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BIFURCATION OF OPERATOR EQUATIONS WITH
UNBOUNDED LINEARIZED PART

DAVID WESTREICH

The bifuraction problem for the operator equation
x = λLx + G(λ, x) is considered, where L is a closed linear
operator with characteristic value λ0, and G(λ, x) is a continuous
higher order term. If I — λ0L is a closed Fredholm operator
and either L is self-adjoint and 6 is a continuously differ-
entiable gradient operator or λ0 is of odd algebraic multiplicity,
then λ0 is shown to be a bifurcation point.

Introduction* Several authors have considered the bifurcation
problem for nonlinear operator equations with closed linearized part.
J. MacBain [7] considered the case where the nonlinear term is
compact and obtained global results, similar to those gotten by
P. H. Rabinowitz [8] for compact operator equations. Other results
in specialized instances were obtained, among others, by M. G. Grandall
and P. H. Rabinowitz [3], M. Reeken [10], and R. Bohme [2] who also
considered gradient operator equations.

In this note we extend known local bifurcation results, to
nonlinear operator equations with linearized parts closed Fredholm
operators and continuous higher order terms, dependent on λ, and
where characteristic value is of odd algebraic multiplicity.

Bifurcation results are also obtained for variational equations,
though except for the dependence of the higher order term on λ
they are not as strong as those of Bohme in [2].

1* Preliminary lemmas and definitions* To solve the bifurcation
problem for a large class of nonlinear operators with noncontinuous
linearized part we must introduce several preliminary definitions and
technical lemmas.

The domain of a closed linear operator T of a Banach space
X-+X will be denoted D(T). If T and B are two closed linear
operators of X —*X by TB we will mean the operator defined by
T(Bx) for xeD(TB) = {x \xeD(B) and BxeD(T)}. The null space
and range of T will be denoted N(T) and R(T) respectively. For
convenience we write D(Tk) = Dk{T), N(Tk) = Nk(T), R(Tk) = Rk{T)
and \Jk^Nk{T) = NJ.T). The smallest integer k > 0 such that
Nk(T) = Nk+1(T) is called the ascent of T and is denoted by a{T).
If there is no such k we say that a(T) = oo. Similarly the smallest
integer k such that Rk(T) = Rk+1(T) is called the descent of T and
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is denoted by S(T) and we say δ(T) — oo if there is no such k.
For the ascent and descent of an operator one can show

LEMMA 1. Nn(T)SN%+ι(T),n = 0 ,1, . . . . If Nk(T) = Nk+ι(T) for
some k then Nk+n(T) = Nk(T). 5,+1(Γ)g5,(Γ),w = 0,l, . If Rk+1(T) =
Rk(T) then Rk+n(T) = Rk(T). If a(T) = p < oo and δ(T) < oo then
a{T) = δ(T), Rp(T)nNp(T) = {0} and DP(T) = Np(T)®{Rp(T)f)Dp(T)}.

Proof. See [12, pp. 271-273].

For any Banach space X, we denote its conjugate by X* and
the conjugate of a linear operator Γ by T*. A closed linear operator
T of a real or complex Banach space X into itself is said to be a
Fredholm operator if D{T) = X, JB(Γ) is closed and both N(T) and
N(T*) are finite. The index of a Fredholm operator T, written κ(T),
is dimJV(Γ)- dimiV(T*).

THEOREM 2. Lei Γ and B be two closed Fredholm operators of
X into X, then TB is a closed Fredholm operator and fc(TB) =
ιc(T) + κ(B).

Proof. See [5, p. 103].

THEOREM 3. Let T be a closed Fredholm operator of a real or
complex Banach space X into X, Γ* its conjugate and suppose
dim iSL(Γ) < oo and dim i\L(jΓ*) < oo. Then

( i ) a(T) < oo and δ(T) < oo,
(ii) RP(T) is closed and X = NP(T) φ RP(T) where p = a(T),
(iii) T is a one-one map of RP(T) onto RP(T) with bounded

inverse,
(iv) dim2VΌ.(Γ) = dim N^T*) and NP(T*) - N^T*) and
(v) κ(T)=0.

Proof. The proof of a(T) < oo is immediate. That RP(T) is
closed follows from Theorem 2 by an induction. To complete the
proof of statements (i) and (ii) we first show δ( T) < oo. Suppose
δ(T) is not finite. Then Ri+1(T) is a proper subset of Rt(T) for
i = 0, 1, . For each i > 0, choose an ^ G R^T) — R^T) and a
y,e X* such that, τ/,0,) = 1, ̂ (%) = 0 for j < i and y^R^T)) = 0.
Each τ/ί G Ni(T*) [5, p. 59] and as the α̂  are linearly independent so
are the yt. Hence dim N^T*) — °°, contradicting our hypothesis and
so δ(T) < oo.

As both the ascent and descent of T are finite, if p = a(T) then
JVP( Γ) Π RP( T) = {0}. Therefore as dim Np( T)< oo, JVP( Γ) 0 Λp( T)
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is closed [5, p. 16]. Suppose X Φ NP(T) φ RP(T). Then, since
codim RP(T) = dim NP(T*) < °o, there exists a finite dimensional
subspace M such that X = Np( T) φ i?P( T) φ M, [5, p. 103]. Moreover,
as Tp is the product of closed Fredholm operators

(1) D,(T) =

Thus

(2 ) DP(T) = NP(T) φ {RP{T) n Z>,(T)} φ AT .

On the other hand by Lemma 1

( 3 ) DP(T) = NP(T) φ {RP(T) Π DP{T)} .

Clearly

(4 ) NP(T)@ {RP{T) ΓΊ DP{T)} £ NP(T) φ {RP(T) Π A>(T)} .

Thus Eqs. (1), (2), (3) and (4) imply M= {0} and we have X - NP{T)®
RP(T). Statement (iii) is now immediate from statement (ii), Lemma 1
and the bounded inverse theorem [12, p. 179].

Lastly, we show statement (iv). From statement (ii) it follows
that X* = R^TyφN^T)1 [5, p. 100] where for Z7£X, UL = {ye
X* I y(x) = 0,xe U). The dim RP(T)L = dim NP(T), RP{TY = NP(T*)
[5, p. 51] and NP(T)λ = RP(T*) [5 p. 95]. Thus X* - NP(T*)®RP(T*)
and so NP(T*) = iSL(Γ*)> which in turn implies

dim iSL(T) - dim NP(T) = dim NP(T*) - dim ΛΓ^Γ*) .

To show statement (v) we note that statement|(iv) implies ιc(Tp) = 0.
But by an induction it follows from Theorem 2 that κ(Tp) = pfc(T).
Hence κ(T) = 0.

2. Odd multiplicity results* Let X be a real Banach space
and suppose L is a densely defined closed linear map of X into X
with a real characteristic value λ0, that is there exists a nonzero
x0 6 X such that \0Lx0 = «0 The algebraic multiplicity of λ0 is defined
to be dim N^I — λ0L). Suppose further (?(λ, x) is a continuous map
of a neighborhood of (λ0, 0) e R x X into X satisfying

(5) || G(λ, a?,) - G(λ, O || - Λfo, O || x, - x21|

for (λ, x) near (λ0, 0) and where h{a, b) is a function independent of
λ tending to zero as both a and b tend to zero. We shall be concerned
with finding nontrivial solutions, that is points (λ, x) e R x X, x Φ 0,
satisfying the equation

( 6 ) x = λLα + G(λ, x) .
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The closure of the set of nontrivial solutions of (6) will be denoted
by S. We will call λ0 a bifurcation point of Eq. (6) if every neigh-
borhood of (λ0, 0) contains a nontrivial solution of (6). Using a
topological degree argument, P. H. Rabinowitz [8] proved the following
bifurcation result:

THEOREM 4. If L is completely continuous, Ω is a bounded open
set in R x X containing (λ0, 0), G(λ, x) is completely continuous on
Ω and λ0 is a characteristic value of odd algebraic multiplicity, then
there is a maximal closed connected subset C of S such that C g f l ,
(λ0, 0)e C and C either meets the boundary of Ω or meets (λ, 0), where
X is another characteristic value of L.

By methods somewhat similar to those of [7] we can obtain a
partial extension of Theorem 4 to those instance where Eq. (6) is
not completely continuous and indeed L is not even bounded.

THEOREM 5. Let L and G be as described above. Suppose
I — X0L is a closed Fredholm operator and Xo is a characteristic
value of odd algebraic multiplicity of L and a characteristic value
of finite algebraic multiplicity of L*. Then there exists a maximal
closed connected subset of S meeting (λ0, 0) and λ0 is a bifurcation
point.

Proof. By Theorem 3, X = N(& R where N = N^I - λ0L) and
R = BJJ — X0L). Thus xe X can be uniquely expressed as x = u + v
where ueN and veR. Moreover for all XeR, I—XL:N-+N,
R->R and (?(λ, x) = GN(X, x) + GΛ(λ, x) where GN{\ x)eN and
GB(X, x) 6 R. Thus our problem is equivalent to that of finding
solutions(λ, u, v) e R x N x R of the system of equations

(6a) u — XLu = (^(λ, u + v)

(6b) v — XLv = GR(X, u + v) .

Since I — XL has a bounded inverse on R for λ near λ0 and (I—XL)'1

is continuous in λ for all 1/λ in the resolvent of L (as a mapping
of R->R) [12, p. 257], (λ, u, v) is a solution of (6a), (6b) if and
only if (λ, u, v) is a solution of the system

(7a) u = XLu + GN(X, u + v)

(7b) v = (I - XLY'GJX, u + v) .

An application of the contraction mapping principle [4, p. 260] to
Eq. (7b) shows the existence of a uniquely determined continuous
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function, v(X, u) = v such that v(\ u) — {I — XL)~ιGR{X1 u + v(X, u))
for all (λ, u) in a neighborhood of (λ0, 0). Consequently it suffices to
find solutions in R x N of the equation

( 8) u = XLu + GΛ(λ, tt + v(\ u)) .

By continuity Eq. (8) satisfies the hypothesis of Theorem 4 near
(λ0, 0) thus there exists a closed connected subset C of S meeting
(λ0, 0) and λ0 is a bifurcation point. As the union of connected sets
containing a common point is connected an application of Zorn's
lemma [6, p. 62] will show that S contains a unique maximal closed
connected subset C meeting (λ0, 0). Thus C S C and our theorem
is proven.

REMARK. Rabinowitz [9, p. 17] has proven a result similar to
Theorem 5 for L bounded.

3* Gradient operators. Let X be a real Hubert space and
suppose L is a densely defined closed self-adjoint linear operator of
X into X with a characteristic value λ0. Suppose further G(λ, x) is
a twice continuously differentiate map of a neighborhood of (λ0, 0) e
R x X into X such that for fixed λ, (?(λ, x) is a gradient map [13,
p. 54] and G(λ, 0 ) Ξ 0 and Gx{\ 0) == 0 for all λ near λ0. We shall
be concerned with solving the bifurcation problem for the equation

( 9 ) x = XLx + G(λ, x) .

For L bounded, M. S. Berger [1] has shown

THEOREM 6. If L is bounded and I — λ0L is a Fredholm operator
then λ0 is a bifurcation point of Eq. (9).

The same result may be obtained for L unbounded but closed.

THEOREM 7. If I — λ0L is a Fredholm operator then λ0 is a
bifurcation point of Eq. (9).

Proof. As in the proof of Theorem 5 it suffices to solve the
bifurcation problem for the system of equations

u = XLu + GN{\, u + v)

v = (I - XLy'GziX, u + v)

for (X,u,v)eR x N x R, GNe N and GRe R, where N = iV(/- λ0L)
and R = R(I — X0L). By the implicit function theorem [4, p. 265]
there exists a uniquely determined, twice continuously differentiate
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function v(X, u) such that

v(X, u) = (I- XL)"1GB(X9 u + v(X, u))

for all (λ, u) near (λ0, 0). Thus our problem is reduced to solving
the operator equation

(10) u = XLu + GN(X, u + v{X, u))

for (λ, u) e R x N. Moreover, if for fixed λ, S (̂λ, x) is the potential
of G(λ, x) (that is 3^(λ, x) = G(λ, x)) then arguing as in the proof
of Theorem 1 in [14] one can readily verify that for fixed λ

—<( J - XL)(u + v(X, u)\ u + v(X, u)) - gf (λ, u + v(X, u))
A

is a potential for (I — XL)u — GN{X, u + ^(λ, u)). « , > is the inner
product on X.)

Therefore Eq. (10) is a gradient operator equation. Hence, as
(10) satisfies the hypothesis of Theorem 6, λ0 must be a bifurcation
point of Eq. (9).

4* Remarks and two counterexamples• By Theorem 3 we
could have replaced the hypothesis on the multiplicity of λ0 of
Theorem 5 by the equivalent hypothesis λ0 is a characteristic value
of the same odd algebraic multiplicity of both L and I/*. Moreover
we could have alternately assumed λ0 a characteristic value of odd
algebraic multiplicity and I — λ0L is a Fredholm operator of index
zero since we can show

THEOREM 8. Suppose T is a closed linear Fredholm operator of X
into X. If dim N^ Γ ) < oo and fc(T) = 0 then dim iVTO( T*) = dim N^ T).

Proof. Let p = a(T). Then by Theorem 2, ιc(Tp) = pιc(T) = 0.
As in the proof of Theorem 3, N9(T) ® Rp(T) @ M = X. If MΦ {0}
then dimiVp(T*) > dimNP(T) which is impossible as fc(Tp) = 0. Hence
X = NP{T)®RP{T) which implies X* = NP{T*) © Bp(T*) and so

UΓ*) = dim NP(T*) = dim NP(T).

We give an example to show that if λ0 is a characteristic value
of odd algebraic multiplicity of L but ιc(I — λ0L) < 0 then λ0 may
fail to be a bifurcation point.

Let H — 4 x R and let S be the shift operator on 4, that is
S: (au a2, ...)—> (0, au a2, ) and consider the equations

x = χ[(S + I)x + (?/2, 0, ...)]

2/ = λy
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for (λ, x, y) e R x H = R x (4 x R)- λ0 = 1 is a characteristic value
of linear part of odd multiplicity and as

- λ o ( S + J) 0\ (S 0\ _

0 i - λoiy " \o 0 j ~

we see tc(L) < 0. Moreover a simple examination of cases for y — 0
or 2/ ̂  0 shows that λ0 = 1 is not a bifurcation point of the system.

Lastly we show that if λ0 is a characteristic value of odd geometric
multiplicity (that is dim N(I — XQL) is odd) but /c(I — X0L) > 0 then
λ0 may fail to be a bifurcation point.

Let x, y e /2 and consider the system of equations

y = λ(S*3

where S* is the adjoint of S, that is the left shift operator

S*:(yl9 y2, ••O — Ofc, v*, •••)•
If λ0 = 1 then the dimension of the null space of the linearized

part of the system, I — λ0L, is equal to 3 and dim N(I — λ0L*) = 2.
Thus κ(I — λ0L) = 3 — 2 > 0. Moreover for λ near λ0 the system
has no solutions other than trivial ones. Indeed, suppose (λ, x, y) is
a nontrivial solution and x — (xlf x2, •)• Then we have the equality

(I - X)(xl9 x2, •) - λ(0, 0, xu x2, •) + λ(|| x ||2 + (I y \\\ <) , . . . )•

T h u s x ί = X(l-X)~1(\\x\\2+\\v\\2) a n d f o r n - 1, . . . , x 2 n - 0 a n d
»2n+i = λ(l - λ ) " 1 ^ . ! . Therefore

χ = (\\χ II2 + II y Il2)(λ(l - λ)-\ 0, λ2(l - λ)-2, . . . ) .

However as λw(l — X)~n -*+ 0 as n —> 00 for 1/2 <̂  λ, x 0 4. Hence the
system does not have any nontrivial solutions for X near λ0 = 1.
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