DOUBLY STOCHASTIC MATRICES WITH MINIMAL PERMANENTS

Henryk Minc

Abstract

A simple elementary proof is given for a result of D. London on permanental minors of doubly stochastic matrices with minimal permanents.

A matrix with nonnegative entries is called doubly stochastic if all its row sums and column sums are equal to 1 . A well-known conjecture of van der Waerden [3] asserts that the permanent function attains its minimum in Ω_{n}, the set of $n \times n$ doubly stochastic matrices, uniquely for the matrix all of whose entries are $1 / n$. The conjecture is still unresolved.

A matrix A in Ω_{n} is said to be minimizing if

$$
\operatorname{per}(A)=\min _{S \in \mathrm{I}_{n}} \operatorname{per}(S) .
$$

The properties of minimizing matrices have been studied extensively in the hope of finding a lead to a proof of the van der Waerden conjecture.

Let $A(i \mid j)$ denote the submatrix obtained from A by deleting its i th row and its j th colum. Marcus and Newman [3] have obtąined inter alia the following two results.

Theorem 1. A minimizing matrix A is fully indecomposable, i.e.,

$$
\operatorname{per}(A(i \mid j))>0
$$

for all i and j.
In other words, if A is a minimizing $n \times n$ matrix then for any (i, j) there exists a permutation σ such that $j=\sigma(i)$ and $a_{s, \sigma(s)}>0$ for $s=1, \cdots, i-1, i+1, \cdots, n$.

Theorem 2. If $A=\left(a_{i j}\right)$ is a minimizing matrix then

$$
\begin{equation*}
\operatorname{per}(A(i \mid j))=\operatorname{per}(A) \tag{1}
\end{equation*}
$$

for any (i, j) for which $a_{i j}>0$.

The result in Theorem 2 is of considerable interest. For, if it could be shown that (1) holds for all permanental minors of A, the van der Waerden conjecture would follow. London [2] obtained the following result.

Theorem 3. If A is a minimizing matrix, then

$$
\begin{equation*}
\operatorname{per}(A(i \mid j)) \geqq \operatorname{per}(A) \tag{2}
\end{equation*}
$$

for all i and j.
London's proof of Theorem 3 depends on the theory of linear inequalities. Another proof of London's result is due to Hedrick [1]. In this paper I give an elementary proof of the result that is considerably simpler than either of the above noted proofs.

Proof of Theorem 3. Let $A=\left(a_{i j}\right)$ be an $n \times n$ minimizing matrix. Let σ be a permutation on $\{1, \cdots, n\}$ and $P=\left(p_{i j}\right)$ be the corresponding permutation matrix. For $0 \leqq \theta \leqq 1$, define

$$
f_{P}(\theta)=\operatorname{per}((1-\theta) A+\theta P) .
$$

Since A is a minimizing matrix, we have

$$
f_{P}^{\prime}(0) \geqq 0
$$

for any permutation matrix P. Now

$$
\begin{aligned}
f_{t}^{\prime}(0) & =\sum_{s, t=1}^{n}\left(-a_{s t}+p_{s t}\right) \operatorname{per}(A(s \mid t)) \\
& =\sum_{s, t=1}^{n} p_{s t} \operatorname{per}(A(s \mid t))-n \operatorname{per}(A) \\
& =\sum_{s=1}^{n} \operatorname{per}(A(s \mid \sigma(s)))-n \operatorname{per}(A) .
\end{aligned}
$$

Hence,

$$
\begin{align*}
& \sum_{s=1}^{n} \operatorname{per}(A(s \mid \sigma(s))) \geqq n \operatorname{per}(A) \tag{3}\\
& \sum_{s=1}^{n} \operatorname{per}(A(s \mid \sigma(s))) \geqq n \operatorname{per}(A)
\end{align*}
$$

for any permutation σ. Since A is a minimizing matrix and thus, by Theorem 1, fully indecomposable, we can find for any given (i, j) a permutation σ such that $j=\sigma(i)$ and $a_{s, \sigma(s)}>0$ for $s=$ $1, \cdots, i-1, i+1, \cdots, n$. But then by Theorem 2,

$$
\operatorname{per}(A(s \mid \sigma(s)))=\operatorname{per}(A)
$$

for $s=1, \cdots, i-1, i+1, \cdots, n$, and it follows from (3) that

$$
\operatorname{per}(A(i \mid j)) \geqq \operatorname{per}(A)
$$

References

1. M. B. Hedrick, P-minors of the doubly stochastic matrix at which the permanent achieves a minimum, (to appear).
2. David London, Some notes on the van der Waerden conjecture, Linear Algebra and Appl., 4 (1971), 155-160.
3. Marvin Marcus and Morris Newman, On the minimum of the permanent of a doubly stochastic matrix, Duke Math. J., 26 (1959), 61-72.

Received March 15, 1974. This research was supported by the Air Force Office of Scientific Research under Grant No. 72-2164C.

