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GROUPS OF -AUTOMORPHISMS AND INVARIANT MAPS
OF VON NEUMANN ALGEBRAS

KAZUYUKI SAITO

Let M be a von Neumann algebra and let G be a group
acting on M by ^--automorphisms of ikf. M is G-finite if for
every nonnegative element a in M with a Φ 0, there exists
a G-invariant normal state φ such that φ(a) Φ 0. The main
result in this paper asserts that ikf is G-finite if and only if
for every weakly relatively compact subset K of the predual of
M9 the orbit of K under G is also weakly relatively compact.

Given a noncommutative dynamical system, that is, pairs (M, G)
where ikf is a von Neumann algebra and G is a group of ^-automor-
phisms of ikf, one can ask whether or not there are sufficiently many
G-invariant normal states (we call such a case that (Mf G) is G-finite
[9])?

First result along these lines is due to I. Kovacs and J. Szucs
[9] who obtained that (ikf, G) is G-finite if and only if there is a
G-invariant faithful normal projection of norm one from ikf onto the
fixed subalgebra MG under G (see also [11, 14]).

Recently, using results of Akemann [1] and Takesaki [15] con-
cerning the predul of a von Neumann algebra, together with the
Ryll-Nardzewski fixed point theorem ([5, 10]), F. J. Yeadon gave an
elegant proof of the existence of a trace in a finite von Neumann
algebra [16].

In this paper, we will give a Banach space like characterization
of the G-finiteness of (M, G) using weakly relatively compact subsets
of the predual ikf* of ikf which is a noncommutative extension of a
theorem of Hajian and Kakutani ([7, 8]) and in case where G is the
inner automorphisms of ikf, includes the result of F. J. Yeadon (see
also [16]). The result in this paper can be easily extended to groups
of identity preserving isometries of ikf.

2* Notations and a statement of a theorem* Let (ilf, G) be a
noncommutative dynamical system and Λf* be the predual of M, that
is, the Banach space of all bounded normal (or tf-weakly continuous)
linear functional on ikf([3, 12]). Let (Tgφ)(a) = φ{a9), aeM, geG
and φeM*, then Tg is a linear isometry of ikf* onto ikf*. We say
that (M, G) is G-finite if ikf has sufficiently many normal states in
the sense that for every nonnegative element a in ikf with a Φ 0, there
exists a G-invariant normal state ^(that is, Tgφ — φ, geG) such
that φ(a) Φ 0.
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Now we state our main theorem.

THEOREM. Let (M, G) be a noncommutative dynamical system,
then (M, G) is G-finite if and only if for every weakly relatively
compact (w.r.c.) subset K of M*, the orbit of K under Gf that is,
the set {Tgφ; g e G, φ e K} is also w.r.c.

3* Proof of Theorem. "If" part of Theorem is valid under
a weaker assumption, more precisely to say that if for every φ in M*
with φ ̂  0, {Tgφ; geG} is w. r. c , then (M, G) is G-finite. However,
this is an easy consequence of lemma in [14] (see also [11]). To
prove the converse, we need the following lemma which concerns
with the continuity of the map (Φ, ω) —>α>oφ from L*(M) x M* —• M*
where L*(M) is the σ-weakly continuous bounded linear maps of M
into M equipped with the weak operator topology and M* has the
W*-topology. For the later discussions, we state it in the following
form.

LEMMA 1. Let N be a von Neumann algebra with a set H of
normal *-homomorphisms of N into N. Suppose that for every φ
N* (the predual of N) with φ^O, and every sequence {bn} in the
nonnegative part of the unit sphere S of N such that bn~+0 (σ-weakly),
φ(Φ(bn))—>0(n—> oo) uniformly for ΦeH. Let {φn} be a sequence in
N* which converges weakly to some φ0 in N* and {an} be a sequence
of self-adjoint element in S which converges strongly to 0, then
φ3 (Φ(an)) —>0(n —> oo) uniformly not only for ΦeH but also for j .

Proof. Observe first that the σ-weak topology restricted on S
is a compact Hausdorίf topology with the neighborhood basis which
consists of all possible sets {a; ae S, \ ψi(a) — ψi(a0) \ < ε, i = 1, 2, , n}
with a0 e S, e > 0 (real number) and ψi e ΛΓ*^- ^ 0). Let Ht = {aeS;
I (φj — Φo)(a) I ̂  ε for all j ^ ϊ), then Hi is σ-weakly closed subset of
S for each i and S = (JΓ=i Ht. Now Baire's category theorem says
that there are a natural numbers i(0), m, an element a0 in S and
ψ.(i — l9 2, , m) in N* with ψi^O for all i such that

Π {a; a e S; \ ψ^a) - f^a,) \<l}<zH%
Zi(0)

Since an—*0(%—• oo) strongly, by the spectral theorem, for any
given positive number ε, there is a sequence {en} of projections in M
such that en-+ 1 (strongly) and || anen || <g ε/6 for each n. By the uni-
form boundedness theorem, we may assume that Sup. {|| φ3-1|, || φ01|} = 1
without loss of generality. For each ΦeH, we have \\ Φ(enanen) \\ <;
\\anen\\ ^ ε/6, \\Φ(enan(l- en))\\ ^ \\anen\\ ^ ε/6 and || Φ ( ( l - en)anen)) \\ ^
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||α»e»|| ^ e/6 for each n. Thus we have

\{φs - Φo)(Φ(an)) I ^ I (φj - φo)(Φ(enanen)) \

+ I (Φi - Φo)(Φ(enan(l - en))) \

+ I (Φi ~ Φo)(Φ((l - en)anen)) |

+ KΦJ - Φo)(Φ((l - en)an(l ~ en)))\

^e+Kφj- φo)(Φ((l - en)an(l - en))) \ .

Put bn(Φ) = Φ((l - β . K ( l - O ) + Φ(e%)a,Φ(en)f then, since δΛ(Φ) -
αo = (1 ~ Φ(en))Φ(an)(l - Φ(eJ) - (1 - Φ(en))a0Φ(en) - Φ(βjα o ( l - Φ(β.)) -

(1 — 0(e%))ao(l — Φ(en)), we have, by Schwarz' inequality,

I ΨAK(Φ) ~ do) I ^ f *(Φ(1 ~ O )

Similarly, we have

Since, by the assumption, ψi(Φ(l — en))~+0(n—* oo) uniformly for
ΦeH and i = 1, 2, « , m , we can choose a natural number w(ε)
(depends only on ε) such that bn(Φ), Φ(en)aQΦ(en) e Hi{0) for all n Ξ> n(ε).
Thus, we have

I (φ, - Λ)(Φ((1 - en)an(l - β.))) | < 2ε

for all i ^ i(0), all ΦeH and all % ̂  %(ε). Since, for each j(j =
1,2, . . . , < ( 0 ) - l )

a n d

I Φo(Φ(an)) \ = \\Φo\ (Φ(an)v) \ £ { \ φ o \ (Φ(al)ψ>

where φό — φ0 = i2Vi | ^ — ^01 (resp. ^0 = Rv I ̂ o I) is the polar decom-
position of φs — φo (resp. 0O) ([12]), a\~>0 weakly implies, by the as-
sumption, that there is a positive integer w(ε)' (depending only on ε)
such that I (φ, - φo)(Φ(an)) \ < ε and | φo(Φ(an)) | < ε f or all Φ e H, j =
1, 2, , i(0) - 1 and all n ^ ^(ε)'.

Combining the above estimations, we have

I φό{Φ{an)) I < 4ε for all n ^ max (n(ε), n(s)') , all i

and all ΦeH. This completes the proof of Lemma 1.

Before going into the proof of theorem, we prepare the following:



556 KAZUYUKI SAITO

LEMMA 2. Keep the notations in theorem. If (M, G) is G-finite,
then, for every sequence {an} of nonnegative elements in the unit
sphere S of M which converges weakly to 0, and every ψ in M*,
(Tgφ)(an) —> 0 uniformly for g eG.

Proof. If not, there exists a positive number ε0 such that for
each positive integer n, we can choose a positive integer k(k(n) \ <χ>)
and g(n) e G such that

( * ) I Tg{n)φ(ak{n)) I ̂  ε0 .

Put ak{n) = b(n) then since {{b(n)g{n)} is a σ-weakly relatively com-
pact subset of S Π M+ (where M+ is the positive portion of M), there
is a (7-weakly cluster point a(a ^ 0) of {{b(n)9{n)}. Thus for every
positive number δ, every G-invariant normal state p and every posi-
tive integer n, there is a natural number i(n)(i(n) > n and i(n) J oo)
such that

Since p is G-invariant, p((b(i(n))9{i{n))) = ρ(b(i(n))) -+0(i(n) -> oo).
Thus I ̂ (α) I ̂  δ for every δ and the G-finiteness of (Λf, G) implies
a = 0. Hence this contradicts with the inequality (*). Thus (T^)(αJ—>
0(n—> oo) uniformly for #e(? and the proof is completed.

Proof of Theorem. Suppose (M, G) is G-finite. We will prove
that for every w.r.c. subset K of ikf*, {Tgφ; φe Kg eG} is also w.r.c.
To prove this, we have only to show that for every orthogonal
sequence {e(n)} of projections, lim,^ Tgφ(e{n)) = 0 uniformly for g eG
and Φe K. If not, there is a positive number ε such that for each
positive integer k, there are a natural number n(k)(n(k) ] oo), g(k) e G
and φkeK such that

(**) \Tg{k)φk(e(n(k)))\^e.

By Eberlein-Smulian's theorem ([4]), there is a subsequence {φkm} of
{φkKHp) ί °°) such that φk{P)—>φo weakly (p—> oo) for some 0O in Λf*
Now β(w(&(ίθ))—^OίP—* °°) strongly, which implies by Lemma 2 and
Lemma 1, that | Tg{k{P))φk{P)(e(n(k(p)))\~+θ(p—> oo) and this contradicts
with the inequality (**). This completes the proof of theorem.

4. Remarks. Theorem is a generalization of [11]. We should
remark that the result of theorem can be easily extended to groups
of Jordan Automorphisms of M. [13] When G is a semi-group of
normal Jordan homomorphisms ([13]) of M into My by an easy modifi-
cation of Lemma 1 and Lemma 2, "only if" part of theorem is valid,
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however, as the following example shows, the converse assertion does
not hold in general, even if G is a semi group of ^-isomorphisms of
M into M.

Let M = L°°([0, 1)) be the abelian von Neumann algebra of essen-
tially bounded complex-valued functions on [0, 1) with respect to
Lebesque measure μ. Let us consider two measurable transformations
gx and g2 defined as follows ([2, 8]): g^ω) = 3ω(mod 1), ω e [0,1), g2(ω) =
2ω + l/3(resp. = (ω - l/3)/2, ω e [0, l/3)(resp. ω e [1/3, 1)). For each
fe M, let (ΦJ)(ω) = f(giω), ω e [0, 1) and (ΦJ)(ω) = f(g2ω), ω e [0, 1).
Let H be the semi-group of normal *-homomorphisms of M into M
generated by Φx and Φ2. Then by [2] and [8], we can easily check
that for each φ e M*(= L f̂O, 1))), {^0, φ e H) is w. r. c . Thus by [6]
and Lemma 1, for every w. r. c. subset K of AT*, {φ°Φ, Φ e H, φ e K)
is also w. r. c. However, since g1 is ergodic with respect to μ and μ
is not invariant under g2, (M, H) has no ίί-invariant functional in
M*.

The above example implies that the Ryll-Nardzewski fixed point
theorem is not valid in general without the assumption of distal
action of H.
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