PRERADICALS AND INJECTIVITY

LADISLAV BICAN

Recently, the (ρ, σ) -injectivity of modules with respect to a couple of preradicals has been investigated. In the general case, the study of all the (ρ, σ) -injectivities reduces to that with σ a torsion preradical. For a special class of rings the (ρ, σ) -injectivities are completely described. The description of all quasi-injective modules over a Dedekind domain appears as a simple corollary.

J. A. Beachy [1] has introduced a new concept of ρ -density of a submodule N of a module M and he has investigated the (ρ, σ) -injectivity of modules with respect to a couple of preradicals. In this paper we shall show that to any couple (ρ, σ) of preradicals there exists a torsion preradical σ' such that the (ρ, σ) -injectivity and (ρ, σ') -injectivity have the same meanings. Further, in the study of (ρ, σ) -injectivity, where ρ is a torsion preradical, ρ can be replaced by a torsion radical. Finally, the (ρ, σ) -injectivities are completely determined for a class of subcommutative rings (containing all Dedekind domains) and this yields a characterization of all quasi-injective modules generalizing a result of Harada [7] (the methods are quite different).

We start with some basic definitions. A preradical ρ for the category $_{R}M$ of left R-modules over an associative ring R with unity is any subfunctor of the identity, i.e. ρ assigns to each module M a submodule $\rho(M)$ in such a way that every homomorphism $M \rightarrow N$ induces $\rho(M) \rightarrow \rho(N)$ by restriction. A preradical ρ is said to be idempotent if $\rho^2 = \rho$, torsion if ρ is left exact and it is called a radical if $\rho(M/\rho(M)) = 0$. It is well-known that ρ is torsion iff $L \subset M$ implies $\rho(L) = L \cap \rho(M)$ (see e.g. [10], Prop. 1.4). For a preradical ρ , a module M is called ρ -torsion if $\rho(M) = M$ and ρ -torsion-free if $\rho(M) = 0$. Following J. A. Beachy [1] a submodule N of a module M is called ρ -dense in M if $M/N \subseteq \rho(K/N)$ for some module K containing M, or, equivalently, if $M/N \subset \rho(\hat{M}/N)$ where \hat{M} denotes the injective hull of M. Finally, for a couple (ρ, σ) of preradicals a module Q is said to be (ρ, σ) -injective if for every diagram $f \downarrow_{\rho}^{N_0 \to N}$ with N_0 ρ -dense in N and Ker $f \sigma$ -dense in N there is $g: N \to Q$ making this diagram commutative. If ρ is a preradical and M a module then the module Q is said to be (ρ, M) -injective if every diagram $f \downarrow \rho^{M \to M}$ with M_0 ρ -dense in M can be made commutative by some homomorphism $M \rightarrow O$.

LADISLAV BICAN

For a preradical σ let σ' be the smallest torsion preradical which contain σ . Then $\sigma'(M) = M \cap \sigma(\hat{M})$, so $\sigma'(M) = \sigma(M)$ if M is injective, and M is σ -torsion iff 0 is σ -dense in M. For a preradical ρ one can construct an ordinal sequence of preradicals in the following way:

$$\rho'(A) = \rho(A),$$

$$\rho^{\alpha+1}(A)/\rho^{\alpha}(A) = \rho(A/\rho^{\alpha}(A)),$$

$$\rho^{\alpha}(A) = \bigcup_{\beta < \alpha} \rho^{\beta}(A), \alpha \text{ a limit ordinal.}$$

As it is well-known (see [10]), the preradical ρ^* defined by $\rho^*(A) = \rho^{\alpha}(A)$ whenever $\rho^{\alpha}(A) = \rho^{\alpha+1}(A)$ is a radical and, in fact, the smallest radical containing ρ (we put $\rho \leq \sigma$ whenever $\rho(M) \subseteq \sigma(M)$ for all modules M).

LEMMA 1. Let ρ, σ be preradicals for _RM. A module Q is (ρ, σ) injective iff it is (ρ, M) -injective for all modules M having 0 as a σ -dense submodule.

Proof. See [1], Theorem 23.

THEOREM 2. Let ρ , σ be preradicals for _RM and let $Q \in _{R}M$. Then (a) Q is (ρ, σ) -injective iff it is (ρ, σ') -injective,

(b) if ρ is a torsion preradical, then Q is (ρ, σ) -injective iff it is (ρ^*, σ) -injective.

Proof. For to prove (a) it suffices to use Lemma 1, since 0 is σ -dense in M iff 0 is σ' -dense in M.

If Q is (ρ^*, σ) -injective then it is (ρ, σ) -injective since $\rho \leq \rho^*$. Assume that Q is (ρ, σ) -injective, and let $N_0 \subseteq N$ be ρ^* -dense, with $f: N_0 \to Q$ and Ker $f \sigma$ -dense in N. By a well-known argument using Zorn's lemma there exists a maximal extension $f_1: N_1 \to Q$. Then $\rho(N/N_1) = 0$, since otherwise f_1 could be extended to the ρ -closure of N_1 in N (by (a), σ can be assumed to be a torsion preradical), and so therefore $\rho^*(N/N_1) = \rho(N/N_1) = 0$, which implies $N_1 = N$.

THEOREM 3. If R is left hereditary, then the following equivalent conditions hold for each preradical ρ for _RM.

(1) $M_0 \subseteq M$ is ρ -dense iff it is ρ' -dense,

(2) if $M_0 \subseteq M$ is ρ -dense and $M/M_0 \cong N/N_0$, then $N_0 \subseteq N$ is ρ -dense.

Proof. The equivalence of conditions (1) and (2) is obvious. If R is left hereditary, then if $M_0 \subseteq M$, \hat{M}/M_0 is injective, and so M_0 is ρ -dense in M iff $M/M_0 \subseteq \rho(\hat{M}/M_0) = \rho'(\hat{M}/M_0)$ iff M_0 is ρ' -dense in M.

Before proceeding we recall some basic definitions (see e.g. [2]). Let π be the set of all pair-wise non-isomorphic simple left **R**-modules. For every module M and every subset $\pi' \subseteq \pi$ let us define $S_{-}(M)$ as the submodule of M generated by all simple submodules of M isomorphic to some module from π' . It is easy to see that S_r is a torsion preradical. The smallest radical $S_{\pi'}^*$ containing $S_{\pi'}$ (defined above) is torsion and is said to be the fundamental torsion radical. A ring R is said to have primary decompositions (PD) if $S^*_{\pi}(M) = \sum_{U \in \pi}^{\circ} S^*_{U}(M)$ for every module M. It is well-known that for a subcommutative ring with (PD) for which M/M^2 is either 0 or a simple module for every maximal ideal M there is $S_{\pi}^* = S_{\pi}^{\omega}$ where ω is the first infinite ordinal (see e.g. [9]). Recall ([9], Def. 7.1) that a S_{π}^* -torsion module M is said to be quasicyclic if $S_{\pi}^{\alpha+1}(M)/S_{\pi}^{\alpha}(M)$ is either 0 or simple for all ordinals α and $S_{\pi}^{n}(M) \neq M$ for all natural integers n. For further purposes we denote by 0 the zero functor and by ∞ the identity functor. In the rest of this paper we shall deal with a subcommutative ring R having (PD) such that M/M^2 is either 0 or a simple module for every maximal ideal M, every proper homomorphic image of R is S_{π}^{*} -torsion and every preradical for $_{R}\mathcal{M}$ satisfies condition (2) of Theorem 3. For easy references we shall call such a ring a BSring. The last condition is independent from all others as shows the following example: Taking as $R = Z/(p^3)$ the factor-ring of integers modulo p^3 and $\rho(M) = JM$ where J is the Jacobson radical of R, we obtain a preradical which does not satisfy the condition (2) from Theorem 3, since $J \cdot C(p^3) = C(p)$ so that 0 is ρ -dense in $C(p^2)$. On the other hand, $C(p^3)/C(p^2)$ is not ρ -torsion, so that C(p) is not ρ -dense in $C(p^3)$, $C(p^3)$ being injective. The idempotent radical σ on the abelian groups category assigning to each group its greatest divisible subgroup provides an example of a preradical which is not torsion and satisfies the condition (2) from Theorem 3.

THEOREM 4. Let R be a BS-ring. Then $\rho \neq \infty$ is a torsion preradical for _RM iff to every $U \in \pi$ there is $n(U) \in \{N \cup \{0\} \cup \{\infty\}, N$ the set of natural integers} such that $\rho(M) = \sum_{U \in \pi}^{n} S_{U}^{n(U)}(M)$ for all $M \in {}_{R}M$.

Proof. We can obviously restrict ourselves to the proof of the necessity. It is well known that the smallest radical ρ^* containing ρ is torsion. Now from the correspondence between torsion radicals and radical filters (see e.g. [8]) and from the fact every proper homomorphic image of R is S^*_{π} -torsion it easily follows ρ^* is fundamental, $\rho^* = S^*_{\pi}$.

for some $\pi' \subseteq \pi$. Thus for every $M \in {}_{R}\mathcal{M}$, $\rho(M) = \sum_{U \in \pi}^{\circ} M_{U} = \sum_{U \in \pi}^{\circ} \rho_{U}(M)$ where $\rho_{U} = S_{U}^{*}\rho$. Now it suffices to describe ρ_{U} . Let *I* be a maximal ideal of *R* such that $R/I \cong U$. Two cases can arise:

(1) All the cyclic modules R/I^n , $n = 1, 2, \cdots$ are ρ -torsion. If $I^n = I^{n+1}$ for some natural integer n, then $S_U^n = S_U^{n+1}$ and $\rho_U = S_U^n = S_U^*$. If $I^n \neq I^{n+1}$ for all n then as in the case of abelian groups the U-quasicyclic module (i.e. quasicyclic module M with $S_{\pi}^{n+1}(M)/S_{\pi}^n(M) \cong U$) is a direct limit of R/I^n , $n = 1, 2, \cdots$ and thus $\rho_U = S_U^*$, since by [2], Theorem 3.3 every S_U^* -torsion module can be embedded in a direct sum of quasicyclic modules.

(2) There exists a nonnegative integer *n* such that R/I^n is ρ -torsion and R/I^k , k > n is not ρ -torsion. Now by [2], Theorem 4.2 for every $M \in {}_R\mathcal{M} S^n_U(M)$ is a direct sum of cyclic submodules each of which is isomorphic to some R/I^l , $l \leq n$ and hence $S^n_U \leq \rho_U$. On the other hand, for any $M \in {}_R\mathcal{M}$ every cyclic submodule of $\rho_U(M)$ is isomorphic to some R/I^l , $l \leq n$, so that $I^n \rho_U(M) = 0$ and $S^n_U = \rho_U$.

THEOREM 5. Let R be a BS-ring and M a module. Then the following hold:

(i) If M is not S_{π}^* -torsion then a module Q is M-injective iff it is injective,

(ii) if M is S_{π}^{*} -torsion then a module Q is M-injective iff $S_{U}^{n(U)}(Q) = S_{U}^{n(U)}(\hat{Q})$ for all $U \in \pi$, where n(U) is the smallest ordinal for which $S_{U}^{n(U)}(M) = S_{U}^{n(U)+1}(M)$.

Proof. By [1], Corollary 2.9 Q is M-injective iff it is (∞, ρ) -injective where ρ is the smallest torsion preradical for which M is torsion.

(i) Taking an element $x \in M - S_{\pi}^{*}(M)$ we have $Rx \cong R$, R being a BS-ring. Thus $\rho(R) = R$ and $\rho = \infty$. It is now obvious that Q is (∞, ∞) -injective iff it is injective.

(ii) By Theorem 4, $\rho(N) = \sum_{U \in \pi}^{\infty} S_U^{n(U)}(N)$ for every $N \in {}_{\mathbb{R}}\mathcal{M}$. As it is easily seen the numbers n(U) are just the smallest ordinals for which $S_U^{n(U)}(M) = S_U^{n(U)+1}(M)$. By [1], Theorem 2.5 a module Q is $(\infty, S_U^{n(U)})$ -injective iff $S_U^{n(U)}(Q) = S_U^{n(U)}(\hat{Q})$ and the assertion follows.

COROLLARY 6. Let R be a BS-ring and Q a module. Then Q is quasi-injective iff it is either injective or of the form $Q = \sum_{U \in \pi}^{\circ} S_{U}^{*}(Q)$ where every $S_{U}^{*}(Q)$, $U \in \pi$ is a direct sum of pair-wise isomorphic cyclic or quasi-cyclic modules.

Proof. We proceed to the necessity, the sufficiency being obvious by Theorem 5. Suppose that Q is quasi-injective. By the preceding

Theorem Q is either injective or of the form $Q = \sum_{U \in \pi}^{\circ} S_U^*(Q)$. By [2], Theorems 3.2 and 4.2 every $S_U^*(Q)$ is a direct sum of quasicyclic and cyclic modules, so that it suffices to use Theorem 5 (ii).

THEOREM 7. Let R be a BS-ring and $\rho, \sigma \neq \infty$ be two preradicals for _RM. Then there exists a module M such that a module Q is (ρ, σ) injective iff it is M-injective. Moreover, M can be chosen quasiinjective.

Proof. We shall divide this proof into three steps.

(1) We show that if ρ, σ are torsion preradicals such that $\rho^* \cap \sigma$, $\sigma \neq \infty$ and Q is a (∞, ρ) -injective module, then Q is (ρ, σ) -injective. So, let Q be a (∞, ρ) -injective module and let us consider the diagram

$$K \\ \downarrow \\ N_0 \rightarrow N \\ f \downarrow \\ Q$$

with $N/N_0 \rho$ -torsion, $N/K \sigma$ -torsion, K = Ker f. It follows from $\rho = \rho^* \cap \sigma$ and Theorem 4 that $\sigma(M) = \rho(M) \oplus \tau(M)$ for every $M \in {}_{\mathbb{R}}\mathcal{M}$ and a suitable torsion preradical τ . For $N'/K = \tau(N/K)$ the module $(N' + N_0)/N_0 \cong N'/N_0 \cap N'$ is ρ -torsion and τ -torsion so that $N' \subseteq N_0$. Thus f induces

$$N_0/K = \tau(N/K) \oplus (\rho(N/K) \cap \tilde{N}_0/K) \to \tau(N/K) \oplus \rho(N/K)$$

$$\bar{f} \downarrow Q$$

By hypothesis, the restriction of \overline{f} to $\rho(N/K) \cap N_0/K$ extends to a homomorphism $\rho(N/K) \rightarrow Q$ and the assertion follows easily.

(2) It follows from Theorems 2 and 3 that Q is (ρ, σ) -injective iff it is $((\rho')^*, \sigma')$ -injective. Now by the definition Q is $((\rho')^*, \sigma')$ -injective iff it is $((\rho')^* \cap \sigma', \sigma')$ -injective and the preceding part results that Q is (ρ, σ) -injective iff it is (∞, τ) -injective, where $\tau = (\rho')^* \cap \sigma'$.

(3) From (2) and Theorem 4 it easily follows that a module Q is (∞, τ) -injective iff it is $(\infty, S_U^{n(U)})$ -injective for all $U \in \pi$ where $\tau(M) = \sum_{U \in \pi}^{\infty} S_U^{n(U)}(M)$. By [1], Theorem 2.5 Q is $(\infty, S_U^{n(U)})$ -injective iff $S_U^{n(U)}(\hat{Q}) \subseteq Q$ and the idempotence of $S_U^{n(U)}$ yields that Q is (ρ, σ) -injective iff $S_U^{n(U)}(Q) = S_U^{n(U)}(\hat{Q})$. For $U \in \pi$, $U \cong R/I$, I a maximal ideal of R, we put $M_U = R/I^{n(U)}$ if $n(U) \in N \cup \{0\}$ and M_U is an

U-quasicyclic module if $n(U) = \infty$. Taking $M = \sum_{U \in \pi}^{\infty} M_U$ it suffices to use Theorem 5 (ii). *M* is quasi-injective by Corollary 6.

REMARK. M. Harada ([7], Corollary to Proposition 2.6) has described the structure of quasi-injective modules over a Dedekind domain. This description follows from our Corollary 6 immediately.

REFERENCES

1. J. A. Beachy, A generalization of injectivity, Pacific J. Math., 41 (1972), 313-328.

2. L. Bican, Kulikov's criterion for modules (to appear).

3. ____, QF-3' modules and rings, Comment. Math. Univ. Carol., 14 (1973), 295-303.

4. S. E. Dickson, A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223-235.

5. V. Dlab, A characterization of perfect rings, Pacific J. Math., 33 (1970), 79-88.

6. C. Faith, *Lectures on injective modules and quotient rings*, Lecture Notes in Mathematics 49, Springer Verlag, 1967.

7. M. Harada, Note on quasi-injective modules, Osaka J. Math., 2 (1965), 351-356.

8. A. P. Mišina, L. A. Skornjakov, Abelevy gruppy i moduli, Moskva 1968.

9. T. S. Shores, *The structure of Loewy modules*, J. reine angew. Math., **254** (1972), 204–220. 10. B. Stenström, *Rings and modules of quotients*, Lecture Notes in Mathematics 237, Springer Verlag, 1971.

Received September 11, 1973, and in revised form July 11, 1974.

KARLOVY UNIVERSITY