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PRODUCT INTEGRALS AND THE SOLUTION OF

INTEGRAL EQUATIONS
JoNn C. HELTON

Functions are from R to N or R X R to N, where R denotes
the set of real numbers and N denotes a normed complete
ring. If 3 >0, H and G are functions from R X R to N, f and
h are functions from R to N, each of H, G and dh has bounded
variation on [a,b] and |H| < 1— 8 on [a, b], then the following
statements are equivalent:

b b
(1) f is bounded on [a,b], each of [ H, f G and

(LR)fb(fG + fH) exists and

f(x)=h(x)+(LR)fx(fG + fH)

for a =x=b, and
(2) eachof .IP(1+Z., H'), ,IP(1+G) and

(R)fdh(ugl H’)AHY(1+G)(1+2H’)

exists for a =x <y =b and

fx)= h(a)arl"(l+G)(1+j§:‘lI H,-)
+(R)L* dh(lJrg H»>XH,(1+G)<1+’Z H’)

for a=x=b.

This result is obtained without requiring the existence of inte-
grals of the form

|

G—J’Gl=0 and fbll+G—H(l+G)f=0.

This article is part of a sequence of results on the solution of
integral equations initiated by two papers by H. S. Wall [28]{29] on
continuous continued fractions and harmonic matrices. He studied
certain techniques for solving integral equations which are associated
with product integration and his results have been extended in various
directions by J. S. MacNerney [18][19][20][21][22], J. W. Neuberger
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[24][25][26], T. H. Hildebrandt [13], J. R. Dorroh {4], B. W. Helton
[51[6](7], D. B. Hinton [14], J. V. Herod [11], C. W. Bitzer [2][3], D. L.
Lovelady [16][17] and J. A. Reneke [27]. The results here connect
closely with those of B. W. Helton [5, §5, pp. 307-315].

B. W. Helton [5, Theorem 5.1, p. 310] solved the integral equation

(@) f<x>=h(x>+(LR>fx (fG + fH)

by using product integral techniques. In his development, the exis-
tence of integrals of the form

(b) ["

plays an important part. For real valued functions, A. Kolmogoroff
[15, p. 669] has shown that 1ff G exists, then —fG

is zero. Further, W. D. L. Appling [1, Theorem 2, p. 155] and B. W.
Helton [5, Theorem 4.1, p. 304] have shown that there exist other classes

b
—IG'=0 and J'|1+G—H(1+G)|=O

exists and

b
of functions such that the existence of f G is sufficient to assure that

b
J,|6-]¢
305] has shown that for some settings the existence of ,II’(1+ G) for

b
a =x <y =b is sufficient to assure that f [14+ G -TI(1+ G)| exists

exists and is zero. Also, B. W. Helton [5, Theorem 4.2, p.

and is zero. However, it has been shown by W. D. L. Appling [1,
Theorem 2, p. 155] and the author [8, pp. 153-154] that the existence of

b
f G and [ IP(1+G) for a =x <y =b is not sufficient to imply the

existence of the integrals in (b). In the following, we solve the integral
equation in (a) without requiring the existence of the integrals in (b).

All integrals and definitions are of the subdivision-refinement type,
and functions are from either R to N or R X R to N, where R denotes
the set of real numbers and N denotes a ring which has a multiplicative
identity element represented by 1 and a norm | - | with respect to which
N is complete and |1|=1. Lower case letters are used to denote
functions from R to N, and capital letters are used to denote functions
from R X R to N. Unless noted otherwise, functions on R X R are
assumed to be defined only for elements {a,b} of R xR such that
a<b. If D={x,}i, is a subdivision of [a,b], then D(I)=
{[xg-i, x, B5-1s fo = f(x,) and G, = G(x,-,,x,). Further, {x,}}4 repre-
sents a subdivision of [x,-;,x,] and G,, = G(x,,-;, X, )-
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b
The statement that J G exists means there exists an element L of

N such that, if € >0, then there exists a subdivision D of [a, b] such
that if J is a refinement of D, then

IL—ZG<&.

J(n

The statement that ,I1° (1 + G) exists means there exists an element L of
N such that, if € >0, then there exists a subdivision D of [a,b] such
that if J is a refinement of D, then

lL—HU+G)<a

Jn

b b
The statement (LR)f (fG + fH) exists means f C exists, where

C(r,s)=f(r)G(r,s)+ f(s)H(r,s).

We adopt the conventions that

jaG=o and TI*(1+G)=1.
Further,

j i
> G,=0 and [[(+G,)=1,
q=i q=i

where i > j.

The statements that G is bounded on [a,b], G € OP° on [a,b] and
G € OB° on [a,b] mean there exist a subdivision D of [a4,b] and a
number B such that if {x,};_, is a refinement of D, then

(1) |G,|<B forq=1,2,--+,n,

2 |_.(1+G,)|<Bfor1=i=j=n,and

(3) =..|G,|<B,
respectively. Similarly, statements of the form |G|<p are to be
interpreted in terms of subdivisions and refinements. Observe that
every function in OB° is also in OP°.

The statement that G € OM* on [a, b] means , I’ (1 + G) exists for
a=x<y=b and if € >0 then there exists a subdivision D of [a, b]
such that if {x,};_, is a refinement of D and 0 =p < q =n, then

|, 11+ G) -1, (1+ G)| < e
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Also, GEOL° on [a,b] only if lim,,-G(p,x), lim.,-G(x,p),
lim,,.,-G(x,y) and lim,,.,-G(x,y) exist for a=p =b, and G € OA°
b

_ J G
additional background with respect to this paper, see work by B. W.

Helton [5][6] and J. S. MacNerney [20). Further, additional back-
ground on product integration is given by P. R. Masani [23].

exists and is zero. For

LemMMa 1. If G is a function from R X R to N and G € OB° on
b
[a,b], thenj G exists if and only if IP(1+ G) exists fora=x <y =b
[10, Theorem 4].

LemmAa 2. If H and G are functions from R X Rto N, H € OL° on
b
[a,b], G € OB° on [a,b] and eitherf G exists or I’ (1 + G) exists for

a=x<y=b, then [ HG and f GH exist and I’(1+ HG) and
AP (1+ GH) exist for a =x <y =b [10, Theorem 5].

LeEMMA 3. If G is a function from R X Rto N, G € OB° on [a,b]
and II’(1+ G) exists for a =x <y =b, then G € OM* on [a,b] [10,
Theorem 1].

LemMMA 4. Ife >0, His a function from R xR to N and H € OL°

on [a, b], then there exist a subdivision {t;}_, of [a,b] and a sequence
{k;}o_ such that if 1=j=pand t,_<x <y <t, then

|H(x,y)— k| <e
f6, Lemma, p. 498].

LemMMA 5. If H and G are functions from R X Rto N, H € OL° on
[a,b] and G € OA° and OB° on [a,b], then HG € OA° on [a,b] [6,
Theorem 2, p. 494].

LemMmA 6. If Fand U are functions from R X R to N, F and U are

in OB° on [a,b], FE OA°on [a,b], [P0+ U) exists fora=x <y =
b and

(R)fyFSH’(l+U)
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exists fora =x <y =b, then

[

exists and is zero [S, Lemma, p. 307].

(R)f’FSHY(HU)—F(x,y)

The main result now follows.

THEOREM. If B >0, H and G are functions from R X R to N, f and
h are functions from R to N, each of H, G and dh is in OB° on [a,b] and
|H| <1~ B on [a,b], then the following statements are equivalent :

b b
(1) fis bounded on [a,b], each off H, j G and

(LR) f (fG + fH)
exists and
f(x) = h(x) +(LR) [ (fG + fH)

fora=x =b, and
(2) each of IP(1+2, H'), IP(1+G) and

(R)f dh<1+gH") SH’(1+G)<1+]§; H")

exists fora=x <y =b and
f(x)=h(a)aH‘(1+G)(1 +2 Hf)
+(R)L‘ dh<1+g Hi)xnx(1+G)(l+j§::] H,_)

fora=x=b.

Before proving the theorem, we point out the results of considering
left and right integrals, respectively. If H = 0, then we have the
integral equation

(a) fo=hw+@) [ 16
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This equation involves only a left integral, and its solution is
® @)= k@, +G)+R) [ dhT(1+ ).
On the other hand, if G = 0, then we have the integral equation

© f(x)=h(x)+(R)ffo-

This equation involves only a right integral, and its solution is
(d) f(x)= h(a)aﬂ‘(l + i H’) +(L) J dh,rI*(l +> H').
j=1 a )=1

If zisin N and |z| <1, then 1+ 2, 2’ exists and is (1 —z)™". Thus, in
(d) and in the theorem itself, it is possible to substitute (1— H)™' for
1+ 27, H'. To obtain some feeling for why invertibility-related condi-
tions are placed on H but not on G, consider the first approximations to
equations (a) and (¢). For (a), we have that

f(x)=h(x)+f(a)G (a,x);
while for (c), we have that

f(x)=h(x)+f(x)H (a,x),
and hence that

f(x)=h(x)[1-H(a,x)]"

For additional discussion of product integrals, inverses and integral
equations, the reader is referred to papers by J. V. Herod [12] and the
author [9].

The main result is now established.

Proof. To simplify notation in the following work, we use the
interval functions T, U and V to denote

(1+G)(1+§'H’),

G+SH+GS H
=1 i=1
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and
1+> HI,
i=1

respectively. Further, we use C to denote the interval function

C(r,s)=f(r)G(r,s)+ f(s)H(r,s).

b
Proof (1)—(2). Since f H exists and H € OB° on [a,b], it

follows that HE€ OL° on [a,b], and hence, 1+Z7., H € OL° on
[a,b]. Thus, the existence of

b © b
J H(1+3 )= [ 3w
a j=1 a j=1

follows from Lemma 2. Therefore, the existence of I’V fora =x <
y = b follows from Lemma 1. Also, Lemma 1 implies the existence of

b
JP(1+G) for a =x <y =b from the existence of f G. Lemma 2

b
can be used to establish the existence of J G 37 H'. Therefore, since

each of

b b « b @
fG,f > H' and fGEHf
a a j=1 a i=1

b
exists, we have that f U exists, and thus, the existence of ,IPT for
a.=x <y = b can be established by applying Lemma 1. Finally, since
V(r,s),IPT is in OL° on [a, b], the existence of

(R) f dhV.IPT

b
for a = x <y = b can be obtained from the existence of f dh through

the use of Lemma 2.
Suppose a =x =b. We now show that

f(x)=h(a)an*T+(R)f’ dh V.IFT.

If a = x, the result follows immediately. Therefore, suppose a < x.
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Lete >0. Since|H|<1-B onl[a,x],G, H and dh are in OB° on
[a,x]and f and V are bounded on [a, x], there exist a subdivision D, of
[a,x] and a number B such that if {x,}, is a refinement of D,, then

() |H|<1-Bfori=1,2,---,n,

) 3i.|dhV,|<B,

(3) =,|CVi|<B,

4 =, Ux. C] V,~l < B, and

5) |Villioo T |<B fori=1,2,---,n.

Since ,II'T exists for a=r=s=x and U € OB° on [a,x], it
follows from Lemma 3 that there exists a subdivision D, of [a, x] such
that if {x;}/_, is a refinement of D, and 0 =p <q =n, then

(1) [oI%T ~TIL,., T;| < e(16B)™,

2 |0, T,—,1<T|<e(16B)™', and

(3) |h(a),'T — h(a)I;., T; | < €/4.

Since (R)f dh V II* T exists, there exists a subdivision D; of [a, x]

such that if {x;}/_, is a refinement of D,, then

I(R) f dhV,IFT =S dh V, IFT| < 8.
a i=1

-

Since V(r,s),II*T is in OL° on [a, x1, it follows from Lemma 4 that
there exist a subdivision D, = {t;}’-, of [a, x] and a sequence {k;}’-, such
thatif I1=j=p and t;_,<r <s <t, then

|V(r, s),]FT - k| < e(16B)™".

Since C € OB° on [a,x] and f C exists, there exist subdivisions

{r}24 and {s;}?2¢ of [a,x] such that
() 4. <r<s<tforj=12,---,p, and

2) =9 C;k_fm Cl<e[8B(p+1]'forj=1,2--,p+1 and

each refinement {x,-,(};"ﬂ, of {s;-1, t;i-1, 1;}.

Further, forj = 1,2, - - -, p, there exist subdivisions E; of [r;, s;] such that
if F;is a refinement of E, then

p

j=1

ZC—fSiC'|kj|<e/8.

A
Let D denote the subdivision
4 14
U DU (s U sk O
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of [a, x], and suppose {x,}/-, is a refinement of D. Forj=1,2,---,p,let
K; be the set such that i € K; only if , <x; =s;. Let K and L denote
the sets

LPJ K" and {i}:‘=|_ LpJ Ki’
j=1 j=1

respectively.
We now establish two inequalities that are necessary to complete
the proof. First,

(®) ["anv.er-3 an v, [T T
a i=1

k=i+1

|3 anvimr-Sanv 1 7,

k=i+1

+ |(R)fx dhVIFT-S dh V. I T
a i=1

JET= [ Tl +e/8

k=i+1

<3S |dn V|
i=1

<B[e(16B)™'] + €/8 < €/4.

Second,

[C—f C]V,» 1™

i= k=i+1
c[gle-f dui
ieK Xi—1 k=i+1
+3la-[" c’lw 1
i€EL Xi—1 k=i+1
“[gle-J v
i€EK Xi—1 k=i+1

+(p + D{e[8B(p + DI"'}B

< z[a—r‘ C]\/i,inxT
ieK Xi~1
+ S [c—f c]w [ T.-.ET
i€EK Xi—1 k=i+1

+€/8



96 JON C. HELTON

<|gle-] c]v.rr]

+2B[e(16B)7'] + €/8

= 5_‘,[ f C]Vi,,H‘T +eld
j=1 | i€K; Xi-1
=>|5la-[" ]«
j=11i€K; Xi-1
+3 S —f C(I‘/;X,H‘T~k;|+e/4
1=1 i€Kj Xi-1
1 4 s;
<z|sc-[clm

+2B[e(16B) 'l + €/4
<e/8+3€/8=¢€]2.

If we employ the iterative technique used by B. W. Helton [5, p.
311], we have that

f=3 U C- c]vi["]Tk

k=i+1

+h(a)HT+2dhv 11 T.

k=i+l1

Thus,

lh(a),,H*T+(R)fx dh V. IFT - f(x)

= lh(a),,H‘T—-h(a)ﬁT,-l
+‘(R)fxthSH‘T Zdhv [1~
el el fin
i=1 Xi—1 k=i+1

<eld+eld+e2=c¢.

+

Therefore, (1) implies (2).
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Proof (2)—(1). It follows from the bounded variation of the
various functions involved that f is bounded on [a,b]. Since 2., H' €
OB° on [a, b], it follows from Lemma 1 that

[ Zm=] (g m)

exists. Recall that (1+Z27, H’)™" exists and is 1— H. Thus, since
b
1-HEOL®° on [a,b], it follows from Lemma 2 that f H

b
exists. Further, it follows from Lemma 1 that f G exists. The

b b b
existence off C now follows from the existence off G and[ H by

applying Lemma 2.
Suppose a =x =b. We now show that

f(x)=h(x)+(LR)fx (fG + fH).

If a = x, the result follows immediately. Therefore, suppose a <x.

Let € >0. There exist a subdivision D, of [a,x] and a number B
such that if {x;}'_, is a refinement of D,, then

(1) |Hi|<1-B fori=1,2,--,n,

2 =G |<B,

3) =L|H|<B,

(4) =r,|dh;Vi|< B, and

(5) |, I«T|<Bfor0=p<gq=n.

Since f G exists and 2., H' € OL® on [a,b], it follows from

Lemma 2 that f G 27, H' exists. Thus, the existence off U follows

from the existence of

fo,fszf and ijzH’.
a a j=1 a j=1
Therefore,

Aa+U0)=,1I'T
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exists fora =r =t =x by Lemma 1. Now, it follows from Lemma 3
that U € OM* on [a,x]. Hence, there exists a subdivision D, of [a, x]
such that if {x;}'_, is a refinement of D, and 0 =p <q = n, then

f(a) T T - f(a) [] T.| < 6By

i=p+1

Since dh is in OA° and OB° on [a,x] and V € OL° on [a, x], it
follows from Lemma 5 that dh V € OA° on [a,x]. Thus, since U €
OB°onla,x]and II'T exists fora = s <t = x, it follows from Lemma

6 that

From the existence of this integral and the fact that U € OM* on [q, x],
it follows that there exists a subdivision D; of [a, x] such that if {x;}/_, is
a refinement of D; and 0 =p < q = n, then

(R)f" dh V.I'T - dh (v)V(u, v)| = 0.

1 2

@) | MT-Ti,. T |<e(12B)™.
Thus, if {x;}{_, is a refinement of D, U D; and 0 <p = n, then

® [ dan VSH"T——dhiV,.'<e(IZB’)“, and

k=i+1

X, P 14
I(R)f dhv.II>T- dhV; [] T
a i=1
<

Xp 14
=I(R)f dhV 1% T -2, dh V., > T
a i=1

P
xiﬂ"' T- H Tk

k=i+1

p
i=1

<

i=1

4 x;
> [(R) dh V,II* T — dh; V,] T

i Xi—1

+ Ble(12B)1]
®R) [ dnv.I5T - dn vV,

4
=2
i=1 Xe~1

<Ble(12B* ']+ €(12B) ' =€(6B)™".

| . I» T|+e(12B)"
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It follows from the existence of the integrals involved that there
exists a subdivision D, of [a, x] such that if {x;}-, is a refinement of D,,
then

< €/6

’f(a)ﬂﬂ—f(a)aH‘T
and

Sdanv, [] T - (R)J'x dh vsnx:r| < el6.
i=1 a

k=i+1

Let D denote the subdivision U ¢, D; of [a, x]. Suppose {x;}/-oisa
refinement of D. Observe that

Further,
v 3 (11 7)e
-3 [Sav I n]a
= L= k=i
and

These identities can be established by induction and are used in
subsequent manipulations.
We now work out a further identity to aid in establishing the
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existence of the desired integral. By employing the previously stated
identities, we have that

f@II T+ dnv I T
=t |1+ 5 ([T )6 3 (1 7) 1]
+Zanv1+ 3 (I, 7) 6+ 5 (11 7))
=f@[1+3 ([ m) 6.+ 5 (117) 1]
+3dnVi+ S dn v, 3 (kﬂ ) G
+Sanv. 3 (I1,7) 5
=ra|1+ 5 ([1n) 6+ 3 (1) a1
+ 3 dhi+ 3, dh ViH
& [F v Il nlo
& [Z v ] nm
o3 ([ )o$ (1 7)]
+h(x) =~ h@)+ 3, [,2: dh,-V,-kﬁl Tk] G
+Z[§dh,-v,~k§!l Tk]}ﬂ
+h(x)+§ [2: dhjwkﬁl Tk] G,

+3 S anv, [1 1) A
i=t Lj=1 k=j+1
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Now, by employing the identity developed in the preceding parag-
raph, we have that

B+ 360G+ 3 f(x)H, = f(x)
< ’h(x)+ 2 fxio)G;: + E f(x)H,
—[f(a)f["[‘,—+2dh,-vi I n”+e/6+e/6

= |h(x)+ 2 f(x-G, + E f)H,

i=1

+h(x)+’iz [2 dh, v, ] Tk] G,

i=1 =j+1

k
+ 3|3 an v, 11 1] af|+en
i=1 Li=1 k=j+1

=3 @, T-f@ [1 7| |G|
+3 [ f(@). 1 T~ f(@) [ 1| | H|
+3 (R)fx'—'thuH’HT—gdh,-V,- M 7liG|
in a =i k=j+1
+3 (R)fx‘thvH‘iT—idh,-V,- [T 7|5
+€/3
<B[e(6B)"]+ B[e(6B)™"]+ B[e(6B)™"] + B[e(6B)]
+€/3
= €.

Therefore, (LR) x(fG + fH) exists and is f(x)—h(x). Hence, (2)
implies (1). 4

B. W. Helton states three additional theorems on the solution of
integral equations by product integration [5, Theorems 5.2, 5.3, 5.4, pp.
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313-314]. The techniques used in the present paper to avoid requiring
the existence of the integrals

I

can also be applied to these results.

b
G—fGi=0 and f|1+G—l'I(1+G)|=0
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