THE CONVERSE TO A THEOREM OF CONNER AND FLOYD

A.L. Edelson

If W^{2n} is a manifold with almost complex structure $J: \tau(W) \to \tau(W)$ on its tangent bundle, then a conjugation on W is a smooth involution $T: W^{2n} \to W^{2n}$ whose differential anti-commutes with J, i.e., $T_*J = -JT_*$. Examples of such actions are those induced by complex conjugation of coordinates in $P^n(C)$ and $H_{m,n}(C)$ having fixed point sets $P^n(R)$ and $H_{m,n}(R)$ respectively.

Conner and Floyd have proved that the fixed point set of a conjugation is always an *n*-dimensional submanifold if it is nonempty. Furthermore, they show that if F^n denotes the fixed point set of the conjugation $T: W^{2n} \to W^{2n}$ and $[]_2$ denotes the nonoriented cobordism class, then $[W^{2n}]_2 = [F^n \times F^n]_2$. In this article we prove that every closed *n*-manifold is the fixed point set of a conjugation on a closed 2*n*-dimensional almost complex manifold.

The technique of the proof involves modification of the authors previous work on the case of stable almost complex structures, that is a conjugation of an almost complex structure on the stable tangent bundle $\tau(W^{2n}) \oplus \theta^k$, k > 0. The proof consists of showing that if for every n > 0 the sphere S^n is fixed point set of a conjugation, then every closed *n*-manifold is also. This proof involves a suggestion made by R. Stong. Next we describe an almost complex manifold W^{2n} having conjugation fixing S^n . We use generalized equivariant surgery, and rely heavily on the fact that a regular neighborhood of the fixed point set is diffeomorphic to the tangent disc bundle. Note that every manifold is fixed point of a conjugation on an open manifold; namely, the bundle involution on its tangent disc bundle.

THEOREM. Let M^n be a smooth closed n-manifold. Then there exists a smooth closed almost complex manifold W^{2n} with conjugation $T: W^{2n} \to W^{2n}$ having fixed point set M^n .

Proof. It follows from [5] that the nonoriented cobordism ring can be generated by the manifolds $P^{2n}(R)$ and $H_{m,n}(R)$, where the latter is the hypersurface in $P^m(R) \times P^n(R)$ defined by $\sum_{i=0}^{\min(m,n)} x_i y_i = 0$. Complex conjugation of coordinates defines conjugations on the corresponding complex manifolds $P^{2n}(C)$ and $H_{m,n}(C)$, so it follows that the generators of η_* are fixed point sets of conjugations. It then follows from [3] that if M^n is any manifold, there is an almost complex manifold V^{2n} with conjugation $S: V^{2n} \to V^{2n}$ having fixed point set F^n , and such that M^n can be obtained from F^n by a sequence of surgeries. We will show that any such modification of F^n can be extended to an equivariant modification of V^{2n} , which preserves the almost complex structure and conjugation.

We now make the assumption that for every n > 0 there is a closed almost complex manifold W^{2n} with conjugation $T: W^{2n} \to W^{2n}$ having fixed point set S^n .

LEMMA. If F^n is the fixed point set of the conjugation $S: V^{2n} \rightarrow V^{2n}$, then any manifold obtained from F^n by surgery on an imbedded sphere is also the fixed point set of a conjugation on some almost complex manifold.

Proof. Let $f_0: S^p \to F^n$, $0 \leq p < n$ be an imbedding with trivial normal bundle. Then f_0 extends to an imbedding $f: S^p \times D^{n-p} \to F^n$. The restriction to $f(S^p \times D^{n-p})$ of the tangent bundle $\tau(F^n)$ is trivial and again by [1:24.2] the almost complex structure on V^{2n} defines an isomorphism $\tau(F^n) \stackrel{\longrightarrow}{\Longrightarrow} \nu(F^n)$ where $\nu(F^n)$ denotes the normal bundle of F^n in V^{2n} . By this isomorphism we can extend f to an imbedding $F: S^p \times D^{n-p} \times D^n \to V^{2n}$, equivariant with respect to the involution given by -1 in the factor D^n . This follows since at a fixed point of the involution S, the representation is multiplication by -1 in $\nu(F^n)$. Similarly if $T: W^{2n} \to W^{2n}$ is a conjugation with fixed point set S^n , let $G: D^{p+1} \times S^{n-p-1} \times D^n \to W^{2n}$ be the equivariant imbedding induced by the standard inclusion $g: S^{n-p-1} \to S^n$. There is a diffeomorphism

$$h: F(S^p \times (D^{n-p} - \{0\}) \times D^n) \longrightarrow G((D^{p+1} - \{0\}) \times S^{n-p-1} \times D^n)$$

given by h(F(u, tv, w)) = G(tu, v, w) for $0 < t \leq 1$. It is clear that h is equivariant. The almost complex structures define isomorphisms between the tangent and normal bundles to the fixed point sets, so it follows that the differential h_* preserves the almost complex structure.

Now let M^{2n} be the manifold obtained from $V^{2n} - F(S^p \times \{0\} \times D^n)$ and $W^{2n} - G(\{0\} \times S^{n-p-1} \times D^n)$ by identifying the submanifolds $F(S^p \times (D^{n-p} - \{0\}) \times D^n)$ and $G((D^{p+1} - \{0\}) \times S^{n-p-1} \times D^n)$ using the diffeomorphism h. Then M^{2n} has an almost complex structure and conjugation induced by T and S. The fixed point set of this conjugation is obtained from $F^n - F(S^p \times (D^{n-p} - \{0\} \times \{0\}))$ and $S^n - G((D^{p+1} - \{0\}) \times S^{n-p-1} \times \{0\})$ by identifying the appropriate submanifolds using the restriction of h. This is precisely the manifold obtained from F^n by surgery on the imbedded sphere $f_0(S^p)$.

We will now construct for each S^n , an almost complex manifold W^{2n} with conjugation $T: W^{2n} \to W^{2n}$ having S^n as fixed point set.

Let $D(S^n)$ denote the tangent disc bundle to S^n and $\tau_1(S_n)$ its boundary, the unit tangent bundle. Then $D(S^n)$ can be described as the submanifold of S^{2n+1} consisting of vectors $\{(x, y) \in \mathbb{R}^{n+1} \times \mathbb{R}^{n+1}\}$ satisfying the conditions $x \cdot x + y \cdot y = 2$, $x \cdot y = 0$, $0 < x \cdot x \leq 1$. We take the sphere of radius 2 for convenience. Identifying (x, y) with the complex vector z = x + iy in \mathbb{C}^{n+1} , the unit tangent bundle $\tau_1(S^n)$ is described by the equation $\sum_{i=1}^{n} \mathbb{Z}_i^2 = 0$. Define involutions $T_j: D(S^n) \to$ $D(S^n)$ for j = 1, 2, by $T_1(x, y) = (x, -y)$ and $T_2(x, y) = (-x, y)$. Then T_1 corresponds to multiplication by -1 in the fibers of $D(S^n)$ and so has fixed point set equal to S^n . T_2 reduces to the antipodal involution on S^n and has no fixed points.

We will now describe almost complex structures J_1 and J_2 on $D(S^n)$ with respect to which T_1 and T_2 are conjugations. At a point $(x, y) \in D(S^n)$ the tangent space $\tau_{(x,y)}(D(S^n))$ consists of all vectors $(u, v) \in R^{n+1} \times R^{n+1}$ satisfying the equations

 $(1) \quad x \cdot u + y \cdot v = 0$

 $(2) \quad y \cdot u + x \cdot v = 0.$

Define

$$J_1igg(egin{array}{c} u \ v \end {array} = igg(egin{array}{c} |x| \left(-v+rac{v\cdot x}{|x|^2}x
ight) - rac{y\cdot u}{|x|^3}x \ rac{v\cdot y}{|x|^2}x + rac{u}{|x|} - rac{x\cdot u}{|x|^3}x \ \end{pmatrix} \ J_2igg(egin{array}{c} u \ v \end {array} = igg(egin{array}{c} rac{u\cdot y}{|y|}y + rac{v}{|y|} - rac{y\cdot v}{|y|^3}y \ |y| \left(-u+rac{u\cdot y}{|y|^2}y
ight) - rac{x\cdot v}{|y|^3}y \ \end{pmatrix} \end{pmatrix}$$

It can be verified that $J_1^2 \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -u \\ -v \end{pmatrix}$ and $J_2^2 \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -u \\ -v \end{pmatrix}$ so that these formulae describe almost complex structures at the point (x, y). The maps T_1 and T_2 extend to $R^{n+1} \times R^{n+1}$ so their differentials are given by $T_{1^*} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} u \\ -v \end{pmatrix}$ and $T_{2^*} \begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} -u \\ v \end{pmatrix}$. Again it can be verified that $T_{1^*} \circ J_{1(x,y)} = -J_{1(x,-y)} \circ T_{1^*}$ and $T_{2^*} \circ J_{2(x,y)} = -J_{2(-x,y)} \circ T_{2^*}$, so that the involutions T_1 and T_2 are in fact conjugate linear. Now define a diffeomorphism $h: \tau_1(S^n) \to \tau_1(S^n)$ by h(x, y) = (y, x). Form a closed manifold W^{2n} from two copies of $D(S^n)$ by identifying them along $t_1(S^n)$ using h. Then W^{2n} can be made into a smooth manifold and since $h \circ T_1(x, y) = h(x, -y) = (-y, x)$, $T_2h(x, y) = T_2(y, x) = (-y, x)$, it follows that W^{2n} can be given an involution $T: W^{2n} \to W^{2n}$ given by T_1 on the first copy of $D(S^n)$ and by T_2 on the second. It is clear that the fixed point set of T equals the fixed point set of T_1 , which is S^n . It remains to show that W^{2n} is an almost complex manifold. There are almost complex structures defined on each copy of $D(S^n)$ so W^{2n} is almost complex provided the identification map h has differential which commutes with J_1 and J_2 . We note that there is a commutative diagram.

$$\begin{array}{c} t_{(x,y)}D(S^n) \xrightarrow{h_*} t_{(y,x)}D(S^n) \\ \downarrow J_1 \qquad \qquad \downarrow J_2 \\ t_{(x,y)}D(S^n) \longrightarrow t_{(y,x)}D(S^n) \end{array}$$

This follows since

$$h_*\circ J_{\scriptscriptstyle 1(x,\,y)}inom{u}{v}=egin{pmatrix}rac{r\cdot y}{ert xert}x+rac{u}{ert xert}-rac{x\cdot u}{ert xert^3}x\ ert xert^3xinom{u}{ert xert^3}inom{x}{ert}ert xert^2xinom{v}{ert}^3inom{v}{e$$

Then W^{2n} is an almost complex manifold and T is a conjugation which completes the proof.

References

P. E. Conner, and E. E. Floyd, Differentiable Periodic Maps, Springer, Berlin, 1964.
 A. Edelson, Conjugations on stably almost complex manifolds, to appear, Pacific

J. Math.
J. Milnor, A procedure for killing the homotopy groups of differentiable manifolds, Symposium in Pure Math., Amer. Math. Soc., (3), (1961).

4. ____, On the cobordism ring and a complex analogue, Amer. J. Math., (1960).

5. René Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., (1954).

Received July 8, 1974.

UNIVERSITY OF CALIFORNIA, DAVIS