A SHEAF THEORETIC REPRESENTATION OF RINGS WITH BOOLEAN ORTHOGONALITIES

Patrick N. Stewart

It is shown that certain associative rings with Boolean orthogonalities are isomorphic to rings of global sections.

Let A be a ring and \perp a relation on A. For each subset S of A define

$$
S^{\perp}=\{x \in A \mid x \perp s \quad \text { for } \quad \text { all } \quad s \in S\} \text { and } S^{\perp \perp}=\left(S^{\perp}\right)^{\perp} .
$$

When $S=\{s\}$ we write s^{\perp} and $s^{1 \perp}$ instead of $\{s\}^{\perp}$ and $\{s\}^{\perp 1}$. Subsets of A of the form S^{\perp} are polars. The relation \perp is a Boolean orthogonality if all polars are two-sided ideals and if, for all $x, y \in A$,

1. $x \perp y \rightarrow y \perp x, \quad$ 2. $x \perp x \rightarrow x=0$, and
2. $x^{11} \cap y^{1+}=(0) \rightarrow x \perp y$.

The set of polars is a Boolean algebra (see [3]) with meet and join defined by

$$
B \wedge C=B \cap C \quad \text { and } \quad B \vee C=\left(B^{\perp} \wedge C^{\perp}\right)^{\perp}
$$

Boolean orthogonalities have been studied by Davis [3], Cornish [1] and by Cornish and Stewart [2].

Throughout this paper we shall assume that A is an associative ring with an identity and with a Boolean orthogonality \perp. We shall also assume that the following finiteness condition is satisfied:
for any two elements $x, y \in A$ there is a finite set $F \subseteq A$ such that $x^{+1} \wedge y^{11}=F^{11}$.

Notice that if $F=\left\{f_{1}, \cdots, f_{n}\right\}$, then $F^{\perp}=f_{1}^{\perp} \wedge \cdots \wedge f_{n}^{\perp}$ and $F^{1 \perp}=$ $f_{1}^{\perp \perp} \vee \cdots v f_{n}^{\perp \perp}$.

An ideal I of A is a \perp-ideal if $F^{1 \perp} \subseteq I$ for every finite set $F \subseteq I$, and I is \perp-prime if $I \neq A$ and whenever the intersection of two polars B and C is contained in I, either $B \subseteq I$ or $C \subseteq I$.

Lemma. Assume that Pis either a \perp-prime ideal or $P=A$, that I is $a \perp$-ideal and that $x \in A \backslash I$ is such that $x^{1+} \wedge a^{1+} \subseteq$ I implies that $a \in P$. Then there is a \perp-prin $e \perp$-ideal Q such that $I \subseteq Q \subseteq P$ and $x \notin Q$.

Proof. Using Zorn's Lemma select a \perp-ideal $Q \supseteq I$ maximal with respect to the property " $x \notin Q$ and $x^{\perp \perp} \wedge \lambda^{\perp \perp} \subseteq Q$ implies that $a \in P$ ". Clearly $I \subseteq Q \subseteq P$.

Suppose that B and C are polars neither of which is contained in Q. Choose $b \in B \backslash Q$ and $c \in C \backslash Q$. Then

$$
B^{\prime}=\cup\left\{F^{\perp \perp} \mid F \text { is a finite subset of }\{b\} \cup Q\right\}
$$

and

$$
C^{\prime}=\cup\left\{G^{\perp \perp} \mid G \text { is a finite subset of }\{c\} \cup Q\right\}
$$

are \perp-ideals which properly contain Q. By the maximality of Q either $x^{\perp \perp} \subseteq B^{\prime}$ or $x^{\perp \perp} \wedge b_{1}^{\perp \perp} \subseteq B^{\prime}$ for some $b_{1} \in A \backslash P$, and $x^{1 \perp} \subseteq C^{\prime}$ or $x^{\perp \perp} \wedge c_{1}^{\perp \perp} \subseteq C^{\prime}$ for some $c_{1} \in A \backslash P$. Thus we obtain finite sets $\left\{b, f_{1}, \cdots, f_{n}\right\} \subseteq\{b\} \cup Q$ and $\left\{c, g_{1}, \cdots, g_{m}\right\} \subseteq\{c\} \cup Q$ such that one of $x^{\perp \perp}, x^{\perp \perp} \wedge b_{1}^{\perp \perp}, x^{\perp \perp} \wedge c_{1}^{\perp \perp}$ or $x^{\perp \perp} \wedge b_{1}^{\perp \perp} \wedge c_{1}^{\perp \perp}$ is contained in

$$
\begin{aligned}
\left\{b, f_{1},\right. & \left.\cdots, f_{n}\right\}^{\perp \perp} \wedge\left\{c, g_{1}, \cdots, g_{m}\right\}^{\perp \perp} \\
& =\left(b^{\perp \perp} \vee f_{1}^{\perp \perp} \vee \cdots \vee f_{n}^{\perp \perp}\right) \wedge\left(c^{\perp \perp} \vee g_{1}^{\perp \perp} \vee \cdots \vee g_{m}^{\perp \perp}\right) \\
& =\left(b^{\perp \perp} \wedge c^{\perp \perp}\right) \vee H^{\perp \perp}
\end{aligned}
$$

where H is a finite subset of Q (we have used the distributivity of the Boolean algebra of polars and also the finiteness condition). If $b^{\perp \perp} \wedge c^{\perp \perp} \subseteq Q$, then $x^{\perp \perp} \subseteq Q$ or $x^{\perp \perp} \wedge l^{\perp \perp} \subseteq Q$ for some $d \in A \backslash P$ both of which contradict the choice of Q. Thus $B \cap C \notin Q$ and we conclude that Q is \perp-prime.

For the remainder of this paper \bar{X} will be fixed set of \perp-prime ideals which contains all \perp-prime \perp-ideals and which is full (that is, if I is a sum of polars and $I \neq A$, then $I \subseteq P$ for some $P \in \bar{X})$.

Proposition 2. (Cornish [1]). For each $P \in \bar{X}$,

$$
\left\{x \in A \mid x^{\perp} \subset \subset P\right\}=\cap\{R \in \overline{\bar{X}} \mid R \subseteq P\}=\cap\{Q \in \bar{X} \mid Q \subseteq P
$$

and Q is a \perp-prime \perp-ideal $\}$.
Proof. Suppose that $x^{\perp} \not \subset P$ and R is a \perp-prime ideal contained in P. Then $x^{\perp \perp} \wedge x^{\perp}=(0) \subseteq R$ and so $x \in R$.

If $x^{\perp} \subseteq P$, then by Lemma 1 (take $I=x^{\perp}$) there is a \perp-prime \perp-ideal $Q \subseteq P$ such that $x \notin Q$. This establishes the result.

The set described in the proposition will be denoted by O_{P}. We note that $O_{P}=P$ if and only if P is minimal in $\overline{\underline{X}}$.

Let $P \in \bar{X}$. The set O_{P}, being an intersection of \perp-ideals, is itself a \perp-ideal. Define a relation (also denoted by \perp) on A / O_{P} by

$$
\left(x+O_{P}\right) \perp\left(y+O_{P}\right) \leftrightarrow x^{\perp \perp} \wedge y^{\perp \perp} \subseteq O_{P}
$$

This relation is well-defined because if $x_{1}=x+a$ and $y_{1}=y+b$ where $a, b \in O_{P}$, then

$$
x_{1}^{\perp \perp} \wedge y_{1}^{\perp \perp}=(x+a)^{\perp \perp} \wedge(y+b)^{\perp \perp} \subseteq\left(x^{\perp \perp} \vee x^{\perp \perp}\right) \wedge\left(y^{\perp \perp} \vee b^{\perp \perp}\right)
$$

and so $x_{1}^{\perp \perp} \wedge y_{1}^{\perp \perp} \subseteq\left(x^{\perp \perp} \wedge y^{\perp \perp}\right) \vee F^{\perp \perp}$ where F is a finite subset of O_{P}. It is routine to check that

$$
x^{\perp}+O_{P} \subseteq\left(x+O_{P}\right)^{\perp} \quad \text { and } \quad x^{\perp \perp}+O_{P} \subseteq\left(x+O_{P}\right)^{\perp \perp}
$$

for each $x \in A$, and that the relation \perp is a Boolean orthogonality on A / O_{P}.

Proposition 3. For each $P \in \bar{X}, \bar{P}=P / O_{P}$ is a \perp-prime ideal of A / O_{P} which contains all proper polars of A / O_{P}.

Proof. Let \bar{B} and \bar{C} be polars in A / O_{P} such that $\bar{B} \cap \bar{C} \subseteq \bar{P}$. Suppose that $\bar{B} \not \subset \bar{P}$. Then there is an element $b \in A$ such that $b+O_{P} \in \bar{B} \backslash \bar{P}$. Let $c+O_{P} \in \bar{C}$. Then

$$
\left(b^{\perp \perp}+O_{P}\right) \cap\left(c^{\perp \perp}+O_{P}\right) \subseteq\left(b+O_{P}\right)^{\perp \perp} \cap\left(c+O_{P}\right)^{\perp \perp} \subseteq \bar{B} \cap \bar{C} \subseteq \bar{P}
$$

and so $b^{\perp \perp} \cap c^{\perp \perp} \subseteq P$. Since $b \notin P$ we conclude that $c \in P$ and so $\bar{C} \subseteq \bar{P}$. Thus \bar{P} is \perp-prime.

Suppose that $a^{\perp \perp} \wedge b^{\perp \perp} \subseteq O_{\mathrm{P}}$. Then there is a finite set $\left\{f_{1}, \cdots, f_{n}\right\} \subseteq$ O_{P} such that

$$
a^{\perp \perp} \wedge b^{\perp \perp}=\left\{f_{1}, \cdots, f_{n}\right\}^{\perp \perp}=f_{1}^{\perp \perp} \vee \cdots \vee f_{n}^{\perp \perp}
$$

For each $i=1, \cdots, n, f_{i} \in O_{P}$ and so $f_{i}^{\perp} \not \subset P$. Thus $f_{1}^{\perp} \wedge \cdots \wedge f_{n}^{\perp} \not \subset P$. Also, $b^{\perp \perp} \wedge f_{1}^{\perp} \wedge \cdots \wedge f_{n}^{\perp} \subseteq a^{\perp}$ because $\left.a^{\perp \perp} \wedge\right)^{\perp \perp} \wedge f_{1}^{\perp} \wedge \cdots \wedge f_{n}^{\perp}=(0)$. If $a \notin O_{p}$, then $a^{\perp} \subseteq P$ and so, since $f_{1}^{\perp} \wedge \cdots \wedge f_{n}^{\perp} \not \subset P, b^{\perp \perp} \subseteq P$. Thus \bar{P} contains $\left(a+O_{P}\right)^{\perp}$ for all $a \notin O_{P}$. It follows that \bar{P} contains all proper polars of A / O_{P}.

Let S be the disjoint union of the factor rings A / O_{P}. The relation (also denoted by \perp) on the product

$$
\begin{gathered}
\Pi\left\{A / O_{P} \mid P \in \underline{\bar{X}}\right\} \\
=\left\{f: \overline{\bar{X}} \rightarrow S \mid f(P) \in A / O_{P} \text { for all } P \in \underline{\bar{X}}\right\}
\end{gathered}
$$

defined by

$$
f \perp g \leftrightarrow f(P) \perp g(P) \text { in } A / O_{P} \quad \text { for } \text { all } P \in \bar{X}
$$

is a Boolean orthogonality. Each $a \in A$ determines a function $\hat{a} \in$ $\Pi\left\{A / O_{P} \mid P \in \bar{X}\right\}$ defined by $\hat{a}(P)=a+O_{P}$. It follows from Lemma 1 that $\cap\{P \mid P$ is a \perp-prime \perp-ideal $\}=(0)$ and so $\cap\left\{O_{P} \mid P \in \bar{X}\right\}=(0)$. Thus we obtain the usual embedding

$$
A \hat{\rightarrow} \hat{A} \subseteq \Pi\left\{A / O_{P} \mid P \in \bar{X}\right\} .
$$

This embedding respects orthogonalities; that is, $a \perp b$ in A if and only if $\hat{a} \perp \hat{b}$ in the product.

We define a topology on \underline{X} by declaring the basic open sets to be the subsets of the form

$$
\overline{\underline{X}}(a)=\left\{P \in \overline{\underline{x}} \mid a^{1+} \not \subset P\right\} .
$$

Notice that $\underset{\underline{X}}{ }(a) \cap \bar{X}(b) \supseteq \underline{X}(c)$ for all $c \in a^{1+} \wedge b^{1+}$ and so these sets do qualify as a topological base.

Suppose that $\{\bar{X}(a) \mid a \in C\}$ is a cover of \bar{X} consisting of basic open sets. Then $\Sigma\left\{a^{+1} \mid a \in C\right\}=A$ because \bar{X} is full. Since A has an identity there is a finite set $F \subseteq C$ such that $\Sigma\left\{a^{1 \perp} \mid a \in F\right\}=A$. Thus $\{\underline{X}(a) \mid a \in F\}$ covers \bar{X} and so $\overline{\underline{X}}$ is quasi-compact.

Give S the topology generated by sets of the form $\hat{a}[U]=$ $\left\{a+O_{P} \mid P \in U\right\}$ where U is open in \bar{X} and $a \in A$. We obtain a sheaf of rings $(S, \pi, \underline{X}$) where $\pi: S \rightarrow \underline{\underline{X}}$ is the projection onto $\overline{\underline{X}}$.

Let $\Gamma=\left\{f \mid f \in \Pi\left\{A / O_{P} \mid P \in \bar{X}\right\}\right.$ is continuous $\}$ be the ring of global sections. The following observation shows that $\hat{A} \subseteq \Gamma$: for all $x, y \in A$, $\left\{P \in \bar{X} \mid x-y \in O_{P}\right\}$ is open in $\overline{\underline{X}}$. To see this notice that if $x-y \in O_{Q}$, then $Q \in \bar{X}(u) \subseteq\left\{P \in \bar{X} \mid x-y \in O_{P}\right\}$ where u is any element in $(x-$ $y)^{\perp} \backslash Q$.

Theorem 4. $\hat{A}=\Gamma$.
Proof. Let $f \in \Gamma$. Since $\overline{\underline{X}}$ is quasi-compact there are finite sets $\left\{a_{1}, \cdots, a_{n}\right\}$ and $\left\{v_{1}, \cdots, v_{n}\right\}$ such that $\underline{\bar{X}}=\underline{\underline{X}}\left(a_{1}\right) \cup \cdots \cup \underline{X}\left(a_{n}\right)$ and $f(P)=v_{i}+O_{P}$ for all $P \in \underline{X}\left(a_{i}\right)$.

Notice that $v_{i}-v_{i} \in \cap\left\{O_{P} \mid P \in \bar{X}\left(a_{i}\right) \cap \underline{X}\left(a_{j}\right)\right\}$, so $\left(v_{i}-v_{j}\right)^{\perp} \subseteq$
$Q \in \underline{X}$ implies that $a_{i}^{+\perp} \wedge a_{j}^{++} \subseteq Q$. It follows from Lemma 1 (take $P=A$ and $I=\left(v_{i}-v_{i}\right)^{\perp}$ for each $\left.x \notin\left(v_{i}-v_{j}\right)^{\perp}\right)$ that

$$
\left(v_{i}-v_{j}\right)^{\perp}=\cap\left\{Q \mid\left(v_{i}-v_{j}\right)^{\perp} \subseteq Q \in \underline{\bar{X}}\right\}
$$

and so $a_{i}^{1+} \wedge^{l_{j}^{1+}} \subseteq\left(v_{i}-v_{j}\right)^{\perp}$. Thus $\left(v_{i}-v_{j}\right)^{1 \perp} \wedge l_{i}^{\perp+} \subseteq a_{i}^{\perp}$.
Since $\bar{X}=\underline{\bar{X}}\left(a_{1}\right) \cup \cdots \cup \underline{\bar{X}}\left(a_{n}\right)$ and $\underline{\bar{X}}$ is full, $a_{1}^{11}+\cdots+a_{n}^{11}=A$. Choose $u_{i} \in a_{i+}^{+1}$ such that $1=u_{1}+\cdots+u_{n}$ and let $v=u_{1} v_{1}+\cdots+u_{n} v_{n}$. Then

$$
v-v_{j}=u_{1}\left(v_{1}-v_{j}\right)+\cdots+u_{n}\left(v_{n}-v_{j}\right) \in a_{j}^{\perp} \subseteq O_{P}
$$

for all $P \in \bar{X}\left(a_{i}\right)$. Thus $f(P)=v_{j}+O_{P}=v+O_{P}$ for all $P \in \bar{X}\left(a_{j}\right)$ and so $f=\hat{v} \in \hat{A}$.
f-rings (Keimal [4]). Let A be an f-ring with identity. The relation defined by $x \perp y \leftrightarrow|x| \wedge|y|=0$ is a Boolean orthogonality and $x^{1+} \wedge y^{1+}=(|x| \wedge y \mid)^{1+}$. Let \bar{X} be the set of irreducible ℓ-ideals. Then \bar{X} is full because polars are ℓ-ideals and sums of ℓ-ideals are again ℓ-ideals. Also, all \perp-prime \perp-ideals are irreducible ℓ-ideals and so A is isomorphic to the f-ring of all global sections of the sheaf $(S, \pi, \overline{\underline{X}})$.

Reduced rings (Koh [5]). Let A be a ring with identity and no nonzero nilpotent elements. The relation defined by $x \perp y \leftrightarrow x y=0$ is a Boolean orthogonality and $x^{1+} \wedge y^{1+}=(x y)^{1+}$. Let \bar{X} be the set of all prime ideals of A. Clearly \bar{X} is full. Also, all \perp-prime \perp-ideals are completely prime and so A is isomorphic to the ring of global sections of the sheaf (S, π, \bar{X}). Each stalk A / O_{P} is reduced (Proposition 2) and the prime ideal P / O_{P} contains all zero divisors (Proposition 3).

Semiprime rings. Let A be a semiprime ring with identity. The relation defined by $x \perp y \leftrightarrow(x)(y)=(0)$ is a Boolean orthogonality. However, the finiteness condition may not be satisfied as the following example shows.

Let R be a semiprime ring with identity, R^{\prime} the ring of 3×3 matrices with entries from R,

$$
x=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad y=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] .
$$

Define \bar{x} and \bar{y} in $P=\Pi\left\{R_{n} \mid R_{n}=R^{\prime}\right.$ for $\left.n=1,2, \cdots\right\}$ by

$$
\begin{aligned}
& \bar{x}(n)=\left\{\begin{array}{llll}
x & \text { if } & n \equiv 1 & (\bmod 2) \\
0 & \text { if } & n \neq 1 & (\bmod 2)
\end{array}\right. \\
& \bar{y}(n)=\left\{\begin{array}{lll}
y & \text { if } & n \equiv 1 \\
0 & \text { if } & n \neq 1
\end{array}(\bmod 3)\right.
\end{aligned}
$$

Notice that $\bar{x} \bar{y}=\bar{y} \bar{x}=\bar{x}^{2}=\bar{y}^{2}=0$. Let E be the subring of P which is generated by the identity of P, \bar{x}, \bar{y} and

$$
\begin{gathered}
\Sigma\left\{R_{n} \mid R_{n}=R^{\prime} \quad \text { for } \quad n=1,2, \cdots\right\} . \\
\bar{x}^{\perp \perp}=\{f \in E \mid f(n)=0 \quad \text { for } \quad n \neq 1 \\
\bar{y}^{\perp \perp}=\{f \in E \mid f(n)=0 \quad \text { for } \quad n \neq 1 \quad(\bmod 2)\}, \\
(\bmod 3)\},
\end{gathered}
$$

and so

$$
\bar{x}^{\perp \perp} \wedge \bar{y}^{\perp \perp}=\{f \in E \mid f(n)=0 \quad \text { for } \quad n \neq 1 \quad(\bmod 6)\} .
$$

If $\bar{x}^{\perp \perp} \wedge \bar{y}^{\perp \perp}=\left\{f_{1}, \cdots, f_{n}\right\}^{\perp \perp}$, then at least one of the f_{i} must satisfy $f_{i}(n) \neq 0$ for infinitely many positive integers n. But then there are integers α, β and γ such that $f_{i}(n)=(\alpha+\beta \bar{x}+\gamma \bar{y})(n)$ for all but a finite number of positive integers n. This is incompatible with the requirement that $f_{i}(n)=0$ for $n \not \equiv 1(\bmod 6)$.

When the finiteness condition is satisfied (for instance, when A satisfies the maximum condition on annihilators), A is isomorphic to the ring of all global sections of the sheaf $(S, \pi, \underline{\bar{X}})$ where $\underline{\underline{X}}$ is the set of prime ideals of A. Each stalk A / O_{P} is semiprime (Proposition 1) and the prime ideal P / O_{P} contains all two-sided annihilator ideals of A / O_{P} (Proposition 2).

References

1. W. H. Cornish, Boolean orthogonalities and minimal primes, preprint.
2. W. H. Cornish and P. N. Stewart, Direct and subdirect decompositions of universal algebras with a Boolean orthogonality, preprint.
3. G. Davis, Rings with orthogonality relations, Bull. Austral. Math. Soc., 4 (1971), 163-178.
4. K. Keimal, The representation of lattice ordered groups and rings by sections in sheaves, Lecture Notes in Math. 248, 1-98, Springer, Berlin-Heidelberg-New York, 1971.
5. K. Koh, On functional representations of a ring without nilpotent elements, Canad. Math. Bull., 14 (1971), 349-352.

Received April 30, 1974. Part of the research for this paper was done at the 1973 Canadian Mathematical Congress Summer Research Institute in Sherbrooke, Quebec, Canada.

