# PRERADICALS AND INJECTIVITY 

Ladislay Bican


#### Abstract

Recently, the ( $\rho, \sigma$ )-injectivity of modules with respect to a couple of preradicals has been investigated. In the general case, the study of all the ( $\rho, \sigma$ )-injectivities reduces to that with $\sigma$ a torsion preradical. For a special class of rings the ( $\rho, \sigma$ )-injectivities are completely described. The description of all quasi-injective modules over a Dedekind domain appears as a simple corollary.


J. A. Beachy [1] has introduced a new concept of $\rho$-density of a submodule $N$ of a module $M$ and he has investigated the $(\rho, \sigma)$ injectivity of modules with respect to a couple of preradicals. In this paper we shall show that to any couple ( $\rho, \sigma$ ) of preradicals there exists a torsion preradical $\sigma^{\prime}$ such that the $(\rho, \sigma)$-injectivity and $\left(\rho, \sigma^{\prime}\right)$ injectivity have the same meanings. Further, in the study of $(\rho, \sigma)$ injectivity, where $\rho$ is a torsion preradical, $\rho$ can be replaced by a torsion radical. Finally, the $(\rho, \sigma)$-injectivities are completely determined for a class of subcommutative rings (containing all Dedekind domains) and this yields a characterization of all quasi-injective modules generalizing a result of Harada [7] (the methods are quite different).

We start with some basic definitions. A preradical $\rho$ for the category ${ }_{R} \mathcal{M}$ of left $R$-modules over an associative ring $R$ with unity is any subfunctor of the identity, i.e. $\rho$ assigns to each module $M$ a submodule $\rho(M)$ in such a way that every homomorphism $M \rightarrow N$ induces $\rho(M) \rightarrow \rho(N)$ by restriction. A preradical $\rho$ is said to be idempotent if $\rho^{2}=\rho$, torsion if $\rho$ is left exact and it is called a radical if $\rho(M / \rho(M))=0$. It is well-known that $\rho$ is torsion iff $L \subseteq M$ implies $\rho(L)=L \cap \rho(M)$ (see e.g. [10], Prop. 1.4). For a preradical $\rho$, a module $M$ is called $\rho$-torsion if $\rho(M)=M$ and $\rho$-torsion-free if $\rho(M)=0$. Following J. A. Beachy-[1] a submodule $N$ of a module $M$ is called $\rho$-dense in $M$ if $M / N \subseteq \rho(K / N)$ for some module $K$ containing $M$, or, equivalently, if $M / N \subseteq \rho(\hat{M} / N)$ where $\hat{M}$ denotes the injective hull of $M$. Finally, for a couple $(\rho, \sigma)$ of preradicals a module $Q$ is said to be ( $\rho, \sigma$ )-injective if for every diagram $f \downarrow_{Q}^{N_{0} \rightarrow N}$ with $N_{0}$ $\rho$-dense in $N$ and Ker $\sigma$-dense in $N$ there is $g: N \rightarrow Q$ making this diagram commutative. If $\rho$ is a preradical and $M$ a module then the module $Q$ is said to be ( $\rho, M$ )-injective if every diagram $f \downarrow{ }_{Q}{ }^{M_{0} \rightarrow M}$ with $M_{0}$ $\rho$-dense in $M$ can be made commutative by some homomorphism $M \rightarrow Q$.

For a preradical $\sigma$ let $\sigma^{\prime}$ be the smallest torsion preradical which contain $\sigma$. Then $\sigma^{\prime}(M)=M \cap \sigma(\hat{M})$, so $\sigma^{\prime}(M)=\sigma(M)$ if $M$ is injective, and $M$ is $\sigma$-torsion iff 0 is $\sigma$-dense in $M$. For a preradical $\rho$ one can construct an ordinal sequence of preradicals in the following way:

$$
\begin{aligned}
\rho^{\prime}(A) & =\rho(A), \\
\rho^{\alpha+1}(A) / \rho^{\alpha}(A) & =\rho\left(A / \rho^{\alpha}(A)\right), \\
\rho^{\alpha}(A) & =\bigcup_{\beta<\alpha} \rho^{\beta}(A), \alpha \text { a limit ordinal. }
\end{aligned}
$$

As it is well-known (see [10]), the preradical $\rho^{*}$ defined by $\rho^{*}(A)=$ $\rho^{\alpha}(A)$ whenever $\rho^{\alpha}(A)=\rho^{\alpha+1}(A)$ is a radical and, in fact, the smallest radical containing $\rho$ (we put $\rho \leqq \sigma$ whenever $\rho(M) \subseteq \sigma(M)$ for all modules $M$ ).

Lemma 1. Let $\rho, \sigma$ be preradicals for ${ }_{R} \mathcal{M}$. A module $Q$ is $(\rho, \sigma)$ injective iff it is ( $\rho, M$ )-injective for all modules $M$ having 0 as a $\sigma$-dense submodule.

Proof. See [1], Theorem 23.
Theorem 2. Let $\rho, \sigma$ be preradicals for ${ }_{R} \mathcal{M}$ and let $Q \in{ }_{R} \mathcal{M}$. Then
(a) $Q$ is $(\rho, \sigma)$-injective iff it is $\left(\rho, \sigma^{\prime}\right)$-injective,
(b) if $\rho$ is a torsion preradical, then $Q$ is $(\rho, \sigma)$-injective iff it is ( $\rho^{*}, \sigma$ )-injective.

Proof. For to prove (a) it suffices to use Lemma 1 , since 0 is $\sigma$-dense in $M$ iff 0 is $\sigma^{\prime}$-dense in $M$.

If $Q$ is $\left(\rho^{*}, \sigma\right)$-injective then it is $(\rho, \sigma)$-injective since $\rho \leqq$ $\rho^{*}$. Assume that $Q$ is $(\rho, \sigma)$-injective, and let $N_{0} \subseteq N$ be $\rho^{*}$-dense, with $f: N_{0} \rightarrow Q$ and Ker $f \sigma$-dense in $N$. By a well-known argument using Zorn's lemma there exists a maximal extension $f_{1}: N_{1} \rightarrow Q$. Then $\rho\left(N / N_{1}\right)=0$, since otherwise $f_{1}$ could be extended to the $\rho$-closure of $N_{1}$ in $N$ (by (a), $\sigma$ can be assumed to be a torsion preradical), and so therefore $\rho^{*}\left(N / N_{1}\right)=\rho\left(N / N_{1}\right)=0$, which implies $N_{1}=N$.

Theorem 3. If $R$ is left hereditary, then the following equivalent conditions hold for each preradical $\rho$ for ${ }_{R} \mathcal{M}$.
(1) $M_{0} \subseteq M$ is $\rho$-dense iff it is $\rho^{\prime}$-dense,
(2) if $M_{0} \subseteq M$ is $\rho$-dense and $M / M_{0} \cong N / N_{0}$, then $N_{0} \subseteq N$ is $\rho$-dense.

Proof. The equivalence of conditions (1) and (2) is obvious. If $R$ is left hereditary, then if $M_{0} \subseteq M, \hat{M} / M_{0}$ is injective, and so $M_{0}$ is $\rho$-dense in $M$ iff $M / M_{0} \subseteq \rho\left(\hat{M} / M_{0}\right)=\rho^{\prime}\left(\hat{M} / M_{0}\right)$ iff $M_{0}$ is $\rho^{\prime}$-dense in $M$.

Before proceeding we recall some basic definitions (see e.g. [2]). Let $\pi$ be the set of all pair-wise non-isomorphic simple left $\boldsymbol{R}$-modules. For every module $\boldsymbol{M}$ and every subset $\pi^{\prime} \subseteq \pi$ let us define $S_{\pi^{\prime}}(M)$ as the submodule of $M$ generated by all simple submodules of $M$ isomorphic to some module from $\pi^{\prime}$. It is easy to see that $S_{r^{\prime}}$ is a torsion preradical. The smallest radical $S_{\pi^{\prime}}^{*}$ containing $S_{\pi^{\prime}}$ (defined above) is torsion and is said to be the fundamental torsion radical. A ring $R$ is said to have primary decompositions (PD) if $S_{\pi}^{*}(M)=\Sigma_{U \in \pi}^{0} S_{U}^{*}(M)$ for every module $M$. It is well-known that for a subcommutative ring with (PD) for which $M / M^{2}$ is either 0 or a simple module for every maximal ideal $M$ there is $S_{\pi}^{*}=S_{\pi}^{\omega}$ where $\omega$ is the first infinite ordinal (see e.g. [9]). Recall ([9], Def. 7.1) that a $S_{\pi}^{*}$-torsion module $M$ is said to be quasicyclic if $S_{\pi}^{\alpha+1}(M) / S_{\pi}^{\alpha}(M)$ is either 0 or simple for all ordinals $\alpha$ and $S_{\pi}^{n}(M) \neq M$ for all natural integers $n$. For further purposes we denote by 0 the zero functor and by $\infty$ the identity functor. In the rest of this paper we shall deal with a subcommutative ring $R$ having (PD) such that $M / M^{2}$ is either 0 or a simple module for every maximal ideal $M$, every proper homomorphic image of $R$ is $S_{\pi}^{*}$-torsion and every preradical for ${ }_{R} \mathcal{M}$ satisfies condition (2) of Theorem 3. For easy references we shall call such a ring a BSring. The last condition is independent from all others as shows the following example: Taking as $R=Z /\left(p^{3}\right)$ the factor-ring of integers modulo $p^{3}$ and $\rho(M)=J M$ where $J$ is the Jacobson radical of $R$, we obtain a preradical which does not satisfy the condition (2) from Theorem 3, since $J \cdot C\left(p^{3}\right)=C(p)$ so that 0 is $\rho$-dense in $C\left(p^{2}\right)$. On the other hand, $C\left(p^{3}\right) / C\left(p^{2}\right)$ is not $\rho$-torsion, so that $C(p)$ is not $\rho$-dense in $C\left(p^{3}\right), C\left(p^{3}\right)$ being injective. The idempotent radical $\sigma$ on the abelian groups category assigning to each group its greatest divisible subgroup provides an example of a preradical which is not torsion and satisfies the condition (2) from Theorem 3.

Theorem 4. Let $R$ be a BS-ring. Then $\rho \neq \infty$ is a torsion preradical for ${ }_{R} \mathcal{M}$ iff to every $U \in \pi$ there is $n(U) \in\{N \cup\{0\} \cup\{\infty\}$, $N$ the set of natural integers $\}$ such that $\rho(M)=\Sigma_{U \in \pi}^{\circ} S_{U}^{n(U)}(M)$ for all $M \in{ }_{R} \mathcal{M}$.

Proof. We can obviously restrict ourselves to the proof of the necessity. It is well known that the smallest radical $\rho *$ containing $\rho$ is torsion. Now from the correspondence between torsion radicals and radical filters (see e.g. [8]) and from the fact every proper homomorphic image of $R$ is $S_{\pi}^{*}$-torsion it easily follows $\rho^{*}$ is fundamental, $\rho^{*}=S_{\pi^{\prime}}^{*}$
for some $\pi^{\prime} \subseteq \pi$. Thus for every $\quad M \in{ }_{R} \mathcal{M}, \quad \rho(M)=\Sigma_{U \in \pi}^{\circ} M_{U}=$ $\Sigma_{U \in \pi}^{\circ} \rho_{U}(M)$ where $\rho_{U}=S_{U}^{*} \rho$. Now it suffices to describe $\rho_{U}$. Let $I$ be a maximal ideal of $R$ such that $R / I \cong U$. Two cases can arise:
(1) All the cyclic modules $R / I^{n}, n=1,2, \cdots$ are $\rho$-torsion. If $I^{n}=I^{n+1}$ for some natural integer $n$, then $S_{U}^{n}=S_{U}^{n+1}$ and $\rho_{U}=S_{U}^{n}=$ $S_{U}^{*}$. If $I^{n} \neq I^{n+1}$ for all $n$ then as in the case of abelian groups the $U$-quasicyclic module (i.e. quasicyclic module $M$ with $S_{\pi}^{n+1}(M) / S_{\pi}^{n}(M) \cong U$ ) is a direct limit of $R / I^{n}, n=1,2, \cdots$ and thus $\rho_{U}=S_{U}^{*}$, since by [2], Theorem 3.3 every $S_{U}^{*}$-torsion module can be embedded in a direct sum of quasicyclic modules.
(2) There exists a nonnegative integer $n$ such that $R / I^{n}$ is $\rho$-torsion and $R / I^{k}, k>n$ is not $\rho$-torsion. Now by [2], Theorem 4.2 for every $M \in{ }_{R} \mathcal{M} S_{U}^{n}(M)$ is a direct sum of cyclic submodules each of which is isomorphic to some $R / I^{l}, l \leqq n$ and hence $S_{U}^{n} \leqq \rho_{U}$. On the other hand, for any $M \in{ }_{R} \mathcal{M}$ every cyclic submodule of $\rho_{U}(M)$ is isomorphic to some $R / I^{l}, l \leqq n$, so that $I^{n} \rho_{U}(M)=0$ and $S_{U}^{n}=\rho_{U}$.

Theorem 5. Let $R$ be a BS-ring and $M$ a module. Then the following hold:
(i) If $M$ is not $S_{\pi}^{*}$-torsion then a module $Q$ is $M$-injective iff it is injective,
(ii) if $M$ is $S_{\pi}^{*}$-torsion then a module $Q$ is $M$-injective iff $S_{U}^{n_{U}^{(U)}}(Q)=$ $S_{U}^{n^{(U)}}(\hat{Q})$ for all $U \in \pi$, where $n(U)$ is the smallest ordinal for which $S_{U}^{n(U)}(M)=S_{U}^{n(U)+1}(M)$.

Proof. By [1], Corollary 2.9 $Q$ is $M$-injective iff it is $(\infty, \rho)$ injective where $\rho$ is the smallest torsion preradical for which $M$ is torsion.
(i) Taking an element $x \in M-S_{\pi}^{*}(M)$ we have $R x \cong R, R$ being a BS-ring. Thus $\rho(R)=R$ and $\rho=\infty$. It is now obvious that $Q$ is $(\infty, \infty)$-injective iff it is injective.
(ii) By Theorem 4, $\rho(N)=\Sigma_{U \in \pi}^{0} S_{U}^{n(U)}(N)$ for every $N \in{ }_{R} \mathcal{M}$. As it is easily seen the numbers $n(U)$ are just the smallest ordinals for which $S_{U}^{n^{(U)}}(M)=S_{U}^{n^{(U)+1}}(M)$. By [1], Theorem 2.5 a module $Q$ is $\left(\infty, S_{U}^{n(U)}\right)$-injective iff $S_{U}^{n(U)}(Q)=S_{U}^{n_{U}^{(U)}}(\hat{Q})$ and the assertion follows.

Corollary 6. Let $R$ be a BS-ring and $Q$ a module. Then $Q$ is quasi-injective iff it is either injective or of the form $Q=\Sigma_{U \in \pi}^{\circ} S_{U}^{*}(Q)$ where every $S_{U}^{*}(Q), U \in \pi$ is a direct sum of pair-wise isomorphic cyclic or quasi-cyclic modules.

Proof. We proceed to the necessity, the sufficiency being obvious by Theorem 5. Suppose that $Q$ is quasi-injective. By the preceding

Theorem $Q$ is either injective or of the form $Q=\Sigma_{U \in \pi}^{\bullet} S_{U}^{*}(Q)$. By [2], Theorems 3.2 and 4.2 every $S_{V}^{*}(Q)$ is a direct sum of quasicyclic and cyclic modules, so that it suffices to use Theorem 5 (ii).

Theorem 7. Let $R$ be a BS-ring and $\rho, \sigma \neq \infty$ be two preradicals for ${ }_{R} \mathcal{M}$. Then there exists a module $M$ such that a module $Q$ is $(\rho, \sigma)$ injective iff it is M-injective. Moreover, M can be chosen quasiinjective.

Proof. We shall divide this proof into three steps.
(1) We show that if $\rho, \sigma$ are torsion preradicals such that $\rho^{*} \cap \sigma$, $\sigma \neq \infty$ and $Q$ is a $(\infty, \rho)$-injective module, then $Q$ is $(\rho, \sigma)$ injective. So, let $Q$ be a ( $\infty, \rho$ )-injective module and let us consider the diagram

with $N / N_{0} \rho$-torsion, $N / K \sigma$-torsion, $K=\operatorname{Ker} f$. It follows from $\rho=\rho^{*} \cap \sigma$ and Theorem 4 that $\sigma(M)=\rho(M) \oplus \tau(M)$ for every $M \in{ }_{R} \mathcal{M}$ and a suitable torsion preradical $\tau$. For $N^{\prime} / K=\tau(N / K)$ the module $\left(N^{\prime}+N_{0}\right) / N_{0} \cong N^{\prime} / N_{0} \cap N^{\prime}$ is $\rho$-torsion and $\tau$-torsion so that $N^{\prime} \subseteq N_{0}$. Thus $f$ induces

$$
\begin{aligned}
& N_{0} / K=\tau(N / K) \oplus\left(\rho(N / K) \cap \vec{N}_{0} / K\right) \rightarrow \tau(N / K) \oplus \rho(N / K) \\
& \bar{f} \downarrow \\
& Q
\end{aligned}
$$

By hypothesis, the restriction of $\bar{f}$ to $\rho(N / K) \cap N_{0} / K$ extends to a homomorphism $\rho(N / K) \rightarrow Q$ and the assertion follows easily.
(2) It follows from Theorems 2 and 3 that $Q$ is $(\rho, \sigma)$-injective iff it is $\left(\left(\rho^{\prime}\right)^{*}, \sigma^{\prime}\right)$-injective. Now by the definition $Q$ is $\left(\left(\rho^{\prime}\right)^{*}, \sigma^{\prime}\right)$-injective iff it is $\left(\left(\rho^{\prime}\right)^{*} \cap \sigma^{\prime}, \sigma^{\prime}\right)$-injective and the preceding part results that $Q$ is $(\rho, \sigma)$-injective iff it is $(\infty, \tau)$-injective, where $\tau=\left(\rho^{\prime}\right)^{*} \cap \sigma^{\prime}$.
(3) From (2) and Theorem 4 it easily follows that a module $Q$ is $(\infty, \tau)$-injective iff it is $\left(\infty, S_{U}^{n(U)}\right)$-injective for all $U \in \pi$ where $\tau(M)=$ $\sum_{U \in \pi}^{o} S_{U}^{n(U)}(M)$. By [1], Theorem $2.5 Q$ is $\left(\infty, S_{U}^{n(U)}\right)$-injective iff $S_{U}^{n(U)}(\hat{Q}) \subseteq Q$ and the idempotence of $S_{U}^{n(U)}$ yields that $Q$ is $(\rho, \sigma)$ injective iff $S_{U}^{n^{(U)}}(Q)=S_{U}^{n^{(U)}}(\hat{Q})$. For $U \in \pi, U \cong R / I, I$ a maximal ideal of $R$, we put $M_{U}=R / I^{n(U)}$ if $n(U) \in N \cup\{0\}$ and $M_{U}$ is an
$U$-quasicyclic module if $n(U)=\infty$. Taking $M=\sum_{U \in \pi}^{\circ} M_{U}$ it suffices to use Theorem 5 (ii). $\quad M$ is quasi-injective by Corollary 6.

Remark. M. Harada ([7], Corollary to Proposition 2.6) has described the structure of quasi-injective modules over a Dedekind domain. This description follows from our Corollary 6 immediately.

## References

1. J. A. Beachy, A generalization of injectivity, Pacific J. Math., 41 (1972), 313-328.
2. L. Bican, Kulikov's criterion for modules (to appear).
3.     - QF-3' modules and rings, Comment. Math. Univ. Carol., 14 (1973), 295-303.
4. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223-235.
5. V. Dlab, A characterization of perfect rings, Pacific J. Math., 33 (1970), 79-88.
6. C. Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics 49, Springer Verlag, 1967.
7. M. Harada, Note on quasi-injective modules, Osaka J. Math., 2 (1965), 351-356.
8. A. P. Mišina, L. A. Skornjakov, Abelevy gruppy i moduli, Moskva 1968.
9. T. S. Shores, The structure of Loewy modules, J. reine angew. Math., 254 (1972), 204-220.
10. B. Stenström, Rings and modules of quotients, Lecture Notes in Mathematics 237, Springer Verlag, 1971.

Received September 11, 1973, and in revised form July 11, 1974.
Karlovy University

