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A LEBESGUE DECOMPOSTION FOR VECTOR
VALUED ADDITIVE SET FUNCTIONS

THOMAS P. DENCE

Our purpose is to show that several recent results dealing
with a Lebesgue decomposition of vector valued set functions
can be verified by using an earlier result due to R. B. Darst

{31

I. Introduction. In 1963 R. B. Darst established a result giving
the Lebesgue decomposition of s-bounded elements in a normed Abelian
group with respect to an algebra of projection operators. As a result,
one can establish the decomposition of s-bounded additive functions
defined on an algebra of sets.

New results have emerged since then for the decompositions of
finitely additive and countably additive set functions defined on an
algebra of sets and with values lying in a Banach space. In particular,
there is a theorem by J. Brooks [1] (1968) and one by J. Uhl [5]
(1970). We shall show that both are consequences of the theorem by
Darst, thus unifying the three results.

THEOREM (Darst). Let G be a generalized, complete normed
Abelian group, which means

(1) Jof =0,

(2) if g +#0 then 0 <||g|| = oo, and

(8) only the subgroup {g€ G:||g|| < =} need be complete. Let
T be a Boolean algebra of projection operators defined on G, with
the property that if t,, t,€ T with t, < t,(t.t, = t.) then ||t,(9)]] < ||t(9)]|
for all g in G. For x >0 we let T, C T possess the properties

(1) t,eT, and te€ T implies tt, € T,, and

(2) t,eT, and t,c T, implies t, \V t, e T,,,. Define a function
Y:G— R by Y(g) = lim,_.+ [sup ||t(g)||: t € T,]. Let feG be bounded
and s-bounded, i.e., for every sequence {t;} of pairwise disjoint
elements of T, t,(f)—0. Then there exists unique elements h,se€ @G
such that f = h + s and

(1) Y(h) =0, and

(2) given € > 0 there exists t € T, such that |[t'(s)]] < e.

II. First result. We now state Brooks’ theorem and show that
it is a special case of Darst’s theorem.

THEOREM (Brooks). Let X be a Banach space and X2 any o-
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algebra of sets. Let u:X — X be countably additive, and let 3 be
an outer measure on Y. Then there exists unique mappings u,, Us:
Y — X, both countably additive, such that w = u, + u, and also

(1) wu, is B-continuous (G(E,)—0 tmplies w,(E,) — 0)

(2) u,is B- smgular (there exists a set Ee I such that B(E) =
0 and u,(F) = u,(EN E’) for all sets EclX).

Proof. Let G = {countably additive mappings from 2 to X}.
Then G is an Abelian group under addition. Define a norm on G by
Null| = sup {||w(&)||: Ee¥}. First we show that G is a complete
normed space whose elements are bounded and s-bounded.

Let we G, and define a set EcX to be wu-bounded if the set
{lu(A)]|: A ¥, ACE} is a bounded set of real numbers. If |||u]]j<
then there exists a sequence {F,} from X such that [|u(E,)]| > n.
Then E = U, E,e3 and is not w-bounded. But w(E)e X implies
(B[] < eo. If N>2||u(E)|| then there exists a set AC K with
lw(4)[|> N. Thus [[w(E— 4)[| = [[wE) — uw(A) [ = [[w(A) || — [|u(E) ]| >
(1/2)N. But E being unbounded implies either A or E — A is also
unbounded, and both of these sets have “large” measure. Continuing
the same procedure, with whichever of the above two sets is un-
bounded, yields a decreasing sequence of sets {4,} T2 such that
|u(A,) |l >n. But u(lim A4,) = limu(4,) implies |ju(lim A4,)|| = oo.
This is impossible since u(lim 4,) € X. Hence every element of G is
bounded.

Let {u,} € G be Cauchy; thus supg.s ||u.(E) — u,.(E)||—0. So
given any K¢ X, the sequence {u,(K)} is Cauchy, and thus converges
to w(&). To show ue @G, first let {4,} © Y be pairwise disjoint. Now
u is bounded since |||u, — u,||| < ¢ for all #, m = N implies |||u|]| =
lluy|l]] + € < eo. It can easily be shown that u is finitely additive.
Since uy(U7: 4,) € X this implies [juy(U A,)|| is finite, and thus

&
P

is finite. Given ¢ > 0 there exists a positive integer M such that
S un(A) — S uy(A)l] < e for all m, m = M. Then for all m =
M we have ||uy(Un:: 4, = ¢, and, for large k, it follows that

(@ 4)] = (3 4) (@ )]+ [0 0)
<o fufG )
= 2¢

Finally
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(U4 u 0 a)-Sua)| = [«(0a)+u( 0 4) - Zua)

i=n+1 =1

g4

1=n+1
— 0

by the previous statement. Thus w(U:, 4) = D u(4,) and G is
complete.

The group G thus fits the hypothesis of Darst’s theorem. The
elements of T are the projection operators induced by the elements
of X,i.e.,,te T corresponds to some set Ec2X, say ¢t =t; so that
tz(u)(F) = w(FNE). Then t; <t, if and only if EC F, and in that
case |[|tz(w) ||| = |||tz(u)]|| for all u. Forax >0,let T, = {tz T: B(E) =
z}. Then T, possesses the two properties

(1) tzeT, and t,e T implies t5tz = tzar€ T,, and

(2) tzeT, and t,€ T, implies t; V tr = tzy5 € Thrye
Now weG is s-bounded if for every sequence {t,}J T of disjoint
elements, i.e., t; =t;, with the E, pairwise disjoint, we have |||z, (%)[|| —
0. To show that every we G is s-bounded, first let {E}C X be
pairwise disjoint; so Uz, E;€3. Thus w(U E)e X and w(U E;) =
S, uw(E;). The sequence of partial sums S, = >, uw(¥;) converges
tow(U E,), and hence is Cauchy. Thus ||S, — S,.|| = || Dicms (&) || <
¢ for all », m greater than some positive integer N. In particular,
for m =n — 1, |[|w(&,)|| < € for all » > N. Thus ||u(E,)||—0. Con-
sequently, given any sequence {F;} C ¥, it follows that ||u(E,; N F,)|| —
0, which implies supg.s |[u(E; N F)||—0. Thus u is s-bounded.

By applying Darst’s theorem, we know there exist unique elements
Uu,, h, € G such that v = u, + u, and

(1) Y(u,) =0, and

(2) given ¢ > 0 there exists t; € T, such that |||t (uw,) ||| <e. It
remains to show that u, is B-continuous, u, is gG-singular and that
they are unique.

Let {E,}C 2 with B(#,) —0. Then Y(u,) = 0 implies

0 = lim [sup || (w) |: t € T.]
= lim [sup [|£5(w,) | 5 € T.]
= lgrg [sup [|u(E N F)||: B(E) <z, FeX]
= }LLIE [sup [|u(E, N F)|: FeZ2].

Letting F' = E, gives ||u,(E,)||—0, so w,(F,) —0 and u, is then pg-
continuous.
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From (2), given ¢, = 27" there exists ¢3, < 7. such that

tn

ez, (uo) |l < 27" .

This means suppe; Iluz(E NF)|| <2, soif HCE, then Hu(H) || < 27"
Let Ef = U, E’ Then E*cC E! and ||u.(E¥)| < 2. Note
that Ef‘CE;“CE;"C «+.. Letting E* =, E} = lim E} gives E*e X
and

Hu(E*) || = [Juy(lim E7)|| = ||lim wu,(Ey)||
= lim || u(E®)|| < lim 2™ =0 .
Let EcX be arbitrary. To show u,(E) = u,(E N E) where E is the
desired set need to prove wu, is gB-singular, it suffices to show u.(E N
E') = 0. Our set £ will be = E*. Then ENE = EnE*=En
[U. E¥] = lim, (EN E}). Then

(B N E)|| = [|u,(lim E N E) |
= ||lim u(E N EY)||
= lim [[u(E N EY)||
< lim2™
=0.
So u(ENE)=0. And finally, ¢3 eT., 1mphes B(E,) <27 for all
w. This implies B(Uizn Ek) <27 4 27"~ " 4+ «.e. = 2", Thus

8(B) = p(E*") = 5@1 u )< 3(!:!% E) for all =

= i ,B(E'i) for all =

2t for all = .

I

Therefore B(E) = 0.
Finally, to verify the uniqueness of the decomposition of u, we

shall show that if 4 = w, + w, with w, being g-continuous and w,
being B-singular then u, = w, and u, = w,. Now

Y(w,) = lim [sup ||| t(w,)[: t e T.]
= lim [sup [[|¢x(w) [ tp € T.]
= lin}r[sup lw(ENF)||: s(E) Zx, Fel].
But B(E N F) tends to zero as x tends to zero. Hence w,(E N F)—
0, which implies Y(w,) = 0.

Since w, is B-singular, this means there exists a set £* € 3 such
that B(E*) = 0 and w.(F) = w,(E N E*) for all EcX. But thenize€
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T. and |||tz(w.)]]] < 6. The uniqueness of the decomposition from
Darst’s theorem now implies #, = w, and u, = w, The proof is complete,
and one concludes that Brooks’ theorem is a special case of Darst’s
theorem.

IT1I. Second result. We now state the theorem by Uhl and
derive the same result as before.

THEOREM (Uhl). Let F: 3 — X be a finitely additive vector meas-
ure defined on a Boolean algebra, and where X is a Banach space.
Suppose F satisfies any of the three equivalent condition:

(1) F s continuous with respect to some finitely additive
nonnegative measure u: X — Reals,

(2) F() is conditionally weakly compact, or

(3) F(2) is contained in a weakly complete subset of X.

If N is a finitely additive monnegative measure on X, then F is
uniquely representadble as F = G + H where G, H are finitely additive
vector measures with G continuous with respect to N and x*H and
mutually singular for all x* in the dual space X*. If F and ) are
both countably additive, then so are G and H.

Proof. Let © = {F:X— X where F is finitely additive}. Then
% is Abelian group under addition, and a norm can be defined on
Z by [||F]|| = supzes [| F(E)||. To show (&, ||| [|) is complete, let
{F,} be Cauchy in &. Then supz.: || F.(E) — F,(E)||—0, so {F.(E)}
is Cauchy in X for each E, and denote its limit by F(E). Letting
{E\} < Z be pairwise disjoint implies

F(U E) = tim £, (U £,) = lim 3, F.(F)
- ;i; lim F(E,) = z”; F(E) .

Thus F is finitely additive, and the completeness is established. The
subspace of bounded elements is therefore complete, so & is a gener-
alized, complete, normed Abelian group. But not every element of
% is bounded. For example [4], let X = Reals and let X be the set
of all finite disjoint unions of right-hand closed subintervals (a, b]
where 0 < a < b <1. Define F(a, b] = g(b) — g(a) where

0 if 2 is irrational
g(x) = .
n if z=m/n,(m,n)=1.
Extend F by linearity. Then F is well-defined and finitely additive,
but [[|F]]| = co.
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But anyway, Z fits into the hypothesis of Darst’s theorem. The
elements of T are, as before, the projection operators induced by
the elements of X, i.e.,t € T corresponds to some set EcX, say t =
te, S0 that (x(F)(E) = F(EN E). Then t; <tz if and only if E,C
E,, and hence |||tz (F)]I| < |||ts(F)]]]. For x >0, define T, = {tye T:
ME) £ x}. Then T, possesses the desired properties. As before,
Fe % is s-bounded if for every sequence {¢z,} C T of pairwise disjoint
operators we have ¢;(F)—0. We now show that if F'e & is con-
tinuous with respect to some finitely additive nonnegative measure
%: £ — Reals, then F is s-bounded. Let {E;} C X be pairwise disjoint.
Then ¢ and ¢’ = whole space are in . Since u:  — Reals this implies
u(¢') = ¢ < co. Thus EFe X implies w(F) <c¢. Sou(F) = w(E,UE,) =
oo 2 (U E) £ -« £ ¢ yields a monotone increasing sequence of
positive real numbers bounded above, hence the sequence converges.
Thus given € >0 there exists a positive integer N such that n, m = N
implies w(U?-, E;) — w(U™, E,) < e. Letting m = n — 1 gives w(E,) <
¢, and thus u(E,) —0. But F is continuous with respect to u, so
F(E,)—0, and consequently F' is s-bounded.

Now we can show that the same conditions on F imply F is
bounded. As before, define a set E to be F-bounded if the set
{IF(A)||: ACE, AcX} is a bounded set of positive numbers. If we
assume ||| F'||| = « then the whole space, call it S, is not F-bounded.
If N > 2||F(S)|| then there exists a set E,€X such that ||F(&)| >
N. Hence ||F(S — E)|| > (1/2)N, and with S unbounded, then either
E, or S — E, is unbounded, with both of these sets having “large”
measure. Assuming S— F, is unbounded, and letting N,>2|| F(S—E))||,
then there exists a set E,C S — E, such that ||F(E,)|| > N, Then
|F((S — E,) — E,)|| > (1/2)N,, so S — E, contains two sets of “large”
measure, with one of them being unbounded, say FE,. Continuing
this procedure yields a sequence of disjoint sets F,, (S — E) — E,, - --
with each one of “large” measure. This contradicts the s-boundedness
of F.

Hence if F'e & is continuous with respect to u, then F' is a
bounded and s-bounded element, Applying Darst’s theorem yields
unique elements G, He & such that F = G + H and

(1) Y(G) =0, and

(2) given ¢ > 0 there exists t3eT. such that |||tz (H)||| < e.

Condition (1) implies that G is continuous with respect to n. To
see this, let {E,} C X with AM(E,) —0. Then Y(G) = 0 implies

0 = lim [sup e@lll:te T,
= lim [sup [I[t{(@) [tz € T.]
= lim [sup || G(E N E*)|l: MB) < v, B* €]
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= lim [sup || G(E* N E,)||: E* € X] .

Hence for E* = E, we have ||G(E,)||—0, so G(E,)— 0.

Now let z*e X*. To show x*H and )\ are mutually singular
we must show that given & > 0 there exists £* € I such that MEH) <
¢ and |o*H(E* N E)| < ¢ for all EeX. It is impossible for ¢ = 0 in
the finite additivity case [2]. Letting ¢ > 0 we note that since x*
is continuous at 0 then there exists 8, > 0 such that for ze X, [|2]| <
5, implies |2*(2)| < e. Let ¢ < min (e, d,). From condition (2), given
e, > 0 there exists E* € X such that tne T, and |||tz (H)]]| <e&. But
this means ME*) < ¢, < ¢ and supg.s || H(E N E*)|| < &. Thus

|H(E* N E)|| <4, so |a*HE*NE)|<e.

Finally, to verify the uniqueness of the decomposition, let F =
G, + H, with G, continuous with respect to » and #*H, and » mutually
singular for all #* € X*. Then

Y(G) = Iirog [sup ||G(E N E*)||: M(E) < x, E*e X].

But ME 0 E*)—0 as « — 0%, so G(E N E*) —0 and thus Y(G) = 0.

We know there exists unique mappings G? H*: X — X such that
H =G+ H?, Y(G) =0 and given ¢ >0 there exists tz¢€ T, such
lts(H?) || < e. We know that both a*H, and «* H* are singular with
respect to N. One can easily show that z*(H, — H®) is also A-singular.
To see this, let & > 0, then there exists sets K, E,e€X such that
ME;) < ¢/2 and |9c*H(E1 NE)| < ¢/2 and |2*HYE;N E)| < ¢/2 for all
Ec3. Letting £ = E UE, gives M(E) < ¢ and |a*(H, — H)(E' N
E)| < e.

Now H, — H*= G If G*=% 0, then there exists a set Se€X
such that GXS) = 0. By the Hahn-Banach theorem there exists
a* ¢ X* such that |2*GXS)| = ||GX(S)|| > 0. Let 0 < ¢ < (1/4)|x*G*(S)/.
Since x* is continuous at zero, there exists 6, > 0 such that if [|z]| <
5. then |z*(z)| < &. And given §, > 0 there exists 9, > 0 such that
if MJ#) < 4, then sups.s [|GAE N E)|| < .. Letting & < min{¢, 3., 3.}
we know there exists a set E* € ¥ such that M(E*) < ¢, and |2a*(H, —
HY)(E*' N E)| <e, for all EcX.

E*

E*

Thus
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|2*G(S)| = |#*G(S N E*)| + [«*G(S N EY)|
= [@*G(SNE")| + [«*(H, — H)(S 0 E¥)|
=ete

< %; 2*GX(S)

This is a contradiction, so G* =0 and H, = H®. The uniqueness of
the decomposition for Darst’s theorem then implies G = G, and H =
H,.

This completes the proof that first the part of Uhl’s theorem is a
special case of Darst’s theorem. The second part is when F' and »
are both countably additive. But if we let & = {countably additive
maps from X to X}, then (&, ||] |]]) is complete, and the rest of the
proof is as in the first part of Uhl’s theorem.
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