GROUPS OF *-AUTOMORPHISMS AND INVARIANT MAPS OF VON NEUMANN ALGEBRAS

KAZUYUKI SAITÔ

Let M be a von Neumann algebra and let G be a group acting on M by *-automorphisms of M. M is G-finite if for every nonnegative element a in M with $a \neq 0$, there exists a G-invariant normal state ϕ such that $\phi(a) \neq 0$. The main result in this paper asserts that M is G-finite if and only if for every weakly relatively compact subset K of the predual of M, the orbit of K under G is also weakly relatively compact.

Given a noncommutative dynamical system, that is, pairs (M, G) where M is a von Neumann algebra and G is a group of *-automorphisms of M, one can ask whether or not there are sufficiently many G-invariant normal states (we call such a case that (M, G) is G-finite [9])?

First result along these lines is due to I. Kovacs and J. Szücs [9] who obtained that (M, G) is G-finite if and only if there is a G-invariant faithful normal projection of norm one from M onto the fixed subalgebra M^{σ} under G (see also [11, 14]).

Recently, using results of Akemann [1] and Takesaki [15] concerning the predul of a von Neumann algebra, together with the Ryll-Nardzewski fixed point theorem ([5, 10]), F. J. Yeadon gave an elegant proof of the existence of a trace in a finite von Neumann algebra [16].

In this paper, we will give a Banach space like characterization of the G-finiteness of (M, G) using weakly relatively compact subsets of the predual M_* of M which is a noncommutative extension of a theorem of Hajian and Kakutani ([7, 8]) and in case where G is the inner automorphisms of M, includes the result of F. J. Yeadon (see also [16]). The result in this paper can be easily extended to groups of identity preserving isometries of M.

2. Notations and a statement of a theorem. Let (M, G) be a noncommutative dynamical system and M_* be the predual of M, that is, the Banach space of all bounded normal (or σ -weakly continuous) linear functionals on M([3,12]). Let $(T_g\varphi)(a)=\varphi(a^g)$, $a\in M$, $g\in G$ and $\varphi\in M_*$, then T_g is a linear isometry of M_* onto M_* . We say that (M,G) is G-finite if M has sufficiently many normal states in the sense that for every nonnegative element a in M with $a\neq 0$, there exists a G-invariant normal state ϕ (that is, $T_g\phi=\phi$, $g\in G$) such that $\phi(a)\neq 0$.

Now we state our main theorem.

THEOREM. Let (M, G) be a noncommutative dynamical system, then (M, G) is G-finite if and only if for every weakly relatively compact (w.r.c.) subset K of M_* , the orbit of K under G, that is, the set $\{T_g\phi; g \in G, \phi \in K\}$ is also w.r.c.

3. Proof of Theorem. "If" part of Theorem is valid under a weaker assumption, more precisely to say that if for every ϕ in M_* with $\phi \geq 0$, $\{T_g\phi; g \in G\}$ is w.r.c., then (M,G) is G-finite. However, this is an easy consequence of lemma in [14] (see also [11]). To prove the converse, we need the following lemma which concerns with the continuity of the map $(\Phi,\omega) \to \omega \circ \Phi$ from $L_*(M) \times M_* \to M_*$ where $L_*(M)$ is the σ -weakly continuous bounded linear maps of M into M equipped with the weak operator topology and M_* has the W^* -topology. For the later discussions, we state it in the following form.

LEMMA 1. Let N be a von Neumann algebra with a set H of normal *-homomorphisms of N into N. Suppose that for every ϕ N_* (the predual of N) with $\phi \geq 0$, and every sequence $\{b_n\}$ in the nonnegative part of the unit sphere S of N such that $b_n \to 0$ (σ -weakly), $\phi(\Phi(b_n)) \to 0 (n \to \infty)$ uniformly for $\Phi \in H$. Let $\{\phi_n\}$ be a sequence in N_* which converges weakly to some ϕ_0 in N_* and $\{a_n\}$ be a sequence of self-adjoint element in S which converges strongly to 0, then $\phi_i(\Phi(a_n)) \to 0 (n \to \infty)$ uniformly not only for $\Phi \in H$ but also for j.

Proof. Observe first that the σ -weak topology restricted on S is a compact Hausdorff topology with the neighborhood basis which consists of all possible sets $\{a; a \in S, | \psi_i(a) - \psi_i(a_0) | < \varepsilon, i = 1, 2, \cdots, n\}$ with $a_0 \in S$, $\varepsilon > 0$ (real number) and $\psi_i \in N_*(\psi_i \ge 0)$. Let $H_i = \{a \in S; | (\phi_i - \phi_0)(a) | \le \varepsilon$ for all $j \ge i\}$, then H_i is σ -weakly closed subset of S for each i and $S = \bigcup_{i=1}^{\infty} H_i$. Now Baire's category theorem says that there are a natural numbers i(0), m, an element a_0 in S and $\psi_i(i = 1, 2, \cdots, m)$ in N_* with $\psi_i \ge 0$ for all i such that

$$igcap_{i=1}^m \{a;\, a\in S;\, |\, \psi_i(a)-\, \psi_i(a_{\scriptscriptstyle 0})\, |\, <1\} \,{\subset}\, H_{i\scriptscriptstyle (0)}$$
 .

Since $a_n \to 0 (n \to \infty)$ strongly, by the spectral theorem, for any given positive number ε , there is a sequence $\{e_n\}$ of projections in M such that $e_n \to 1$ (strongly) and $||a_n e_n|| \le \varepsilon/6$ for each n. By the uniform boundedness theorem, we may assume that $\sup_j \{||\phi_j||, ||\phi_0||\} = 1$ without loss of generality. For each $\Phi \in H$, we have $||\Phi(e_n a_n e_n)|| \le ||a_n e_n|| \le \varepsilon/6$, $||\Phi(e_n a_n (1 - e_n))|| \le ||a_n e_n|| \le \varepsilon/6$ and $||\Phi((1 - e_n)a_n e_n))|| \le ||a_n e_n|| \le \varepsilon/6$

 $||a_n e_n|| \le \varepsilon/6$ for each n. Thus we have

$$egin{aligned} |\ (\phi_j - \phi_0)(arPhi(a_n))\ | & \leq |\ (\phi_j - \phi_0)(arPhi(e_n a_n e_n))\ | \ & + |\ (\phi_j - \phi_0)(arPhi(e_n a_n (1 - e_n)))\ | \ & + |\ (\phi_j - \phi_0)(arPhi((1 - e_n) a_n e_n))\ | \ & + |\ (\phi_j - \phi_0)(arPhi((1 - e_n) a_n (1 - e_n)))\ | \ & \leq arepsilon + |\ (\phi_j - \phi_0)(arPhi((1 - e_n) a_n (1 - e_n)))\ | \ . \end{aligned}$$

Put $b_n(\Phi) = \Phi((1-e_n)a_n(1-e_n)) + \Phi(e_n)a_0\Phi(e_n)$, then, since $b_n(\Phi) - a_0 = (1-\Phi(e_n))\Phi(a_n)(1-\Phi(e_n)) - (1-\Phi(e_n))a_0\Phi(e_n) - \Phi(e_n)a_0(1-\Phi(e_n)) - (1-\Phi(e_n))a_0(1-\Phi(e_n))$, we have, by Schwarz' inequality,

$$|\psi_i(b_n(\Phi)-a_0)| \leq \psi_i(\Phi(1-e_n)) + 3||\psi_i||\psi_i(\Phi(1-e_n))^{1/2}$$
.

Similarly, we have

$$|\psi_i(\Phi(e_n)a_0\Phi(e_n)-a_0)| \leq \psi_i(\Phi(1-e_n)) + 2||\psi_i||\psi_i(\Phi(1-e_n))^{1/2}$$
.

Since, by the assumption, $\psi_i(\Phi(1-e_n)) \to 0 (n \to \infty)$ uniformly for $\Phi \in H$ and $i=1,2,\cdots,m$, we can choose a natural number $n(\varepsilon)$ (depends only on ε) such that $b_n(\Phi)$, $\Phi(e_n)a_0\Phi(e_n) \in H_{i(0)}$ for all $n \ge n(\varepsilon)$. Thus, we have

$$|(\phi_i - \phi_0)(\Phi((1 - e_n)a_n(1 - e_n)))| < 2\varepsilon$$

for all $j \ge i(0)$, all $\Phi \in H$ and all $n \ge n(\varepsilon)$. Since, for each $j(j = 1, 2, \dots, i(0) - 1)$

$$egin{aligned} | \ (\phi_j - \phi_0) (arPhi(a_n)) \ | &= | \ | \ \phi_j - \phi_0 \ | \ (arPhi(a_n) v_j) \ | \ &\leq \{ | \ \phi_j - \phi_0 \ | \ (arPhi(a_n)
brace^2) \}^{1/2} \ || \ \phi_j - \phi_0 \ ||^{1/2} \ &\leq 2^{1/2} \{ | \ \phi_j - \phi_0 \ | \ (arPhi(a_n^2)) \}^{1/2} \end{aligned}$$

and

$$|\phi_0(\Phi(a_n))| = ||\phi_0|(\Phi(a_n)v)| \le {|\phi_0|(\Phi(a_n^2))}^{1/2}$$

where $\phi_j - \phi_0 = R_{v_j} | \phi_j - \phi_0 |$ (resp. $\phi_0 = R_v | \phi_0 |$) is the polar decomposition of $\phi_j - \phi_0$ (resp. ϕ_0) ([12]), $a_n^2 \to 0$ weakly implies, by the assumption, that there is a positive integer $n(\varepsilon)'$ (depending only on ε) such that $|(\phi_j - \phi_0)(\varPhi(a_n))| < \varepsilon$ and $|\phi_0(\varPhi(a_n))| < \varepsilon$ for all $\varPhi \in H$, $j = 1, 2, \dots, i(0) - 1$ and all $n \ge n(\varepsilon)'$.

Combining the above estimations, we have

$$|\phi_i(\Phi(a_n))| < 4\varepsilon$$
 for all $n \ge \max(n(\varepsilon), n(\varepsilon)')$, all j

and all $\Phi \in H$. This completes the proof of Lemma 1.

Before going into the proof of theorem, we prepare the following:

LEMMA 2. Keep the notations in theorem. If (M, G) is G-finite, then, for every sequence $\{a_n\}$ of nonnegative elements in the unit sphere S of M which converges weakly to 0, and every ϕ in M_* , $(T_g\phi)(a_n) \to 0$ uniformly for $g \in G$.

Proof. If not, there exists a positive number ε_0 such that for each positive integer n, we can choose a positive integer $k(k(n) \uparrow \infty)$ and $g(n) \in G$ such that

$$\mid T_{g(n)}\phi(a_{k(n)})\mid \ \geqq arepsilon_0$$
 .

Put $a_{k(n)} = b(n)$ then since $\{(b(n)^{g(n)})\}$ is a σ -weakly relatively compact subset of $S \cap M^+$ (where M^+ is the positive portion of M), there is a σ -weakly cluster point $a(a \ge 0)$ of $\{(b(n)^{g(n)})\}$. Thus for every positive number δ , every G-invariant normal state ρ and every positive integer n, there is a natural number i(n)(i(n) > n and $i(n) \uparrow \infty)$ such that

$$|\rho(a)-\rho(b(n))^{g(i(n))}|<\delta \qquad n=1,2,\cdots.$$

Since ρ is G-invariant, $\rho((b(i(n))^{g(i(n))}) = \rho(b(i(n))) \to 0(i(n) \to \infty)$. Thus $|\rho(a)| \leq \delta$ for every δ and the G-finiteness of (M, G) implies a = 0. Hence this contradicts with the inequality (*). Thus $(T_g\phi)(a_n) \to 0(n \to \infty)$ uniformly for $g \in G$ and the proof is completed.

Proof of Theorem. Suppose (M,G) is G-finite. We will prove that for every w.r.c. subset K of M_* , $\{T_g\phi; \phi \in Kg \in G\}$ is also w.r.c. To prove this, we have only to show that for every orthogonal sequence $\{e(n)\}$ of projections, $\lim_{n\to\infty} T_g\phi(e(n))=0$ uniformly for $g\in G$ and $\phi\in K$. If not, there is a positive number ε such that for each positive integer k, there are a natural number $n(k)(n(k)\uparrow\infty)$, $g(k)\in G$ and $\phi_k\in K$ such that

$$|T_{a(k)}\phi_k(e(n(k)))| \ge \varepsilon.$$

By Eberlein-Šmulian's theorem ([4]), there is a subsequence $\{\phi_{k(p)}\}$ of $\{\phi_k\}(k(p) \uparrow \infty)$ such that $\phi_{k(p)} \to \phi_0$ weakly $(p \to \infty)$ for some ϕ_0 in M_* . Now $e(n(k(p))) \to 0(p \to \infty)$ strongly, which implies by Lemma 2 and Lemma 1, that $|T_{g(k(p))}\phi_{k(p)}(e(n(k(p)))| \to 0(p \to \infty)$ and this contradicts with the inequality (**). This completes the proof of theorem.

4. Remarks. Theorem is a generalization of [11]. We should remark that the result of theorem can be easily extended to groups of Jordan Automorphisms of M. [13] When G is a semi-group of normal Jordan homomorphisms ([13]) of M into M, by an easy modification of Lemma 1 and Lemma 2, "only if" part of theorem is valid,

however, as the following example shows, the converse assertion does not hold in general, even if G is a semi group of *-isomorphisms of M into M.

Let $M=L^{\infty}([0,1))$ be the abelian von Neumann algebra of essentially bounded complex-valued functions on [0,1) with respect to Lebesque measure μ . Let us consider two measurable transformations g_1 and g_2 defined as follows ([2,8]): $g_1(\omega)=3\omega \pmod{1}$, $\omega\in[0,1)$, $g_2(\omega)=2\omega+1/3(\text{resp.}=(\omega-1/3)/2,\ \omega\in[0,1/3)(\text{resp.}\omega\in[1/3,1))$. For each $f\in M$, let $(\Phi_1f)(\omega)=f(g_1\omega)$, $\omega\in[0,1)$ and $(\Phi_2f)(\omega)=f(g_2\omega)$, $\omega\in[0,1)$. Let H be the semi-group of normal *-homomorphisms of M into M generated by Φ_1 and Φ_2 . Then by [2] and [8], we can easily check that for each $\phi\in M_*(=L^1([0,1)))$, $\{\phi\circ\Phi,\Phi\in H\}$ is w.r.c.. Thus by [6] and Lemma 1, for every w.r.c. subset K of M_* , $\{\phi\circ\Phi,\Phi\in H,\phi\in K\}$ is also w.r.c. However, since g_1 is ergodic with respect to μ and μ is not invariant under g_2 , (M,H) has no H-invariant functionals in M_* .

The above example implies that the Ryll-Nardzewski fixed point theorem is not valid in general without the assumption of distal action of H.

REFERENCES

- 1. C. A. Akemann, The dual space of an operator algebra, Trans. Amer. Math. Soc., 126 (1967), 286-302.
- 2. J. R. Blum and N. Friedman, On invariant measures for classes of transformations, Z. Wahrschein. verw. Geb., 8 (1967), 301-305.
- 3. J. Dixmier, Les algèbres d'opérateurs dans l'espace hilbertien, Gauthier-Villars, Paris, 1969.
- 4. N. Dunford and J. T. Schwartz, Linear Operators 1, Interscience, New York, 1963.
- 5. F.P. Greenleaf, Invariant Means on Topological Groups, Van Nostrand, New York, 1969.
- 6. A. Grothendieck, Sur les applications lineaires faiblement compacts d'espaces du type C(K), Canad. J. Math., 5 (1953), 129-173.
- 7. A. B. Hajian and S. Kakutani, Weakly wandering sets and invariant measures, Trans. Amer. Math. Soc., 110 (1964), 136-151.
- 8. A. B. Hajian and Y. Itô, Weakly wandering sets and invariant measures for a group of transformations, J. Math. and Mech., 18 (1969), 1203-1216.
- 9. I. Kovacs and J. Szücs, Ergodic type theorems in von Neumann algebras, Acta Sci. Math. (Szeged), 27 (1966), 233-246.
- 10. I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski's fixed point theorem, Bull. Amer. Math. Soc., 73 (1967), 443-445.
- 11. K. Saitô, Automorphism groups of von Neumann algebras and ergodic type theorems, Acta Sci. Math. (Szeged), 36 (1974), 119-130.
- 12. S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, Heidelberg, New York, 1971.
- 13. E. Størmer, On the Jordan structures of C*-algebras, Trans. Amer. Math. Soc., 120 (1965), 438-447.
- 14. ———, Invariant states of von Neumann algebras, Math. Scand., 30 (1972), 253-256.

- 15. M. Takesaki, On the conjugate space of an operator algebra, Tôhoku Math. J., 10 (1958), 194-203.
- 16. F.J. Yeadon, A new proof of the existence of a trace in a finite von Neumann algebra, Bull. Amer. Math. Soc., 77 (1971), 257-260.

Received March 4, 1974 and in revised form March 3, 1975. The author is partially supported by The Sakkokai Foundation.

Tôhoku University