D denote the subdivision $E_{1} \cup E_{2}$ of $[a, b]$ and suppose $\left\{x_{i}\right\}_{i=0}^{m}$ is a refinement of D. Thus,

$$
\begin{aligned}
\mid \sum_{i=1}^{m} & G_{i}\left[x_{i} \Pi^{b}(1+G)\right]-\left[-1+{ }_{a} \Pi^{b}(1+G)\right] \mid \\
& <\left|\sum_{i=1}^{m} G_{i}\left[x_{i} \Pi^{b}(1+G)\right]+1-\prod_{i=1}^{m}\left(1+G_{i}\right)\right|+\epsilon / 2 \\
& =\left|\sum_{i=1}^{m} G_{i}\left[x_{x_{i}} \Pi^{b}(1+G)\right]+1-\left[1+\sum_{i=1}^{m} G_{i} \prod_{k=i+1}^{m}\left(1+G_{k}\right)\right]\right|+\epsilon / 2 \\
& \leqq\left.\sum_{i=1}^{m}\left|G_{i}\right|\right|_{x_{i}} \Pi^{b}(1+G)-\prod_{k=i+1}^{m}\left(1+G_{k}\right) \mid+\epsilon / 2 \\
& <B\left[\epsilon(2 B)^{-1}\right]+\epsilon / 2=\epsilon .
\end{aligned}
$$

Lemma 2.2. If H and G are functions from $R \times R$ to $N, H \in O L^{\circ}$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, then $\int_{a}^{b} H G$ exists and $\int_{a}^{b} G H$ exists.

Proof. B. W. Helton [2, Theorem 2, p. 494] proves that $H G$ and $G H$ are in $O A^{\circ}$ on $[a, b]$ with the hypothesis of Lemma 2.2 and the additional restriction that $G \in O A^{\circ}$ on $[a, b]$. This lemma follows by essentially the same argument.

Observe that weakening the hypothesis of Helton's result by requiring only the existence of $\int_{a}^{b} G$ produces a corresponding weakening of the conclusion since we now have that $\int_{a}^{b} H G$ and $\int_{a}^{b} G H$ exist rather than that $H G$ and $G H$ are in $O A^{\circ}$ on $[a, b]$.

Lemma 2.2 is not true for functions defined on a linearly ordered set [4, p. 149]. For example, consider

$$
S=[0,1) \cup(1,2]
$$

with the usual ordering for the real numbers. Let G be the function defined on $S \times S$ such that

$$
G(x, y)= \begin{cases}1 & \text { if } x<1 \text { and } y>1 \\ 0 & \text { otherwise } .\end{cases}
$$

Thus, $G \in O A^{\circ} \cap O B^{\circ}$ on $S \times S$. Let H be the function defined on $S \times S$ such that

$$
H(x, y)=\left\{\begin{aligned}
1 & \text { if } x<1, y>1 \text { and } x \text { rational } \\
-1 & \text { if } x<1, y>1 \text { and } x \text { irrational } \\
0 & \text { otherwise } .
\end{aligned}\right.
$$

Thus, $H \in O L^{\circ}$ on $S \times S$. However, $\int_{a}^{b} H G$ does not exist.

Lemma 2.3. If $\beta>0, G$ is a function from $R \times R$ to $N,|G|<1-\beta$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and ${ }_{a} \Pi^{b}(1+G)$ exists, then ${ }_{b} \Pi^{a}(1+H)$ exists and is $\left[{ }_{a} \Pi^{b}(1+G)\right]^{-1}$, where

$$
H(y, x)=\sum_{j=1}^{\infty}(-1)^{i} G^{j}(x, y)
$$

for $a \leqq x<y \leqq b$.
Proof. We initially show that ${ }_{b} \Pi^{a}(1+H)$ exists. Let $\epsilon>$ 0 . There exist a subdivision D of $[a, b]$ and a number B such that if $\left\{x_{i}\right\}_{i=0}^{m}$ and $\left\{y_{j}\right\}_{j=0}^{n}$ are refinements of D, then
(1) $\left|G_{i}\right|<1-\beta$ for $i=1,2, \cdots, m$,
(2) $\left|\Pi_{i=1}^{m}\left(1+H_{m+1-i}\right)\right|<B$, and
(3) $\left|\prod_{i=1}^{m}\left(1+G_{i}\right)-\prod_{i=1}^{n}\left(1+G_{j}\right)\right|<\epsilon B^{-2}$.

Note that we are using H_{m+1-i} to denote $H\left(x_{m+1-i}, x_{m-i}\right)$. Suppose $\left\{x_{i}\right\}_{i=0}^{m}$ and $\left\{y_{i}\right\}_{i=0}^{n}$ are refinements of D. Thus,

$$
\begin{aligned}
& \left|\prod_{i=1}^{m}\left(1+H_{m+1-i}\right)-\prod_{j=1}^{n}\left(1+H_{n+1-j}\right)\right| \\
& \leqq\left|\prod_{i=1}^{m}\left(1+H_{m+1-i}\right)\right|\left|1-\left[\prod_{i=1}^{m}\left(1+H_{m+1-i}\right)\right]^{-1}\left[\prod_{j=1}^{n}\left(1+H_{n+1-j}\right)\right]\right| \\
& \leqq B\left|1-\left[\prod_{i=1}^{m}\left(1+G_{i}\right)\right]\left[\prod_{j=1}^{n}\left(1+H_{n+1-j}\right)\right]\right| \\
& \leqq B\left|\prod_{j=1}^{n}\left(1+G_{j}\right)-\prod_{i=1}^{m}\left(1+G_{i}\right)\right|\left|\prod_{j=1}^{n}\left(1+H_{n+1-j}\right)\right| \\
& \quad+B\left|1-\left[\prod_{j=1}^{n}\left(1+G_{j}\right)\right]\left[\prod_{i=1}^{n}\left(1+H_{n+1-j}\right)\right]\right| \\
& < \\
& \quad B^{2}\left(\epsilon B^{-2}\right)+B(0)=\epsilon .
\end{aligned}
$$

We now show that $\left[{ }_{a} \Pi^{b}(1+G)\right]^{-1}$ exists and is ${ }_{b} \Pi^{a}(1+H)$. Let $\epsilon>0$. There exists a subdivision $\left\{x_{i}\right\}_{i=0}^{m}$ of $[a, b]$ such that

$$
\left|\left[{ }_{a} \Pi^{b}(1+G)\right]\left[_{b} \Pi^{a}(1+H)\right]-\left[\prod_{i=1}^{m}\left(1+G_{i}\right)\right]\left[\prod_{i=1}^{m}\left(1+H_{m+1-i}\right)\right]\right|<\epsilon .
$$

Hence,

$$
\begin{aligned}
& \mid\left[{ }_{a} \Pi^{b}(1+G)\right]\left[\left[_{b} \Pi^{a}(1+H)\right]-1 \mid\right. \\
& \quad<\left|\left[\prod_{i=1}^{m}\left(1+G_{i}\right)\right]\left[\prod_{i=1}^{m}\left(1+H_{m+1-i}\right)\right]-1\right|+\epsilon \\
& \quad=0+\epsilon=\epsilon
\end{aligned}
$$

Lemma 2.4. If $\beta>0, G$ is a function from $R \times R$ to $N,|G|<1-\beta$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} G$ exists.

Proof. It follows from Lemma 2.1 that

$$
\int_{a}^{b} G(u, v)_{v} \Pi^{b}(1+G)
$$

exists. Let H be the function defined on $[a, b]$ such that

$$
H(u, v)=\left[{ }_{v} \Pi^{b}(1+G)\right]^{-1} .
$$

The existence of H follows from Lemma 2.3. Further, $H \in O L^{\circ}$ on [a, b]. Hence, the existence of $\int_{a}^{b} G$ can be established by using Lemma 2.2.

Lemma 2.5. If $\beta>0, G$ is a function from $R \times R$ to $N,|G|<1-\beta$ on $(a, b), G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} G$ exists.

Proof. Lemma 2.5 follows by using Lemma 1.2 and Lemma 2.4.
Theorem 2. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} G$ exists.

Proof. There exists a subdivision $\left\{x_{i}\right\}_{i=0}^{m}$ of $[a, b]$ such that if $1 \leqq i \leqq m$ and $x_{i-1}<x<y<x_{i}$, then $|G(x, y)|<1 / 2$. Hence, the theorem follows from Lemma 2.5 .

An existence theorem for product integrals is now established. In particular, we show that if G has bounded variation on $[a, b]$ and $\int_{a}^{b} G$ exists, then ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$.

Lemma 3.1. If G is a function from $R \times R$ to N such that $G \in O B^{\circ}$ on $[a, b]$, then there exists $\alpha \in O A^{+}$on $[a, b]$ such that

$$
|G(x, y)| \leqq \alpha(x, y)
$$

for $a \leqq x<y \leqq b$.
Proof. There exist a subdivision $\left\{x_{i}\right\}_{i=0}^{n}$ of $[a, b]$ and a number B such that if H is a refinement of $\left\{x_{i}\right\}_{i=0}^{n}$, then $\Sigma_{H(I)}|G|<B$. Let g be the function such that for $x_{p-1}<x \leqq x_{p}, g(x)=\operatorname{lub} \Sigma_{H(I)}|G|$ for all refinements H of $\left\{x_{i}\right\}_{i=0}^{p-1} \cup\{x\}$. Let $\alpha(x, y)=\int_{x}^{y} d g$. This produces the desired function.

Theorem 3. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, then $\Pi_{x}(1+G)$ exists for $a \leqq x<y \leqq b$.

Proof. Suppose $a \leqq x<y \leqq b$. In the following we show that ${ }_{x} \Pi^{y}(1+G)$ exists and is $\sum_{p=0}^{\infty} G_{p}(x, y)$, where $G_{0}(x, y)=1$ and

$$
G_{p}(x, y)=(R) \int_{x}^{y} G \cdot G_{p-1}(\quad, y)
$$

for $p=1,2, \cdots$. The existence of these integrals follows from Lemma 2.2.

It follows from Lemma 3.1 that there exists $\alpha \in O A^{+}$such that if $x \leqq r<s \leqq y$, then

$$
|G(r, s)| \leqq \alpha(r, s)
$$

Further, from a result of MacNerney [4, Theorem 6.2, p. 160], $\sum_{p=0}^{\infty} g_{p}(x, y)$ exists, where $g_{0}(x, y)=1$ and

$$
g_{p}(x, y)=\dot{(}(R) \int_{x}^{y} \alpha \cdot g_{p-1}(\quad, y)
$$

for $p=1,2, \cdots$.
It can be established by induction that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a subdivision of [x, y], then

$$
\begin{aligned}
\prod_{i=1}^{n}\left(1+G_{t}\right)= & 1+\sum_{k_{1}=1}^{n} G_{k_{1}}+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} G_{k_{1}} G_{k_{2}}+\cdots \\
& +\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} \cdots \sum_{k_{n}=k_{n-1}+1}^{n} G_{k_{1}} G_{k_{2}} \cdots G_{k_{n}},
\end{aligned}
$$

where $\sum_{i=p}^{q} G_{i}=0$ if $p>q$. Further, it can also be established by induction that

$$
\left|\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} \ldots \sum_{k_{p}=k_{p-1}+1}^{n} G_{k_{1}} G_{k_{2}} \cdots G_{k_{p}}\right| \leqq g_{p}(x, y)
$$

for $p=1,2, \cdots$.
Let $\epsilon>0$. There exists a positive integer N such that

$$
\sum_{p=N+1}^{\infty} g_{p}(x, y)<\epsilon / 3 .
$$

Further, there exists a subdivision D of $[x, y]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D, then

$$
\begin{gathered}
\mid\left[1+\sum_{k_{1}=1}^{n} G_{k_{1}}+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} G_{k_{1}} G_{k_{2}}+\cdots\right. \\
\left.+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} \ldots \sum_{k_{N}=k_{N-1}+1}^{n} G_{k_{1}} G_{k_{2}} \cdots G_{k_{N}}\right]-\sum_{p=0}^{N} G_{p}(x, y) \mid<\epsilon / 3 .
\end{gathered}
$$

Suppose $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D. Thus,

$$
\begin{aligned}
& \mid \prod_{i=1}^{n}(1\left.+G_{i}\right)-\sum_{p=0}^{\infty} G_{p}(x, y) \mid \\
&= \mid\left[1+\sum_{k_{1}=1}^{n} G_{k_{1}}+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} G_{k_{1}} G_{k_{2}}+\cdots\right. \\
&\left.+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} \ldots \sum_{k_{n}=k_{n}-1+1}^{n} G_{k_{1}} G_{k_{2}} \cdots G_{k_{n}}\right]-\sum_{p=0}^{\infty} G_{p}(x, y) \mid \\
&< \mid\left[1+\sum_{k_{1}=1}^{n} G_{k_{1}}+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} G_{k_{1}} G_{k_{2}}+\cdots\right. \\
&\left.+\sum_{k_{1}=1}^{n} \sum_{k_{2}=k_{1}+1}^{n} \ldots \sum_{k_{N}=k_{N}-1+1}^{n} G_{k_{1}} G_{k_{2}} \cdots G_{k_{N}}\right]-\sum_{p=0}^{N} G_{p}(x, y) \mid \\
&+\epsilon / 3+\epsilon / 3 \\
&<\epsilon / 3+\epsilon / 3+\epsilon / 3=\epsilon .
\end{aligned}
$$

Theorem 4. If G is a function from $R \times R$ to N and $G \in O B^{\circ}$ on $[a, b]$, then $\int_{a}^{b} G$ exists if and only if ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$.

Proof. This theorem follows as a corollary to Theorems 2 and 3.
Theorem 5. If H and G are functions from $R \times R$ to $N, H \in O L^{\circ}$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and either $\int_{a}^{b} G$ exists or ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$, then $\int_{a}^{b} H G$ and $\int_{a}^{b} G H$ exist and ${ }_{x} \Pi^{y}(1+H G)$ and ${ }_{x} \Pi^{y}(1+G H)$ exist for $a \leqq x<y \leqq b$.

Proof. This theorem follows as a corollary to Theorem 4 and Lemma 2.2.

We now show that if G has bounded variation on $[a, b]$, then $G \in O A^{\nu}$ on $[a, b]$ if and only if $G \in O M^{\nu}$ on $[a, b]$. This is a generalization of a result of B. W. Helton [1, Theorem 3.4, p. 301].

Lemma 6.1. If $\epsilon>0$ and G is a function from $R \times R$ to N such that $G \in O B^{\circ}$ and S_{2} on $[a, b]$, then there exists a subdivision D of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of $D, 1 \leqq i \leqq n$ and $\left\{x_{i j}\right\}_{j=0}^{n(i)}$ is a subdivision of $\left[x_{i-1}, x_{i}\right]$, then

$$
\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right|<\epsilon .
$$

Proof. Since $G \in O B^{\circ} \cap S_{2}$ on [a,b], this lemma can be established by applying the covering theorem.

Lemma 6.2. If $\epsilon>0$ and G is a function from $R \times R$ to N such that $G \in O B^{\circ}$ and S_{2} on $[a, b]$, then there exists a subdivision D of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D and $\left\{x_{i j}\right\}_{j=0}^{n(i)}$ is a subdivision of $\left[x_{i-1}, x_{i}\right]$ for $1 \leqq i \leqq n$, then

$$
\sum_{i=1}^{n}\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right|<\epsilon .
$$

Proof. There exist a subdivision $\left\{r_{i}\right\}_{i=0}$ of $[a, b]$ and a number B such that if $\left\{y_{i}\right\}_{i=0}^{m}$ is a refinement of $\left\{r_{i}\right\}_{i=0}$, then
(1) $\sum_{i=1}^{m}\left|G_{i}\right|<B$, and
(2) $\prod_{i=1}^{m}\left(1+\left|G_{i}\right|\right)<B$.

It follows by applying the covering theorem that there exists a subdivision $\left\{s_{i}\right\}_{i=0}^{s}$ of $[a, b]$ such that if $1 \leqq i \leqq s$ and $\left\{x_{i j}\right\}_{j=0}^{s(i)}$ is a subdivision of $\left[s_{i-1}, s_{1}\right]$, then

$$
\sum_{j=2}^{s(i)-1}\left|G_{i j}\right|<\epsilon\left(2 B^{2}\right)^{-1}
$$

Further, it follows from Lemma 6.1 that there exists a subdivision $\left\{t_{i}\right\}_{i=0}^{t}$ of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of $\left\{t_{i}\right\}_{i=0}^{t}, 1 \leqq i \leqq n$ and $\left\{x_{i j}\right\}_{j=0}^{n(i)}$ is a subdivision of $\left[x_{i-1}, x_{i}\right]$, then

$$
\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right|<\epsilon(4 s)^{-1} .
$$

Let D denote the subdivision

$$
\left\{\boldsymbol{r}_{i}\right\}_{i=0}^{r} \cup\left\{s_{i}\right\}_{i=0}^{s} \cup\left\{t_{i}\right\}_{i=0}^{t}
$$

of $[a, b]$ and suppose $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D. Further, suppose $\left\{x_{i j}\right\}_{j=0}^{(i)}$ is a subdivision of $\left[x_{i-1}, x_{i}\right]$ for $1 \leqq i \leqq n$. Let P be the subset of $\{i\}_{i=1}^{n}$ such that $i \in P$ only if $x_{i} \in\left\{s_{i}\right\}_{i=0}^{s}$ or $x_{i-1} \in\left\{s_{i}\right\}_{i=0}^{s}$. Finally, let

$$
Q=\{i\}_{i=1}^{n}-P .
$$

In the following manipulations, we use the identity

$$
\prod_{i=1}^{n}\left(1+b_{i}\right)=1+\sum_{i=1}^{n} b_{i}+\sum_{i=1}^{n} b_{i}\left\{\sum_{j=i+1}^{n} b_{i}\left[\prod_{k=j+1}^{n}\left(1+b_{k}\right)\right]\right\},
$$

where $\sum_{l=n+1}^{n} b_{j}=0$ and $\Pi_{k=n+1}^{n}\left(1+b_{k}\right)=1$. This result can be established by induction.

We now establish the desired inequality:

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right| \\
&= \sum_{i \in Q}\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right| \\
&+\sum_{i \in P}\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right| \\
&< \sum_{i \in Q} \mid 1+\sum_{j=1}^{n(i)} G_{i j}+\sum_{j=1}^{n(i)} G_{i j}\left\{\sum_{u=j+1}^{n(i)} G_{i u}\left[\prod_{v=u+1}^{n(i)}\left(1+G_{i v}\right)\right]\right\} \\
&-\left(1+\sum_{j=1}^{n(i)} G_{i i}\right) \mid+2 s\left[\epsilon(4 s)^{-1}\right] \\
&= \sum_{i \in Q}\left|\sum_{j=1}^{n(i)} G_{i j}\left\{\sum_{u=j+1}^{n(i)} G_{i u}\left[\prod_{v=u+1}^{n(i)}\left(1+G_{i v}\right)\right]\right\}\right|+\epsilon / 2 \\
& \leqq \sum_{i \in Q}^{n} \sum_{j=1}^{n(i)}\left|G_{i j}\right|\left\{\sum_{u=i+1}^{n(i)}\left|G_{i u}\right|\left[\prod_{v=u+1}^{n(i)}\left(1+\left|G_{i v}\right|\right)\right]\right\}+\epsilon / 2 \\
& \leqq B \sum_{i \in Q} \sum_{j=1}^{n(i)}\left|G_{i j}\right|\left\{\sum_{u=j+1}^{n(i)}\left|G_{i u}\right|\right\}+\epsilon / 2 \\
& \leqq B\left[\epsilon\left(2 B^{2}\right)^{-1}\right] \sum_{i \in Q}^{n\left(\sum_{j=1}^{n i)}\left|G_{i j}\right|+\epsilon / 2\right.} \\
&< B\left[\epsilon\left(2 B^{2}\right)^{-1}\right] B+\epsilon / 2=\epsilon .
\end{aligned}
$$

Lemma 6.3. If G is a function from $R \times R$ to $N, G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, then

$$
\int_{a}^{b}\left|\Pi(1+G)-\left(1+\int G\right)\right|=0 .
$$

Proof. The existence of ${ }_{x} \Pi^{y}(1+G)$ for $a \leqq x<y \leqq b$ follows from Theorem 3. Also, since $G \in O B^{\circ}$ on $[a, b]$ and $\int_{a}^{b} G$ exists, $G \in S_{2}$ on $[a, b]$.

Let $\epsilon>0$. It follows from Lemma 6.2 that there exists a subdivision D of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D and $\left\{x_{i j}\right\}_{j=0}^{n(i)}$ is a subdivision of $\left[x_{i-1}, x_{i}\right]$ for $1 \leqq i \leqq n$, then

$$
\sum_{i=1}^{n}\left|\prod_{i=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right|<\epsilon / 3 .
$$

Suppose $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D. For $1 \leqq i \leqq n$, let $\left\{x_{i j}\right\}_{j=0}^{(i)}$ be a subdivision of $\left[x_{i-1}, x_{i}\right]$ such that

$$
\left|x_{x_{i-1}} \Pi \Pi^{x_{i}}(1+G)-\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)\right|<\epsilon / 3 n
$$

and

$$
\left|\sum_{j=1}^{n(i)} G_{i j}-\int_{x_{i-1}}^{x_{i}} G\right|<\epsilon / 3 n .
$$

Thus,

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|x_{i-1} \Pi^{x_{i}}(1+G)-\left(1+\int_{x_{i-1}}^{x_{i}} G\right)\right| \\
& \leqq \\
& \quad \sum_{i=1}^{n}\left|x_{x_{i-1}} \Pi^{x_{i}}(1+G)-\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)\right| \\
& \quad+\sum_{i=1}^{n}\left|\prod_{j=1}^{n(i)}\left(1+G_{i j}\right)-\left(1+\sum_{j=1}^{n(i)} G_{i j}\right)\right| \\
& \quad+\sum_{i=1}^{n}\left|\sum_{j=1}^{n(i)} G_{i j}-\int_{x_{i-1}}^{x_{i}} G\right| \\
& <n(\epsilon / 3 n)+\epsilon / 3+n(\epsilon / 3 n)=\epsilon .
\end{aligned}
$$

Theorem 6. If ν is a nonnegative number, G is a function from $R \times R$ to N and $G \in O B^{\circ}$ on $[a, b]$, then $G \in O A^{\nu}$ on $[a, b]$ if and only if $G \in O M^{\nu}$ on $[a, b]$.

Proof. Suppose $G \in O M^{\nu}$ on $[a, b]$. It follows from Theorem 2 that $\int_{a}^{b} G$ exists. Hence, it is only necessary to show that

$$
\int_{a}^{b}\left|G-\int G\right|=\nu
$$

Let $\epsilon>0$. There exists a subdivision D_{1} of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D_{1}, then

$$
\nu-\epsilon / 2<\sum_{i=1}^{n}\left|1+G_{t}-{ }_{x_{1-1}} \Pi^{x_{i}}(1+G)\right|<\nu+\epsilon / 2
$$

Further, it follows from Lemma 6.3 that there exists a subdivision D_{2} of [a, b] such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D_{2}, then

$$
\sum_{i=1}^{n}\left|x_{x_{i}-1} \Pi \Pi^{x_{i}}(1+G)-\left(1+\int_{x_{i-1}}^{x_{i}} G\right)\right|<\epsilon(2|-1|)^{-1}
$$

Let $D=D_{1} \cup D_{2}$. Suppose $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D. Now,

$$
\begin{aligned}
\sum_{i=1}^{n} \mid G_{i} & -\int_{x_{i-1}}^{x_{i}} G \mid \\
= & \sum_{i=1}^{n} \mid\left[1+G_{i}-x_{x_{i}-1} \Pi^{x_{i}}(1+G)\right] \\
& +\left[{ }_{x_{i-1}} \Pi^{x_{i}}(1+G)-\left(1+\int_{x_{i-1}}^{x_{i}} G\right)\right] \mid
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\sum_{i=1}^{n} \mid G_{i} & -\int_{x_{i-1}}^{x_{i}} G \mid \\
\leqq & \sum_{i=1}^{n}\left|1+G_{i}-x_{x_{i}-1} \Pi \Pi^{x_{i}}(1+G)\right| \\
& \quad+\sum_{i=1}^{n}\left|x_{i-1} \Pi^{x_{i}}(1+G)-\left(1+\int_{x_{i-1}}^{x_{i}} G\right)\right| \\
<\nu & +\epsilon / 2+\epsilon / 2=\nu+\epsilon
\end{aligned}
$$

Further,

$$
\begin{aligned}
& \sum_{i=1}^{n}\left|G_{i}-\int_{x_{i-1}}^{x_{i}} G\right| \\
& \quad \geqq \sum_{i=1}^{n}\left|1+G_{t}-x_{x_{i-1}} \Pi^{x_{i}}(1+G)\right|
\end{aligned}
$$

$$
\begin{aligned}
& -|-1| \sum_{i=1}^{n}\left|{ }_{x_{i-1}} \Pi_{x_{1}}^{x_{1}}(1+G)-\left(1+\int_{x_{i-1}}^{x_{i}} G\right)\right| \\
& >\nu-\epsilon / 2-\epsilon / 2=\nu-\epsilon
\end{aligned}
$$

Hence,

$$
\nu-\epsilon<\sum_{i=1}^{n}\left|G_{t}-\int_{x_{i}-1}^{x_{i}} G\right|<\nu+\epsilon .
$$

Therefore, $G \in O A^{\nu}$ on $[a, b]$.
Suppose $G \in O A^{\nu}$ on $[a, b]$. It follows from Theorem 3 that ${ }_{x} \Pi^{y}(1+G)$ exists for $a \leqq x<y \leqq b$. Hence, it is only necessary to show that

$$
\int_{a}^{b}|1+G-\Pi(1+G)|=\nu .
$$

Let $\epsilon>0$. There exists a subdivision D_{1} of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D_{1}, then

$$
\nu-\epsilon / 2<\sum_{i=1}^{n}\left|G_{i}-\int_{x_{i-1}-1}^{x_{i}} G\right|<\nu+\epsilon / 2
$$

Further, it follows from Lemma 6.3 that there exists a subdivision D_{2} of $[a, b]$ such that if $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D_{2}, then

$$
\sum_{i=1}^{n}\left|1+\int_{x_{i-1}}^{x_{i}} G-{ }_{x_{i-1}} \Pi^{x_{i}}(1+G)\right|<\epsilon(2|-1|)^{-1}
$$

Let $D=D_{1} \cup D_{2}$. Suppose $\left\{x_{i}\right\}_{i=0}^{n}$ is a refinement of D. Now,

$$
\begin{aligned}
\sum_{i=1}^{n} \mid 1 & +G_{i}-{ }_{x_{i-1}} \Pi^{x_{1}}(1+G) \mid \\
& =\sum_{i=1}^{n}\left|\left[G_{i}-\int_{x_{i-1}}^{x_{i}} G\right]+\left[1+\int_{x_{i-1}}^{x_{i}} G-{ }_{x_{i-1}} \Pi^{x_{i}}(1+G)\right]\right|
\end{aligned}
$$

It follows as in the preceding argument that

$$
\nu-\epsilon<\sum_{i=1}^{n}\left|1+G_{i}-{ }_{x_{i-1}-1} \Pi^{x_{i}}(1+G)\right|<\nu+\epsilon
$$

Therefore, $G \in O M^{\nu}$ on $[a, b]$.

We now prove a theorem on the existence of integrals of products of functions. This result is related to a theorem by B. W. Helton [2, Theorem 2, p. 494].

Lemma 7.1. If $\epsilon>0, H$ is a function from $R \times R$ to N and $H \in O L^{\circ}$ on $[a, b]$, then there exist a subdivision $\left\{t_{i}\right\}_{i=0}^{t}$ of $[a, b]$ and a sequence $\left\{k_{i}\right\}_{i=1}^{t}$ such that if $1 \leqq i \leqq t$ and $t_{i-1}<x<y<t_{i}$, then

$$
\left|H(x, y)-k_{i}\right|<\epsilon .
$$

Proof. This lemma is a variation of a lemma used by B. W. Helton [2, Lemma, p. 498]. The proof presented there can be used to establish the lemma as we have stated it.

Lemma 7.2. Suppose $|A B|=|A||B|$ for $A, B \in N$. If ν is a nonnegative number, $k \in N, G$ is a function from $R \times R$ to N and $G \in O A^{\nu}$ on $[a, b]$, then $k G \in O A^{|k| \nu}$ on $[a, b]$.

Proof. Since $|A B|=|A||B|$, the proof is readily constructed. If the preceding equality did not hold, the lemma would not necessarially follow. An example of such a situation is presented after the proof of Theorem 7.

Theorem 7. Suppose $|A B|=|A||B|$ for $A, B \in N$. If ν is a nonnegative number, H and G are functions from $R \times R$ to $N, H \in O L^{\circ}$ on $[a, b], G \in O B^{\circ}$ on $[a, b]$ and either $G \in O A^{\nu}$ on $[a, b]$ or $G \in O M^{\nu}$ on $[a, b]$, then there exist nonnegative numbers α and β such that $H G$ is in $O A^{\alpha}$ and $O M^{\alpha}$ on $[a, b]$ and $G H$ is in $O A^{\beta}$ and $O M^{\beta}$ on $[a, b]$.

Proof. We initially establish that there exists a nonnegative number α such that $H G \in O A^{\alpha}$ on [a, b]. It follows from Theorem 6 that $G \in O A^{\nu}$ on $[a, b]$. Hence, the existence of $\int_{a}^{b} H G$ follows from Theorem 5. We use the Cauchy criterion to establish the existence of

$$
\int_{a}^{b}\left|H G-\int H G\right|
$$

Let $\epsilon>0$. There exist a subdivision E_{1} of $[a, b]$ and a number B such that if $\left\{x_{1}\right\}_{i=0}^{n}$ is a refinement of E_{1}, then

$$
\sum_{i=1}^{n}\left|G_{i}\right|<B .
$$

It follows from Lemma 7.1 that there exist a subdivision $E_{2}=\left\{t_{i}\right\}_{i=0}^{t}$ of [a, b] and a sequence $\left\{k_{i}\right\}_{i=1}^{t}$ such that if $1 \leqq i \leqq t$ and $t_{i-1}<x<y<t_{i}$, then

$$
\left|H(x, y)-k_{i}\right|<\epsilon(8|-1| B)^{-1} .
$$

Since $G \in O B^{\circ} \cap O A^{\nu}$ on $[a, b]$, it follows that there exist subdivisions $\left\{r_{i}\right\}_{i=0}^{t+1}$ and $\left\{s_{i}\right\}_{i=0}^{t+1}$ of $[a, b]$ such that
(1) $t_{i-1}<r_{i}<s_{i}<t_{i}$ for $1 \leqq i \leqq t$, and
(2) $\sum_{j=1}^{n}\left|H_{j} G_{l}-\int_{x_{i-1}}^{x_{j}} H G\right|<\epsilon[8(t+1)]^{-1}$ for $1 \leqq i \leqq t+1$ and each refinement $\left\{x_{j}\right\}_{j=0}^{n}$ of $\left\{s_{i-1}, t_{i-1}, r_{i}\right\}$.

It follows from Lemma 7.2 that $k_{i} G \in O A^{\left|k_{i}\right| \nu}$ on $\left[r_{i}, s_{i}\right]$ for $1 \leqq i \leqq$ t. Hence, for each i there exists a subdivision D_{i} of $\left[r_{i}, s_{i}\right]$ such that if J and K are refinements of D_{i}, then

$$
\left|\sum_{J(I)}\right| k_{i} G-\int k_{i} G\left|-\sum_{K(I)}\right| k_{i} G-\int k_{i} G| |<\epsilon(4 t)^{-1}
$$

Let D denote the subdivision $\cup_{i=1}^{2} E_{i} \cup_{i=1}^{t} D_{i}$ of $[a, b]$. Suppose J_{1} and J_{2} are refinements of $D, P_{1 i}$ and $P_{2 i}$ are subdivisions of $\left[s_{i-1}, r_{i}\right.$] for $1 \leqq i \leqq t+1, Q_{1 i}$ and $Q_{2 i}$ are subdivisions of $\left[r_{i}, s_{i}\right]$ for $1 \leqq i \leqq t$ and J_{1} and J_{2} are equal to
respectively. For convenience, suppose

$$
\sum_{J_{1}(I)}\left|H G-\int H G\right| \geqq \sum_{J_{2}(I)}\left|H G-\int H G\right|
$$

Thus,

$$
\begin{aligned}
&\left|\sum_{J_{1}(I)}\right| H G-\int H G\left|-\sum_{J_{2}(I)}\right| H G-\int H G| | \\
&=\sum_{J_{1}(I)}\left|H G-\int H G\right|-\sum_{J_{2}(I)}\left|H G-\int H G\right| \\
&= \sum_{i=1}^{t+1} \sum_{P_{11}(I)}\left|H G-\int H G\right|+\sum_{i=1}^{t} \sum_{Q_{1 i}(I)}\left|H G-\int H G\right| \\
& \quad-\sum_{i=1}^{t+1} \sum_{P_{2 i}(I)}\left|H G-\int H G\right|-\sum_{i=1}^{t} \sum_{Q_{2 i}(I)}\left|H G-\int H G\right|
\end{aligned}
$$

$$
\begin{aligned}
&<(t+1)\left\{\epsilon[8(t+1)]^{-1}\right\}+\sum_{i=1}^{t} \sum_{Q_{1 i}(I)}\left|H G-\int H G\right| \\
&+(t+1)\left\{\epsilon[8(t+1)]^{-1}\right\}-\sum_{i=1}^{t} \sum_{Q_{2}(I)}\left|H G-\int H G\right| \\
&= \sum_{i=1}^{t} \sum_{Q_{1 i}(I)}\left|\left(H-k_{i}+k_{i}\right) G-\int\left(H-k_{t}+k_{i}\right) G\right| \\
&-\sum_{i=1}^{t} \sum_{Q_{2}(I)}\left|\left(H-k_{i}+k_{i}\right) G-\int\left(H-k_{i}+k_{i}\right) G\right|+\epsilon / 4 \\
& \leqq|-1| \sum_{j=1}^{2} \sum_{i=1}^{t} \sum_{Q_{i j}(I)}\left|\left(H-k_{i}\right) G\right| \\
&+\sum_{j=1}^{2} \sum_{i=1}^{t} \sum_{Q_{i j}(I)}\left|\int\left(H-k_{i}\right) G\right| \\
&+\sum_{i=1}^{t} \sum_{Q_{11}(I)}\left|k_{i} G-\int k_{i} G\right| \\
&-\sum_{i=1}^{t} \sum_{Q_{2}(I)}\left|k_{i} G-\int k_{i} G\right|+\epsilon / 4 \\
&< 2 B|-1|\left[\epsilon(8|-1| B)^{-1}\right]+2 B\left[\epsilon(8|-1| B)^{-1}\right]+t\left[\epsilon(4 t)^{-1}\right]+\epsilon / 4 \\
& \leqq \epsilon .
\end{aligned}
$$

Therefore, $\int_{a}^{b}\left|H G-\int H G\right|$ exists. Hence, there exists a nonnegative number α such that $G \in O A^{\alpha}$ on $[a, b]$. Thus, it follows from Theorem 6 that $G \in O M^{\alpha}$ on $[a, b]$.

A similar argument can be used to establish the existence of β. Therefore, the theorem follows.

Theorem 7 does not remain true if the requirement that $|A B|=$ $|A \| B|$ is removed. In the following we establish this assertion by constructing a function G and a constant K such that $\int_{0}^{1} G$ exists, $\int_{0}^{1}\left|G-\int G\right|$ exists and $\int_{0}^{1}\left|K G-\int K G\right|$ does not exist.

We consider the set of infinite diagonal matrices with bounded elements and $|M|=\operatorname{lub}\left|m_{i j}\right|$. For $p=1,2, \cdots$, let A_{p} be the infinite diagonal matrix such that $a_{p p}=1$ and $a_{q q}=0$ if $q \neq p$. Let $A=$ $\left\{A_{p} \mid p=1,2, \cdots\right\}$. There exists a reversible function f from the rational numbers in $[0,1]$ to A. Let G be an interval function defined on $[0,1]$ such that

$$
G(u, v)= \begin{cases}(v-u) f(v) & \text { if } v \text { is rational } \\ (v-u) f(r) & \text { where } r \text { is a rational number in } \\ (u, v) \text { if } v \text { is irrational. }\end{cases}
$$

For each rational number r in $[0,1]$, let $p(r)$ be the positive integer such that $f(r)=A_{p(r)}$. Let K be the infinite diagonal matrix such that if $r=m / n$ is a rational number contained in $[0,1]$ and m and n have no common integral factors other than 1 , then

$$
k_{p(r), p(r)}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even } .\end{cases}
$$

We have now constructed a function G and a constant K such that $\int_{0}^{1} G=0, \int_{0}^{1}\left|G-\int G\right|=1$ and $\int_{0}^{1}\left|K G-\int K G\right|$ does not exist. This example was suggested by an example in a previous paper by the author [3].

References

1. B. W. Helton, Integral equations and product integrals, Pacific J. Math., 16 (1966), 297-322.
2. A product integral representation for a Gronwall inequality, Proc. Amer. Math. Soc.. 23 (1969), 493-500.
3. J. C. Helton, An existence theorem for sum and product integrals, Proc. Amer. Math. Soc., 39 (1973), 149-154.
4. J. S. MacNerney, Integral equations and semigroups, Illinois J. Math., 7 (1963), 148-173.

Received November 1, 1973.
Arizona State University

