ON A THEOREM OF BRAUER-CARTAN-HUA TYPE

I. N. HERSTEIN

We shall be concerned here with the nature of subrings of a ring with involution which are invariant with respect to certain combinations of elements. To be more precise, let R be a ring with involution * and suppose that A is a subring of R such that $xAx^* \subset A$ for all $x \in R$. Can we say something definitive about the structure of A? We shall see that if R is semi-prime then we do get a dichotomy of the Brauer-Cartan-Hua type, namely, A must contain a nonzero ideal of R or A must be central.

Considerations of such kind of subrings of R arose in the Ph.D. thesis of P. Lee [2].

In what follows, R will be a semi-prime ring with involution * and A will be a subring of R such that $xAx^* \subset A$ for all $x \in R$.

We begin with

LEMMA 1. If A does not contain a nonzero ideal of R, then $ab^* = ba$ and $b^*a = ab$ for all $a, b \in A$.

Proof. Let $a \in A$. Linearize $xax^* \in A$ by replacing x by x + y. We get

(1) $xay^* + yax^* \in A$ for all $a \in A$, $x, y \in R$.

In (1) replace x by xb, where $b \in A$. We get

(2) $xbay^* + yab^*x^* \in A$.

However, by (1), since $ba \in A$

(3) $x(ba)y^* + ybax^* \in A$.

Subtracting (3) from (1) gives $y(ab^* - ba)x^* \in A$ for all $x, y \in R$, hence $R(ab^* - ba)R \subset A$.

Since A does not contain a nonzero ideal of R, but $A \supset R(ab^* - ba)R$, we deduce that $R(ab^* - ba)R = 0$. However, since R is semiprime, we conclude that $ab^* - ba = 0$, and so $ab^* = ba$.

If we use a similar argument, replacing y by yb^* , $b \in A$, in (1) we end up with the other relation, $b^*a = ab$.

From Lemma 1 we can settle the problem for A noncommutative.

LEMMA 2. If A is noncommutative and $xAx^* \subset A$ for all $x \in R$ then A contains a nonzero ideal of R.

Proof. Suppose the conclusion of the lemma is false. Then, by

Lemma 1, $ab^* = ba$ for all $a, b \in A$. Suppose that a, b, c are in A. Thus $ab^*c^* = bac^* = bca$. However, since A is a subring of R, and $b, c \in A$, we have $cb \in A$. Therefore $a(cb)^* = (cb)a$, that is, $ab^*c^* = cba$. Comparing these two evaluations of ab^*c^* , we get (bc - cb)a = 0, hence (bc - cb)A = 0. Because A is not commutative, $bc - cb \neq 0$ for some $b, c \in A$.

Let $W = \{w \in R | wA = 0\}$. Since $bc - cb \neq 0$ is in $W, W \neq 0$. If $w \in W$ and $x \in R, y \in A$, using (1) we have $xay^* + yax^* \in A$, hence $w(xay^* + yax^*) = 0$. But wy = 0 since $y \in A$; thus $wxay^* = 0$, which is to say, $WRAA^* = 0$. Therefore $WRAA^*R = 0$. Now $cb^* = bc$ and $bc^* = cb$, hence $bc - cb = cb^* - bc^* \in AA^*$. But $bc - cb \in W$. This gives that $((bc - cb)R)^2 \subset WRAA^*R = 0$. Since R is semi-prime, we get (bc - cb)R = 0, and so bc = cb. With this contradiction the lemma is proved.

We now turn our attention to what happens when A is commutative.

LEMMA 3. If A is a commutative subring of R such that $xAx^* \subset A$ for all $x \in R$, then, if A does not contain a nonzero ideal of R, every element in A must be symmetric.

Proof. Since A does not contain a nonzero ideal of R, by Lemma $1 \ ab^* = ba$ and $b^*a = ab$ for every $a, b \in A$. Since ab = ba we get $(b^* - b)a = 0$ and $b^*a = ab^*$, for all $a, b \in A$. Thus $(b^* - b)A = 0$ and A centralizes A^* . From $((b^* - b)A)^* = 0$ and the fact that A centralizes A^* , we have $(b^* - b)A^* = 0$.

Let $t = b^* - b$. If $x \in R$ then $xtx^* = xb^*x^* - xbx^* \in A^* + A$, hence $txtx^* \in tA^* + tA = 0$. We similarly have $x^*txt = 0$.

Linearize $txtx^* = 0$ on x; the result is $txty^* + tytx^* = 0$ for all $x, y \in R$. Multiply this last relation from the right by txt. Using $x^*txt = 0$ we obtain $txty^*txt = 0$ for all $x, y \in R$, that is, txtRtxt = 0. Since R is semi-prime, we get that txt = 0 for all $x \in R$, and so tRt = 0. The semi-primeness of R then gives us that t = 0. Since $t = b^* - b$ we have that $b^* = b$, and so every element in A is symmetric.

We have narrowed the possibilities that need be considered, on the road to our desired result.

LEMMA 4¹. Let A be a subring of R which consists of symmetric elements and satisfies $xAx^* \subset A$ for all $x \in R$. Then A is contained in the center of R.

Proof. Since R is semi-prime with involution, it is a subdirect ¹ The author is grateful to Professor Susan Montgomery for suggestions which improved the proof of Lemma 4. product of *-prime rings R_{α} with involution (i.e., if $I^* = I$ is a nonzero ideal of R_{α} then Ix = 0 implies x = 0). The image, A_{α} , of A in R_{α} satisfies the same property as A. So if we could prove $A_{\alpha} \subset Z(R_{\alpha})$ we would get $A \subset Z(R)$. Thus, without loss of generality, R is *-prime.

Since A consists of symmetric elements, A must be a commutative subring of R.

In equation (1) we saw that $xay^* + yax^* \in A$ for all $x, y \in R, a \in A$. If $b \in A$, this gives $b(xay^* + yax^*) \in A$. On the other hand, $(bx)ay^* + ya(bx)^* \in A$; since $b^* = b$, this yields that $bxay^* + yax^*b \in A$. Thus we have $b(yax^*) - (yax^*)b = b(xay^* + yax^*) - (bxay^* + yax^*b) \in A$. If U = RAR, the ideal generated by A, this last relation translates into $bu - ub \in A$ for all $b \in A$, $u \in U$. In other words, A is a Lie ideal of U.

Since R is *-prime it is semi-prime, hence U is semi-prime. Because A is both a commutative subring and Lie ideal of U, if the characteristic of R is not 2, by the proof of Lemma 1.3 of [1], we have A is contained in the center of U. Since U is an ideal in the semi-prime ring R, the center of U is contained in the center of R. Hence we get $A \subset Z$, as desired.

So we may suppose that R is of characteristic 2. In this case, the proof of Lemma 1.3 of [1] tells us that if $a \in A$ then $a^2 \in Z$. We claim that $a^2 \neq 0$ for some $a \in A$. If not, $a^2 = 0$ and $(au - ua)^2 = 0$ for $u \in U = RAR$, $a \in A$. Thus $(au)^3 = a(au - ua)^2u = 0$; but then aU is a nil ideal in which every element has cube 0. By Lemma 1.1 of [1] we get, since R is semi-prime, that aU = 0. Hence ARAR = 0, and so A = 0.

Thus there is an element $a \in A$ such that $a^2 = \mu \neq 0$ is in Z^+ , the set of symmetric elements of Z. By the *-primeness of R, the nonzero elements of Z^+ are not zero divisors in R. If $x \in R$ then $aax + x^*aa \in A$, (since $a^* = a$), that is, $\mu(x + x^*) \in A$ for all $x \in R$. Since A is commutative and μ is not a zero divisor, we get that $x + x^*$ commutes with $y + y^*$ for all x, y in R.

We claim that $\alpha^* = \alpha$ for all $\alpha \in Z$. For $\alpha x + (\alpha x)^* = \alpha x + \alpha^* x^*$ and $\alpha(x + x^*)$ commute with all $y + y^*$, hence $(\alpha + \alpha^*)x^* = \alpha x + \alpha^* x^* + \alpha(x + x^*)$ commutes with all $y + y^*$. But then it commutes with all combinations of the form $z + z^*$, whence with $(\alpha + \alpha^*)y^*$. This gives $(\alpha + \alpha^*)(xy - yx) = 0$ for all $x, y \in R$. So, if R is not commutative, $\alpha + \alpha^* = 0$, and so $\alpha = \alpha^*$ for all $\alpha \in Z$. Thus $Z = Z^+$.

We may assume that $AZ \subset A$ for A + AZ satisfies the same hypothesis as does A; if it is in Z then so is A in Z. Hence we may suppose $AZ \subset A$.

Localize R at $Z(=Z^+)$. The localization R_z of R is *-prime and since $A \supset Z$, the localization A_z of A satisfies the basic hypotheses we

have imposed on A. If A_z is in the center of R_z , then A is in the center of R. But now, all the nonzero elements of the center of R_z are invertible in R_z . Hence, without loss of generality, we may assume that all the nonzero elements of Z are invertible in R.

We claim that every $a \neq 0$ in A is invertible in R. If not, since $a^2 \in Z$, we must have $a^2 = 0$ for some $a \neq 0$ in A. Thus $0 = a^2A = aAa$; but $\mu(x + x^*) \in A$ all $x \in R$ where $\mu \neq 0$ is in Z. This gives $a(x + x^*)a = 0$ for all $x \in R$, that is, $axa = ax^*a$. Since $xax^* \in A$, $0 = a(xax^*)a = axaxa$, whence $(ax)^3 = 0$ for all $x \in R$. By Lemma 1.1 of [1] we get a = 0.

Let $0 \neq a \in A$; then $a^2 = \alpha \in Z$. If $F = Z[\beta]$ where $\beta^2 = \alpha$, since Z is a field and $\alpha^* = \alpha$ for all $\alpha \in Z$, we can extend the * of R to $\overline{R} = R \bigotimes_Z F$. Moreover, \overline{R} is *-prime. Furthermore, if $\overline{A} = A \bigotimes_Z F$, as is easily verified, $\overline{x}\overline{A}\overline{x}^* \subset \overline{A}$ for all $\overline{x} \in \overline{R}$. Therefore, by what we have shown, every element of \overline{A} must be invertible in \overline{R} . But $\overline{b} = a \otimes 1 - 1 \otimes \beta$ is in \overline{A} and $\overline{b}^2 = a^2 \otimes 1 - 1 \otimes \beta^2 = \alpha(1 \otimes 1) - \alpha(1 \otimes 1) = 0$. Hence $\overline{b} = 0$ and we get that a was indeed in Z. Thus $A \subset Z$ and the lemma is proved.

The four lemmas combine to prove

THEOREM 1. Let R be a semi-prime ring with involution * and suppose that A is a subring of R such that $xAx^* \subset A$ for all $x \in R$. Then either A must contain a nonzero ideal of R or A is contained in the center of R.

We can sharpen the theorem a little in the second possibility, namely when $A \subset Z$. If A = 0 there is nothing further to be said. If $a \neq 0$, then, as the lemmas show, if A does not contain a nonzero ideal of R, A must consist of symmetric elements. If $a \neq 0 \in A$ then $axx^* = xax^* \in A \subset Z$. So, if $y \in R$, then $axx^*y = yaxx^* = ayxx^*$, hence $A(yxx^* - xx^*y) = 0$. In case R is *-prime this forces $xx^* \in Z$ for all $x \in R$. From this, by commuting with x, we get $xx^* = x^*x$ for all $x \in R$. It is fairly trivial from here to conclude that R satisfies the identities of the 2×2 matrices over a field, so in particular, the standard identity in 4 variables. Thus

THEOREM 2. Let R be a *-prime ring, $A \neq 0$ a subring of R such that $xAx^* \subset A$ for all $x \in R$. If A does not contain a nonzero ideal of R then $A \subset Z$ and R satisfies the standard identity in 4 variables.

Thus, for general semi-prime rings, if $A \neq 0 \subset Z$ and $xAx^* \subset A$ for all $x \in R$, if A does not contain a nonzero ideal of R, we can get

the structure of R, as far as all the *-prime ideals P of R which do not contain A.

References

- 1. I. N. Herstein, Topics in Ring Theory, Univ. of Chicago Press, 1969.
- 2. P. H. Lee, Ph. D. Dissertation (Chicago), 1974.

Received June 19, 1974. This work was supported in part by NSF Grant GP 29269 at the University of Chicago.

UNIVERSITY OF CHICAGO