MATRIX RINGS OVER POLYNOMIAL IDENTITY RINGS II

Elizabeth Berman

Abstract

If A is a ring satisfying a polynomial identity, what identity is satisfied by the matrix ring A_{n} ? Theorem: If A satisfies the standard identity of degree k, then A_{n} satisfies the standard identity of degree $2 k n^{2}-n^{2}+1$.

Definition: Suppose that $\left\{r_{1}, \cdots, r_{q}\right\}$ is a sequence of elements of a ring. To parenthesize the sequence into j clumps is to insert j pairs of adjacent, nonoverlapping parentheses. The subsequence within one pair of parentheses constitutes a clump. It is odd or even, depending on the number of entries. The value of the clump is the product of the entries. If the value is zero, the clump vanishes.

In the following let Z represent the integers.
Lemma 1. Let k, m, and n be positive integers. Let $\left\{u_{1}, \cdots, u_{m}\right\}$ be a nonvanishing sequence of matrix units $e_{i j}$ in Z_{n}.
(i) If $m=k n$, there exists i such that the sequnce can be parenthesized into k clumps, each of value $e_{i i}$.
(ii) If $m=(k n-n+1) n$, there exist i and j such that the sequence can be parenthesized into k clumps, each of value e_{i}, and each beginning with $e_{i j}$.

Proof of (i). Case 1. Suppose there exists i such that at least $k+1$ of the entries in the sequence have i as initial subscript. Call the first $k+1$ such entries $y_{1}, y_{2}, \cdots, y_{k+1}$. Then parenthesize the sequence as follows: start with y_{1}. Enclose it in parentheses, together with all entries to the right, if any, up to y_{2}. Next parenthesize y_{2} with all entries up to y_{3}, etc. We form k clumps, each beginning with a y. Since each clump has to the right an entry with i as initial subscript, and the sequence is nonvanishing, each clump has value $e_{i i}$.

Case 2. Suppose that for all i, at most k of the entries have i as initial subscript. Since the sequence has $k n$ entries, every i from l through n occurs exactly k times as an initial subscript.

Case 2a. The last entry is an idempotent $e_{i i}$. There are previous entries y_{1}, \cdots, y_{k-1}, each with i as initial subscript. Start with y_{1} and
enclose it in parentheses with all entries to the right, up to y_{2}. Continue, forming $k-1$ clumps, each of value $e_{i i}$. Then form a final clump consisting of the single $e_{i i}$ at the end.

Case 2b. The last entry is $e_{i j}$, with $i \neq j$. Then there are k previous entries y_{1}, \cdots, y_{k} with j as initial subscript. Parenthesize, forming $k-1$ clumps, beginning with $y_{1}, y_{2}, \cdots, y_{k-1}$, respectively. Then form a final clump, beginning with y_{k} and ending with the last $e_{i j}$. The result is k clumps, wach of value $e_{i j}$.

Proof of (ii). Let $m=(k n-n+1) n$. Let $\left\{u_{1}, \cdots, u_{m}\right\}$ be a nonvanishing sequence of matrix units. Let $t=k n-n+1$. By (i) there exists i such that the sequence can be parenthesized into t clumps, each of value $e_{i i}$. Let y_{1}, \cdots, y_{t} be the first entries in these clumps. Each y has i as initial subscript. The second subscript can be any integer from 1 through n. Now

$$
t=k n-n+1=(k-1) n+1 .
$$

Thus for some j, at least k of the y 's have j as second subscript. Suppose that $y_{f(1)}, \cdots, y_{f(k)}$ are all $e_{i j}$. Make new clumps as follows: start with $y_{f(1)}$ and enclose it in parentheses together with all entries to the right, up to $y_{f(2)}$. Continue, forming $k-1$ clumps. In the old parenthesizing $y_{f(k)}$ was the initial entry in a clump of value $e_{i i}$. Let this old clump be the k th clump in the new parenthesizing. The result is k clumps, each of value $e_{i i}$, and each beginning with $e_{i j}$.

Theorem 3.2 of [2] established that if A is an algebra satisfying a standard identity, so is A_{n}. The following theorem improves this result in three ways: (1) the degree of the identity satisfied by A_{n} is much lower. (2) The theorem holds for rings, not just algebras over fields. (3) The proof is simpler.

Theorem 1. If A is a ring satisfying the standard identity of degree k, then A_{n} satisfies thestandard identity of degree $2 k n^{2}-n^{2}+1$.

Proof. Let

$$
t=2 k n^{2}-n^{2}+1=(2 k-1) n^{2}+1 .
$$

Choose t simple tensors in $A \otimes Z_{n}$ of form $a \otimes e_{i j}$, where $a \in A$, and $e_{i j}$ is a matrix unit. Evaluate on these simple tensors the standard polynomial of degree t. Consider only nonvanishing terms.

Case 1. Suppose that for some i, at least k simple tensors have form

$$
a_{1} \otimes e_{i,}, \cdots, a_{k} \otimes e_{i i}
$$

Let $y=e_{i i}$. Call the remaining elements

$$
b_{1} \otimes z_{1}, b_{2} \otimes z_{2}, \cdots
$$

Insert parentheses on the right side of each term: start with the first y and enclose it with all z 's to the right, if any. Similarly parenthesize the next y with its z 's, etc. The last y forms a singleton clump. Thus k clumps are created, each beginning with e_{i}, and each of value e_{i}. If there are any z 's in the clump, call them the z sub-clump. It also has value e_{i}.

Let V be the number of even clumps, and let D be the number of odd clumps. Then $V+D=k$. Each even clump yields two new odd clumps: the initial y and the z sub-clump. The result is $2 V+D$ adjacent odd clumps, each of value $e_{i i}$. Note that $2 V+D \geqq V+D=k$.

In each term find the first set of k adjacent odd clumps of value $e_{i \text { i }}$. Create a corresponding set of clumps on the left side. Call two terms equivalent if the following conditions hold on their left sides:

1. The elements to the left of the clumps are the same elements in the same order.
2. The k clumps are the same, but in any order.
3. The elements to the right of the clumps are the same elements in the same order.

Consider a fixed equivalence class. The sum of the terms in the class is a simple tensor whose right side has the common value for the class. The left side is the product of the following:

1. The product of all elements left of the clumps.
2. The standard polynomial of degree k, evaluated on the values of the k clumps, in some order.
3. The product of all the elements right of the clumps. (Because all these clumps are odd, Corollary to Lemma 4 of [4] ensures correctness of signs of terms.) Since the second factor vanishes, the conclusion follows.

Case 2. Suppose that Case 1 does not hold. Since there are $(2 k-1) n^{2}+1$ simple tensors, by Lemma 1 (ii) there exist i and j such that at least $2 k$ simple tensors have form $a \otimes e_{i j}$. Evidently, $i \neq j$. Let $w_{i i}=e_{i i}+e_{i l}$. Then $w_{i i}$ is idempotent, and

$$
e_{i j}=e_{i i}+e_{i j}-e_{i i}=w_{i i}-e_{i i} .
$$

In each term replace $e_{i j}$ by $w_{i i}-e_{i i}$. Let N be the original number of $e_{i j}$'s. Each old term, upon expansion, yields 2^{N} new terms. Every new term has on the right a monomial in w 's and e 's. If there are at least k of the $e_{i i}$'s in the term, it is suitable for Case 1. Otherwise there are at least k of the $w_{i i}$'s. In this case, define new elements as follows:

$$
\begin{aligned}
& w_{i j}=-e_{i j}+e_{i j} \\
& w_{j i}=-e_{i i}-e_{i j}+e_{j i}+e_{i j} .
\end{aligned}
$$

If $i \neq p \neq j$, let

$$
\begin{aligned}
& w_{p t}=e_{p i}+e_{p i} \\
& w_{i p}=-e_{i p}+e_{i p} .
\end{aligned}
$$

For the remaining integers from 1 through n, let $w_{p q}=e_{p q}$.
The w 's constitute another set of matrix units in Z_{n}. Each old matrix unit $e_{p q}$ is a linear combination of the w 's with integral coefficients. Replace all the e 's by w 's. The conclusion follows by the linearity of the standard polynomial and by Case 1.

Definition. The unitary identity of degree k is

$$
\sum_{\pi} x_{\pi(1)} \cdots x_{\pi(k)}=0,
$$

where the sum is over all permutations π of the integers 1 through k.

Theorem 2. If A is a ring satisfying the unitary identity of degree k, then A_{n} satisfies the unitary identity of degree $k n$.

Proof. The proof uses Lemma 1 (i) and is similar to Theorem 1 of [4].

Theorem 3. If A is an algebra over a field with at least k elements, and A satisfies $x^{k}=0$, then A_{n} satisfies $x^{k n}=0$.

Proof. The proof uses Lemma 1(i) and is similar to Theorem 1.2 of [3]. Note: That paper uses without definition the term "homogeneous component" of a polynomial. If $f\left(x_{1}, \cdots, x_{i}\right)$ is a polynomial, the homogeneous component of degree n_{1} in x_{1}, degree n_{2} in x_{2}, etc., is the sum of all terms with degree n_{1} in x_{1}, etc.

References

1. S. A. Amitsur and J. Levitzki, Minimal identities for algebras, Proc. Amer. Math. Soc., 1 (1950), 449-463.
2. Elizabeth Berman, Group rings, matrix rings, and polynomial identities, Trans. Amer. Math. Soc., 172 (1972), 241-248.
3. ——, Matrix rings over polynomial identity rings, Trans. Amer. Math. Soc., 172 (1972), 231-239.
4. - Tensor products of polynomial identity algebras, Trans. Amer. Math. Soc., 156 (1971), 259-271. MR 43 \# 278.
5. Nathan Jacobson, Structure of rings, rev. ed., Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, R. I., 1964. MR 36 \# 5158.
6. Thomas P. Kezlan, Rings in which certain subsets satisfy polynomial identities, Trans. Amer. Math. Soc., 125 (1966), 414-421.
7. Uri Leron and Amitai Vapne, Polynomial identities of related rings, Israel J. Math., 8 (1970), 127-137.
8. D. S. Passman, Infinite group rings, Marcel Dekker Inc., New York, 1971.
9. C. P. Procesi and L. Small, Endomorphism rings of modules over PI-algebras, Math. Z., 106 (1968), 178-180.

Received July 1, 1974. Presented to the Society, January 17, 1974. The writer is grateful to Professor Uri Leron for advice on this paper.

Rockhurst College
Kansas City, Missouri

