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CONVEX HULLS AND EXTREME POINTS OF
FAMILIES OF STARLIKE AND CLOSE-

TO-CONVEX MAPPINGS

DAVID J. HALLENBECK

The closed convex hull is obtained for the functions
which are starlike of order a, A>fold symmetric, and real on
(—1,1). The same result for the close-to-convex functions
which are &-fold symmetric is obtained. Integral representa-
tions are given for the hulls of these and other families in
terms of probability measures on suitable sets. These results
are used to solve extremal problems.

Introdution* Let A denote the unit disk and let A denote the
set of functions analytic in A. Then A is a locally convex linear
topological space with respect to the topology given by uniform
convergence on compact subsets of A.

We consider the family, denoted by StR{a, k) of starlike function
of order a which are real on (—1, 1) and have power series develop-
ments which are λ -fold symmetric. We recall that a function /
analytic in A is called λ -fold symmetric (k = 1, 2, •••) if its power
series has the form

/(*) = Σ amk+1z
mk+ί .

We also consider the family, denoted by Ck of close-to-convex func-
tions which are &-fold symmetric. We also consider the class of
functions denoted by KR{β) of functions which are close-to-convex
of order β and real on ( — 1,1). These functions were introduced
by Pommerenke in [8].

Let

where p > 0 and & is the set of probability measures on X = {x: \x\ =
1 and Imx Ξf> 0}. We prove that Fp-Fq(zFv+q.

We use this result to obtain the closed convex hull and extreme
points of StB(a, k) which we denote 2(fStR{μ, k) and g7 3f?StR{μ, k)
respectively. We also use it to obtain the closed convex hull of KR{β)
for β ^ 1 which we denote £ίfKR(β) We recall that in [2] £έ?K{β)
for β ^ 1 was determined.

By way of application of our results we prove that if f(z) —
Σ%=i anZn is subordinate to a close-to-convex odd function, then | an | <
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l/~2~ for n = 1, 2, . . . . We recall that an analytic function / is said
to be subordinate to an analytic function F if f(z) = F(φ(z)) where
φ{z) is analytic in Δ, φ{ϋ) = 0. and \φ{z)\ < 1. We write this rela-
tionship f < F.

1* A product theorem and a geometric mean theorem for Fp.

THEOREM 1. Let X = {x:\x\ = 1 and Imx ̂  0}, a ^ 1,
denote the set of probability measures on X. Given v e 0* there
exists a μ e & so that

Proof. This result follows from obvious modifications of the
Herglotz representation for functions of positive real part and the
same type of arguments made in the proof of Theorem 2.2 in [2].

THEOREM 2. Let

where X and & are as in Theorem 1. Ifp>0 and q > 0 then
Fp'FgCZ Fq+q where Fp Fq = [/:/ = gh and g e Fp, he Fg).

Proof. If p + q ̂  1, then proof of this therem follows from
Theorem 1 by the same arguments used to prove Theorem 1 in [3].

Now suppose p + q ̂  1. Consider the linear operator L defined
by

p 1 — z2 1 — z2

It is easily verified that L is a linear map from Fp onto Fp+1 since
L applied to 1/[(1 - xz)(l - xz)f yields 1/[(1 - xz)(l - xz)]p+1.

Let

w [(1 - χz)(l - xz)]> [(1 - yz)(l - yx)Y

A computation shows that

p + q 1 — z2 1 — z2
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_ P l l

p + q [(1 - xz)(l - xz)]»+1 [(1 - yz)(l - yz)]q

q 1 1,
- xz)(l - xz)Y [(1 - yz)(l - yz)Y

Applying the case of the theorem when p + q J> 1 and the convexity
of Fp+q+u we conclude that the left hand side of the above equation
is a member of F9+q+ι. It now follows that Fp-Fq(Z Fp+q if 0 < p +

THEOREM 3. Let X and & be as in Theorem 1. Then given
^9 3ve^ such that

- xz)(l - xz)dμ(x)} = j^[(l ~ xz)(l - xz)]-'dv(x) .exp I j ^ -

Proof. The proof of this theorem follows from Theorem 2 in a
direct and obvious way.

2. The convex hull of StΛ(a, k)

THEOREM 4. Let X and & be as in Theorem 1, a < 1, k be any
positive integer and J^ be the set of functions fμ on Δ defined by

then &~ = βί?StR{a9 k) and

VMTSt/μ, k)^{{1_χzΎ-J{χ_WzΎ-.β -1*1 = 1. fin* 2: 0} .

Proof. It is easy to show that each f(z) in StB(a, k) can be
represented by

f(z) = z exp | - ( 1 ^ - ^ ) ^ log (1 - xzk)(l - xzk)dv(x)}

where X = {x: \x\ = 1 and Im# ^ 0} and v is a probability measure
on X. The result now follows by direct application of Theorem 3
and standard arguments.

REMARK 1. This result generalizes Theorem 1 of [5] and Theorem
3 of [3].
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2. The problem of deter ming £ίfTk when Tk denotes the typically
real &-fold symmetric functions seems more difficult. Our next theorem
settles the case k — 2, i.e., typically real odd functions.

3. The question of whether each kernel function is an extreme
point remains to be decided. It is known to be true when a — 0
and k = 1.

LEMMA 1. Suppose Rep(z) > 0, p(0) = 1, p(z) is even, and p(z)
is real on ( — 1,1).
Then

= \ l—f-—dμ(x)
Jx (1 — xz2)(l — xz2)

where X = {x: \x\ — 1 and \xax ̂  0} and μ is a probability measure
on X.

Proof. The result follows from an obvious modification of the
Herglotz formula.

THEOREM 5. Let X = {x: \x\ = 1, I m # ^ 0}, & be the set of

probability measures on X, and J^ be the set of functions fμ on Δ
defined by

i ( 1 t Z2) - 2, dμ(x) (μ
xz2)

„ 2,t, - 2,
(1 — xz2)(l — xz2)

Let T2 be the set of typically real odd functions on Δ. Then
T2 — ̂ 7 the map μ—+fμ is one-to-one, and each function

(1 - xz2)(l - xz2)

is an extreme point of

Proof. This result follows in a very direct way from the previous
lemma and a classical result of W. Rogosinski [9] which states that
if f(z) is typically real then

/GO - ^1 — z2

where Rep(z) > 0, p(0) = 1 and p(z) is real on ( — 1,1). The fact
that μ —> fμ is one-to-one follows by direct appeal to Theorem 4 in
[4, p. 95].
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3. The convex hull of KR{β).
In [2] D. A. Brannan, J. G. Clunie and W. E. Kirwan determined

3ίfK{β) where β >̂ 1. We now turn our attention to KR{β) for β :>
1, i.e., those functions in K(β) which are real on ( — 1, 1). We recall
that in [2] the above authors showed that f(z) e K{β) if and only
if there exists a function p(z) satisfying Re p(z) > 0 and a starlike
function s(z) so that zf\z) = a(p(z))βs(z) where |α | = 1. This is equi-
valent to the original definition given by Gh. Pommerenke in [8].

THEOREM 6. Let {X = x: \x\ = 1, Im x ^ 0}, & he the set of pro-

bability measures on X, and J^~ be the class of functions fμ on Δ
defined by

— xz) J (1 —J χ L ( l — xz)(l — xz) J ( 1 — xz)(l — xz)

Then &~ = £$fK!R(β), where β ^ l and K'R{β). Also

(1 — xz)

= 1, I m x ^ 0 i

_ Ύ- 1 —:
— xz) J ( 1 — xz)(l — xz)

Proof. We assume that f(z) e KR(β) for β ;> 1. In [2] the authors
showed that

where [p(z)p(z)]112 has positive real part and is real on (—1, 1) and
[s(z)s(z)]1/2 is univalent, starlike, and real on (—1, 1). The result now
follows with the usual arguments by appealing to Theorems 1 and 2.

REMARK 1. The question of whether each kernel function is an
extreme point remains undecided.

2. We introduce some useful notation at this point. Suppose
/(s) = ΣΓ=i anz

n and F(z) = ΣϊU &*zn are such that | an \ ̂  | An | for
n = l, 2, . . . . We then write f(z) < F(z). In [2] the authors
proved that f(z) e KR(β) implies f'(z) < f'h{z) where p = (l/2)fc - 1
and

They proved this with no restriction on β. If β ^ 1, the previous
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theorem gives an easy proof of this result. The argument needed
is essentially the same one used by D. A. Brannan, J. G. Clunie,
and W. E. Kir wan in [2] to prove the coefficient conjecture for K{β)
when β *z 1. We recall that D. Aharonov and S. Friedland settled
that coefficient conjecture for K(β) in [1]. We next prove a generalized
coefficient conjecture for K(β).

THEOREM 7. Suppose F(z) e K{β) where β ^ 1. If f(z) < F{z)
then f{z) < fk(z) where

Proof. It suffices to consider F(z) which are in W£έ?K{β). So
we may assume by Theorem 4.1 in [2] that for f(z) = F(φ(z)) we
have

/'(*) - F'{φ{z))φ\z)

l+ xφ(z)Ύ 1 ,()= Γ

i l-yφ(z)A ( l -

We recall that D. Aharonov and S. Friedland in [1] proved that

[ 1 ± « Ύ « Γ 1 ± * . Ί ' f o r β ^ l a n d \c\ ^ 1 .
L l — z A L I — zΛ

Since

i -

for some /< a probability measure on X — {x: | x | = 1} by Theorem 2.2
in [2] we see that

Since

tm = ±\ 1 and < ——

(1 — yφ{z)Y y L1 — yφ(z) J 1 — yφ(z) 1 —

we conclude that

φ \Z) ^ 1

( i - yΦ(z)Y ( l - zγ '
Hence we see that
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where

The theorem now follows directly.

4* The convex hull of Ck.

T H E O R E M 8. Let X2 = {(x, y): \x\ = \y\ = 1}, ^ δe ίfte se£ 0/

probability measures on X2, and ^ be the class of functions fμ on
Δ defined by

J — yzk)

then ^ = έ%fCf

k, where C[ is the set of derivatives of functions in
Ck and k — 1, 2, . Furthermore

Proof. Let /(^) be in CΛ. An inspection of the proof of Theorem
2 in [6], as noted by Ch. Pommerenke in [7, p. 263], shows that we
can choose a starlike function s(z) with k-fold symmetry and a function
of positive real part with &-fold symmetry so that

zf\z) = p(z)s(z) .

The result now follows appeal to Theorem 3 in [4, p. 95] and the
same arguments in [4, Theorem 6].

The next result was proven earlier in [7, p. 266] by Ch. Pom-
merenke.

kCOROLLARY. (1) Iffe Ck, then f(z) < z/(l - z

Proof. We prove f\z) < [s/((l - z

k)2lk)}' which is equivalent to
the above statement. It suffices to prove the result for / in g"
i.e., for functions

1 + xzk w h e r e \χ\ = \y\ = 1 .
(1 - yzψk+1

It is easy to see that
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1

1 - yz

Hence we have

•* 1 - z k
and

- yzψk

xzk 1+2* "I-
The result now follows.

COROLLARY. (2) Let f(z) =^Y^=γanz
n be subordinate to F(z)

where F(z) is in C2. Then \ an \ < V 2 for n = 1, 2, .

Proof. Applying Theorem 8 when k — 2, integrating and using
the fact that fμ(0) = 0 we find that the extreme points of C2 are
given by the collection

2 yJl-yz2
λ l l o g :
2 y) 2Vy 1-Vyz

It suffices to prove the above theorem for F(z) one of these extreme
points. So we have

1 _ 1 x~] 1_\oz 1 + T/VΦW
2 2 y Λ2V v 1 - Vyφ{x)

f(z) = [λ + λ xl ΦW
JK) L2 2 y\l-yφ\z)

where ψ(0) = 0, \φ(z)\ < 1. Let Φ(z)/(1 - yφ2(z)) = Σ?=iM w Since
z/(l — yz2) is starlike and odd, we have by Theorem 9 in [3] the
inequality | δn | ^ 1 for n = 1, 2, , . Let

loglog = V α
2VV gl-Vyφ(z) & n '

Since 1/2 log (1 + z)/(l — z) is convex we have | cn \ S 1 for n = 1,2,
• by the classical result of Rogosinski [10]. We have

We conclude that

\a,«
y

1-iL for = l, 2

To see that we must have the strict inequality | an \ < V 2 for all π
recall when \bn\ — 1 and |c Λ | = 1. If equality occurs we must have
φ(z) — ε̂ % where |ε | — 1. However, for such a φ it is easy to see
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that I an I ̂  1.

REMARKS. If f{z) = Σϊ = 1 α Λ s n i s i n cz» then |α Λ | ^ 1. This is
the same bound which holds for odd starlike functions. Since it
has been proven in [3] that a function subordinate to an odd starlike
function also has coefficients bounded by 1, it is natural to conjecture
that the correct bound in Corollary (2) is 1.

5* The hull of a class of close-to-convex functions.

In [11] K. Sukaguchi proved that the operator (Lf)(z) =
(f(w)/w)dw applied to a close-to-convex function produces a close-

o

to-convex function* This result was proven again and generalized
by Ch. Pommerenke in [8]. We will examine in this section the
compact family of close-to-convex functions L(C) = {Lf: / e C } .

We remark that since the operator L is linear the extreme
points and closed convex hull of L(C) can be precisely determined
from Theorem 6 in [4, p. 97]. We find that

= { 1 (l - * V-*— - Ul + ̂ U log (1 - yz):
I 2 V y 1 1 - y z 2 \ y / y

= \v\ = \

We also note that by applying the technique of proof used in Corollary
(2) we can prove that if f(z) = Σ«=i α«sn < F{z) where F(z) e L(C)
then I an \ < V 2 for n = 1, 2, . We remark that it natural to
conjecture that \an\ ^ 1 is the correct inequality.

Added in proof. The extreme points of £ίf StΛ {a, k) are identical
with the set of functions given in the inclusion in Theorem 4. In [4,
p. 95], it was in effect proven that the map μ—+fμ is one-to-one.
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