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DENDRITIC COMPACTIFICATION

KEITH R. A L L E N

Let X be a rim compact dendritic space. It is shown that
the unique dendritic compactification of X is the same as the
Freudenthal compactification of X. This compactification is
characterized in terms of monotone maps from X into the
closed unit interval, and is shown to be a GA compactification.
An example is given to show that X need not have a convex
cut point partial order, in order to have a dendritic compac-
tification.

0. Introduction* A dendritic space is a connected space in which

any two distinct points can be separated by a third point. This is
a generalization of the classical notion of a dendrite [14; p. 88]. A
space is rim compact (resp. Menger-Urysohn regular) if there is a
basis for the open sets of the space each element of which has com-
pact (resp. finite) boundary. Proizvolov showed in [11] that any rim
compact dendritic space has a unique dendritic compactification. For
dendritic spaces, rim compactness is equivalent to regularity in the
Menger-Urysohn sense. From this, it follows easily that Proizvolov's
theorem has a converse: Any dendritic space which has a dendritic
compactification is rim compact. More recently, Pearson showed [10]
that a dendritic space has a dendritic compactification if and only if
the space is arcwise connected (where an arc is a Hausdorff continuum
with only two noncut points) and semi-locally connected [14; p. 19].
While Pearson's work will not enter further in the present study
of dendritic compactification, his result illustrates that remarkably
diverse topological properties turn out to be equivalent in the dendritic
setting.

Proizvolov's result might lead one to suspect that the dendritic
compactification of a rim compact dendritic space is the same as
FreudenthaΓs compactification of such a space. It is shown in §1
below that the two compactifications are, in fact, identical. In [1],
Dickman characterized FreudenthaΓs compactification of any rim com-
pact Hausdorff space in terms of certain continuous functions from
the space into the closed unit interval. In §2, Dickman's character-
ization is specialized to the case of a rim compact dendritic space.

In [12], Ward found a condition which was sufficient to assure
that a locally connected dendritic space have a dendritic compactifica-
tion. In §3 below, an example is constructed which shows that
Ward's condition is not a necessary one.
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In [4], de Groot and Aarts developed methods for compactif ying
Tι spaces by using certain closed subbases. Such compactifications
are called GA compactifications, and their general properties have been
studied by de Groot, Hursch, and Jensen in [5], [6], and [7]. In §4
below, it is shown that the dendritic compactification of a rim compact
dendritic space is a GA compactification. The construction in §4
resembles Proizvolov's, but the use of hereditary unicoherence seems
to provide some additional structural information. Moreover, the
construction in § 4 focuses attention on the usefulness of GA com-
pactifications and their properties.

1* Relationship to FreudenthaPs compactification• A space is
said to be zero-dimensional provided there is a basis for the open
sets of the space each element of which has empty boundary. The
closure and boundary of a set Y with respect to a set Z are denoted
clz(Y) and Frz(Y), respectively. A point p is called an endpoint of
Z provided that, for any open set U about p, there is an open set V
such that p e F c U, and ¥τz (V) is a single point. If x and y are
two points of a rim compact dendritic space, K(x, y) will denote the
unique ordered continuum from x to y [11; Lemma 1]. It should
be noted that K(x, y) is an arc consisting of x and y, along with
every point which separates x and y in the space. The definition and
general properties of A-sets, which will be used from time to time
throughout the remainder of this paper, may be found in [13] and
[15].

LEMMA 1.1. Every noncut point p of a Menger-Urysohn regular
dendritic space Y is an endpoint of Y.

Proof. Let W be an open set containing p, and let V be an open
set such that pe VaW, and F r F ( F ) is a finite set of points. Let
R be the component of V which contains p. Menger-Urysohn regu-
larity implies local connectedness, so R is open, and FrF (R) is a finite
set of points; say FrF (R) = {q0, , qn). For 1 ^ j ^ n, K(q0, qό) c
(i?U to} U toi}) Π (Y — {p}), because each set in the latter intersection
is connected and contains both q0 and qj. Let P, be the component
of 7 - K{qOj qj) which contains p. By Theorem 9.1 of [13], the
intersection P of all the P3, 1 ^ j ^ n, is a connected open set which
contains p. Since P Π FrF (R) = 0, Pa R. Moreover, for 1 ^ j ^ n,
Y — Pj is an A-set, and hence is connected, by the corollary to Theorem
5.3 of [13]. Since j o e 7 - Pό for each j , Y- P = \J {Y- Pd: 1 ^
j ^ n} is connected. Since FrΓ (P) is a finite set of points, it now
follows from Theorem 9.1 of [13] that FrF(P) = clF(P) Π (Y - P) must
be a single point.
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LEMMA 1.2. Let X be a rim compact dendritic space, and let
Xλ be any dendritic compactification of X. Then X3 — X is zero-
dimensional. Moreover, there is no open set U in Xλ which contains
a point p e Xx — X such that there is a separation U Π X = Ux U U2

such that p e cl^ZT,) Π clXl(U2).

Proof. Let p e Xι — X9 and let V be an open set in Xι — X which
contains p. Let VJ be an open set in X1 such that V = V3 Π (Xi — X).
Since X is connected and dense in Xu p is a noncut point of Xx. By
Lemma 1.1, there is a set WΊ open in JSΓ3 such that peW^a Vί9 and
FrXl(TFj) is a single point, #. Clearly we can assume that dZl(Wi) Φ
X3, and then q is a cut point of Xj. Since no point of Xλ — X is a
cut point of X,, g g ̂  - X. Thus W = TΓj ΓΊ (X3 - X) is an open set
in Xj — X which contains p, is contained in V, and has empty bounda-
ry in X, - X.

Now suppose, contrary to the second assertion of the lemma,
that there is an open set U in X3 which contains a point p of X, — X
such that there is a separation U Π X = Uλ (J Z72 such that p 6 clZl( ί7a) Π
clXl(?72). Since X3 is locally connected, there is a connected open set
R in Xj such that peRaU. Then i2Π U, Φ 0 ^ RΠ ί72» and i?n
X = (JB n C/Ί) U (iϊ Π ί72) is a separation. But both J? and X are con-
nected, so this contradicts Theorem 9.1 of [13].

THEOREM 1. Let X be a rim compact dendritic space, let Xλ be
any dendritic compactification of X, and let ΊX be FreudenthaVs
compactification of X. Then Xx and ΊX are homeomorphic via a
homeomorphism which leaves points of X fixed. If X is second
countable, so also is Xx.

Proof. This follows at once from Lemmas 1.1 and 1.2, and
from the characterization theorem in §7 of [3].

2Φ Relationship to Dickman's characterization* Throughout
this section, X denotes a rim compact dendritic space, and ΎX denotes
FreudenthaΓs compactification of X. A monotone map is a continuous
function having connected point inverses, and ̂  denotes the set of
all monotone maps from X onto a dense subset of the closed unit
interval / = [0, 1].

THEOREM 2. ΊX is the unique Hausdorff compactification of X
such that both of the following conditions are satisfied:

(a) Every f e ̂ f has a unique, continuous, monotone extension

(b) For any pair of distinct points p and q of c l r z (7X- X),
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there is an f e ̂ £ such that Ύf(p) Φ Ύf(q).
Moreover, ΎX is the smallest Hausdorff compactification of X

which satisfies condition (a), and the largest Hausdorff compactifica-
tion of X which satisfies condition (b).

Theorem 2 follows from Lemmas 2.1 through 2.5 below. The
first lemma is actually rather general, and would apply to any
monotone mapping of a connected and locally connected space into
the closed unit interval.

LEMMA 2.1. Let f e ̂ /ί. For every te I, each of the intervals
[0, t) and (t, 1] contains the image of at most one component of
X - f-ι(t).

Proof. Suppose to the contrary that there are distinct components
Q1 and Q2 of X - f~\t) such that /(Q,) (j /(Q2)c[0, ί). By continuity
of /, /(Qj), and f(Q2) are connected, and t is a limit point of each.
It follows that there is a point y e f(Q,) Π /(Q2) But then f~\y) is
connected, meets both Qλ and Qif and is contained in Qλ U Q2 This
is impossible, since Qx and Q2 are disjoint open sets.

From [1], recall that, given a continuous function / : X—> I, B(f)
denotes the set of all te I such that Frz[/~1(ί)] contains a compact
set which separates X into disjoint open sets K and L such that
/(J8Γ)C[0, t] and f(L)(z[t, 1], The set of all continuous functions
f:X-+I such that B(f) is dense in I is denoted

LEMMA 2.2. ^ ^ c ^ T Thus every fe^€ has a unique, con-
tinuous extension Ύf:ΎX—>I.

Proof. Let / e ̂ /ί, let t be a cut point of f(X), and let N =
f~~\t). Let Q be a component of X — N, and assume without loss
of generality that f(Q) c [0, ί). Since N is an A-set in X, F r z (Q) is
a single point q e N. Letting R = X — clx (Q), R Φ 0 by the way t
was chosen. Then X — {q} — Q (j JK is a separation, /(Q) c [0, t], and
by Lemma 2.1 f(R)a[t, 1]. Thus teB(f). Since /(X) is dense in
J by definition of ^ C it follows that B(f) is dense in I, whence / e
J?~. The second assertion of the lemma follows from Lemma 1 of [1].

LEMMA 2.3. Each extension Ύf is monotone.

Proof. First suppose that pel — /(X), and suppose that Ίf~ι(p)
contains distinct points y and z of ΊX — X. Let q e K(y, z) Π X. Note
that K(y, z) = K(y, q) U K(q, z), and K(y, q) Π K(q, z) = {q}. Let b -
f(q). By continuity of 7/, Ύf[K(y, q)] and τ/[iΓ(g, 2)] are connected,
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and thus each contains the interval [p, b]. Letting ee(p, b), f~ι{e) is
connected and meets both K(y, q) and K(q, z), so q e f~x(e). But then
f(q) = e Φ b — f(q). The contradiction shows that, if pel— f(X),
then Ίf~\p) is degenerate, and hence connected.

Now assume that p e f(X), and suppose there is a point

Since P — &rx[f~ι{p)\ is an A-set in ΎX, there is a point ze P such
that K(y, z) Π P = {z}. The argument may now be pursued to con-
tradiction exactly as in the preceding paragraph. Thus if p e f(X),
then 7/~1(p)cclrx[/~1(p)], which implies the latter two sets are the
same. Then, since f~\p) is connected, so is Ύf~ι(p).

Given pe Y, the cut point order induced by p, denoted < p , is
defined by setting p <pq for every point q of Y distinct from p,
and for y and z distinct points of Y both different from p,y <pz if
y separates p and z in Y.

LEMMA 2.4. 1/ p and q are distinct points of oλγx (ΎX — X),
then there is an f e ^f such that Ύf(p) Φ

Proof. Regarding K{p, q) as a partially ordered topological space
endowed with the cut point order induced by p, it follows that there
is a continuous, order-preserving function gx\ K(p,q)-+1 such that
Q:(p) = 0 and g}(q) — 1. (E.g., see the proof of Lemma 5 in [12].) It
is easily seen that gλ is monotone, and then /„ the restriction of g^
to X Π K(p, q), is also monotone. Note that X f] K{p, q) is an A-set
in X. Let r: X—> X f) K(p, q) be the retraction defined by setting
r(y) = Frx(Q) in case y is in the component Q of X — [X Π K(p, q)]9

and r(y) — y otherwise. Then r is continuous, and / = f^r\X—>/
is a monotone map. Let g denote the extension of / to ΎX given
by Lemma 2.2. By [9; Theorem 3], if B is a subset of a rim compact
Hausdorff space F, and FrY(B) is compact, then clrF (B) — ΎB. Applied
to the present situation, this shows that K(p, q) = Ί[K{p, g) n I ] .
Since the restriction of 7/ to K(p, q) is a monotone extension of /„
it follows from the uniqueness in Lemma 2.2 that the restriction of
7/ to K(p, q) is the same as gx. Thus Ύf(p) = gλ{p) Φ g,(q) = Ύf(q).

Theorem 2 now follows from the following result, which is re-
stated from [2], and may also be found in [8]:

LEMMA 2.5. Let Y be a completely regular space, let G = {gs; Y—>
Y8: s e S} be a set of mappings of Y into Hausdorff spaces, and
•suppose that GY is a Hausdorff compactification of Y such that

(a) every gsβG has a continuous extension gs' to GY, and
(b) given distinct points p and q of c\GY (GY — Y), there is a
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gs e G such that gs\p) Φ g,'(q).
Then GY is the unique Hausdorff compactification of Y which

satisfies both (a) and (b), GY is the smallest Hausdorff compactification
of Y which satisfies (a), and GY is the largest Hausdorff compacti-
fication of Y which satisfies (b).

3. Relationship to Ward's result* Let p be a point of a dendritic
space X, let <p be the cut point order induced by p, and for each
xeX define L(x) and M(x) to be the sets {ae X: a <px} {J {%} and
{beX: x <pb}U {x}, respectively. Then <p is said to be convex provided
that {L{x): xeX}{J {M(x): xeX} is a closed subbase for the topology
of X. In Theorem 5 of [12], Ward showed that a locally connected
dendritic space X has a dendritic compactification if the cut point
order induced by some point of X is convex.

EXAMPLE 1. In the plane, let I be the closed unit interval on
the x-axis, and let e — (0, 0) e I. For each positive integer j , let T3 =
{(x, y): x = 1/2' and 0 < y < 1/2'"}. Then let X= IU\J {T3 : j = 1, 2,
•••}. The space X is noncompact, locally connected, dendritic space*
The cut point order induced by e is not convex. To see this, for
each positive integer j , let Fά = {(x, y): x = l/2j and l/2i+1 ^ y < 1/2'}.
Then the set F = { e } U | J {̂ V i = 1, 2, •} is closed, and it is readily
seen that F cannot be expressed as the intersection of a collection of
sets each of which is a finite union of sets from the collection {L(x)ι
x e X} U {M(x): xe X}. It is also easy to verify that the cut point order
induced by any point of X besides e is convex.

Example 1 shows that a locally connected dendritic space may
have both convex and nonconvex cut point orders induced upon it,
depending upon choice of "base point".

EXAMPLE 2. In the plane, let Xo = {(x, 0): -1/2 < x< 1/2} u {(0,
y): -1/2 < y < 1/2}. Let Xλ = Xo U Blf where Bλ is the "box" which
is centered at the origin, has sides of length 1/2, and has its corners
deleted. In general, for n ^ 1, let Xn — Xn^ U Bn, where Bn is the
union of a finite collection of boxes, in one-to-one correspondence with
the branch points of Xn-l9 where each such box is centered at the
branch point of Xn^ to which it corresponds, has sides of length
1/2% and has its corners deleted. (See Figure 1.) Let X = \J {Xn: n =
1,2, •••}.

It is readily verified that the space X described in the preceding
paragraph is noncompact, locally connected, dendritic space. Moreover,
each point yeX lies in a subset Xy of X which is homeomorphic to
the space of Example 1 under a homeomorphism which maps y to
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Xl

FIGURE 1

the point e of Example 1. It follows from this last observation that
no point of X induces a convex cut point order on X. Thus Ward's
result does not enable one to see that X has a dendritic compactification.
Since X is rim compact, X has a dendritic compactification by Pro-
izvolov's result.

4* Relationship to GA compactifϊcations* Throughout this
section, X denotes a rim compact dendritic space, and S? denotes the
collection of all closed, connected subsets S of X such that F r ^ S )
is a finite set of points. In Lemmas 4.1 through 4.7 below, the
dendritic compactification of X is constructed as a GA comactification.
Terminology and notation from [4] is employed. The reader may
find a concise review and explanation of terminology and notation
relating to GA compactifications in §2 of [7].

LEMMA 4.1. is a closed subbase for X.

Proof. Let C be a closed set, and let p e X — C. Since X is
Menger-Urysohn regular at p, there is a connected open set V such
that Fr x (V) consists of finitely many points, and p e F c X — C.
Then each of the finitely many components of X — V is an element
of St> and the union of those components contains C.

LEMMA 4.2. £

subbase normality.
satisfies the conditions of subbase regularity and

Proof. Because each singleton subset of X is an element of Sζ
it suffices to show that S? satisfies the condition of subbase normality.
Let A and B be disjoint elements of S^i As in [11; Lemma 3] there
is a point p of X which separates A and B in X. There is a connected
open set V such that F r x ( F ) is a finite set of points, and peVcz
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c l x ( F ) c X - (AUB). Then c l x (F), along with the finitely many
components of X — V, form a finite subset of Sf which screens A
and B.

By Lemma 4.2, £f satisfies the conditions assumed in [4] in
constructing the GA compactifications X* and X* of X. Hereafter,
X will be regarded as a subspace of X*, and it will be shown that
the GA compactification X* generated by £f is dendritic. As in [5],
for each SeSζ let S~ = clz.(S), and let S^~ = {S~: Se<9*}.

LEMMA 4.3. X' and X* are homeomorphic, Sf~ is a subbase
regular closed subbase for X*, and for each SeS*, S* = S~.

Proof. From Lemma 2 of [11], the collection £f is closed under
finite intersections. The first two assertions now follow from Theorem
6 of [5], and third assertion follows from Theorem 4 of [5].

LEMMA 4.4. X* is locally connected.

Proof. Every connected finite union of elements of Sf is an
element of &L Thus the collection <& of all connected finite unions
of elements of S? is identical to SK By Lemma 4.2, ̂  is a regular
and normal closed subbase for X, and by Lemma 4.3, ^~ = {C~: Ce
^} is a closed subbase for X* which satisfies the condition of subbase
regularity. It follows now by Theorem 7 of [5] that X* is locally
connected.

A connected set Y is unicoherent provided that, whenever Yι and
Y2 are closed, connected subsets of Y such that Y = Yx (J Y2, Yx Π Y2

is connected. A connected set Yis said to be hereditarily unicoherent
if each of its closed, connected subsets is unicoherent. It is not hard
to show, and it appears to be well-known, that a locally connected,
compact, connected Hausdorff space is dendritic if and only if it is
hereditarily unicoherent. In view of this fact and Lemma 4.4, showing
X* to be dendritic is equivalent to showing X* to be hereditarily
unicoherent. The latter is accomplished in the last three lemmas below.

LEMMA 4.5. If K is a closed, connected subset of X*, then Kf]
X is connected.

Proof. Suppose K Π X is not connected. Then there is a point
peX — (Kf) X) which separates X between two points of KΠ X.
Since K Π X is closed in X, there is a connected set W which is open
in X such that pe WaX - (KnX), and Pr X(W) is a finite set of
points. The collection {Sf. 1 ̂  j ^ n) of components of X — W is a
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subset of £S having empty intersection, so by Lemma 3 of [4],
Π {Sf: 1 ̂  j ^ n) = 0 . It is readily verified that Ka U {Sf: 1 ^
i ^ ^}. But this contradicts the connectedness of K.

LEMMA 4.6. No closed, connected subset o/X* — X contains more
than one point.

Proof. Suppose to the contrary, that K is a nondegenerate
closed, connected subset of X* — X, and let x and y be distinct points
of K. Since X* is a locally connected, compact Hausdorίf space, there
are connected open sets U and V in X* such that x e U, y e V, and
cl**( Z7) Π clx*( F) = 0 . But then L = K (j clx*( C7) U clx*( F) is a closed,
connected set in X*, whereas L Π X is the union of the disjoint,
nonempty, closed sets clx*( U) Π X and clx*( F) ΓΊ X. This contradicts
Lemma 4.5.

LEMMA 4.7. X* is hereditarily unicoherent.

Proof. Suppose to the contrary that there are closed, connected
sets K and L in X* such that K Π L is not connected, and let
Kf)L = MuNhe a separation. Since K and L are nondegenerate,
i T n X ^ 0 ^ L n X , by Lemma 4.6. By Lemma 4.5, if Π X and L Γ) X
are closed, connected subsets of X. Likewise, setting P = ί Γ l J I / ,
P Π X = (iΓ Π X) U (L Π X) is connected, so Z n L n I ^ 0 . More-
over, if Π L Π X is connected by Lemma 2 of [11] (or alternately,
because K ΓΊ X and L ί l l are A-sets in X, and any nonempty inter-
section of A-sets is an A-set, and hence is connected). Since KC\
L Π X = (M n X) U (Nf) X), it follows that either Λf Π X or Nf] X
is empty. The cases are alike, so assume for definiteness that NΠ
X = 0 . Let z 6 N, and let R be a connected open set in X* such
that z e Raclx*(R) c X* — M. By Lemma 4.5, clx*(iϋ) Π X is connected,
hence so also is clx*(iί) n P Π X = [clx*(i2) Π K Π X] U [clx*(i2) Π L f] X].
Let Z be the component of clx*(J5) Π ίΓ which contains z. Then Z
meets Frx*(i2), whence Z is nondegenerate, so by Lemma 4.5, clx*(i2) Π
Kΐ\Xφ 0. In the same way, clz*(iϋ) Π L Π X Φ 0- From the
definition of R and from the fact that NΠ X = 0 , it follows that
[clx*(i?) n ί ( Ί l ] U [elx*(i2) Π L n X] is a separation, contrary to the
fact that clx*(iu) Π P Π X is connected.
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