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STRONGLY SUPERFICIAL ELEMENTS

V. MERRILINE SMITH

The concepts of a strongly superficial element and a very
strongly superficial element are introduced. A number of their
properties are established and three applications are given.

1. Introduction. Superficial elements have proved to be a
useful and important concept in a number of problems in commutative
algebra, for example, the study of characteristic functions and
multiplicities. This paper is concerned with two special kinds of such
elements: a very strongly superficial (v.s.s.) element of degree k for an
ideal A in a ring R; and, a strongly superficial (s.s.) element for
Ak. After listing a number of properties of s.s. and v.s.s. elements, we
present in Theorem (2.5) and (2.6) a number of characterizations of such
elements. In §3 we give three applications of the theorems. Namely,
we first show that a known result about s.s. elements for an ideal
generated by an R~ sequence in a locally Macaulay ring holds in every
Noetherian ring (3.2). Next we show that if A is an ideal in a
Noetherian ring R, then the zero ideal in the A -form ring of R has no
irrelevant prime divisor if and only if there exists a v.s.s. element of
some positive degree for A (3.5). The final application is concerned
with certain ideals in Rees rings of R ((3.8) and (3.9)).

2. s.s. and v.s.s. elements. All rings in this paper are
assumed to be commutative with a unit element.

DEFINITION. 2.1. Let A be an ideal in a ring R, and let k be a
positive integer. A superficial element of degree k for A is an element
JC E Ak for which there exists a nonnegative integer c such that
(An+k: xR) Π Ac = An, for all integers n ^ c. If c = 0 (where A° = R),
then x is said to be a very strongly superficial (v.s.s.) element of degree k
for a. If Ank: xR = A "*"*, for all integers n ^ 1, then x is said to be a
strongly superficial (s.s) element for Ak.

It is easily seen that, if An ^ Aπ+1 (for each integer n ^ 0) and JC is a
superficial element of degree k for A, then xfέ Ak+ι. (In particular, a
v.s.s. element of degree k for A is not in A**1"1.) It is also clear that a
v.s.s. element of degree k for A is a s.s. element for A *. Some further
properties of such elements are given in the following remark.

REMARK 2.2. Let A be an ideal in a Noetherian ring R, let k be a
positive integer, and assume x is a s.s. element for A*.
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(2.2.1) If k = 1, then x is a v.s.s. element of degree 1 for A, so the
concepts of a s.s. element for A and of a v.s.s. element of degree 1 for A
are the same.

(2.2.2) If y is a v.s.s. element of degree n for A, where n = m/c, for
some positive integer m, then it is readily seen that xy is a s.s. element
for An+k. Also, JC" is a s.s. element for An\ for each integer n ^ 1.

(2.2.3) If x y = 0 , for some y E # , then y e Π ^ , (A"*:xl?) =
nnδlA"*~\ Therefore, if Γ\n^An =(0), then a s.s. element is not a
zero-divisor.

(2.2.4) If x is a v.s.s. element of degree k for A, then statements
analogous to (2.2.2)-(2.2.3) hold.

Theorems (2.5) and (2.6) below give several necessary and sufficient
conditions for x to be a v.s.s. element of degree k for A (respectively, a
s.s. element for A *). To prove these results, the following lemma and
definitions are needed.

LEMMA 2.3. Let A be an ideal in a ring R, let x E A \ and assume x
is a nonzero-divisor in R. Then Ank: xR = A "*~\ for all n ^ 1, // and
only if xnR[Ak/x] Γ)R = An\ /or a// integers n ^ 1.

Ptoo/. Let tf'^fA*/*]. To show the "only if" part, fix an
integer n g 1. Since xπJR' Π I? DA*", let rExnRfΠR. Then r =
JCV, for some r' = a\x\ where α E A*'', so rx1 = xna E A(n+/)k. There-
fore, r E A ( n + m : x ' i ? = A n \ To see the "if" part, let rEA"*:* !?.
Then rx = a BAnk. Hence r = xn-x{alxn)E.xn-xR' ΠR =

A ( n l ) k . The opposite containment is always true, because x E A\

DEFINITION. 2.4. Let A = (α,, , αn) be an ideal in a Noetherian
ring £%, let w be an indeterminate, and let t = u~\

(2.4.1) The graded Noetherian ring 9i = 9ί{R,A) =
R[tau- , ίαn, M] is the JRees ring o/l? w/ίft respect to A. The elements
of I? in trAr are said to be homogeneous elements of degree r
( - oo < r < oo, where AΓ = R if r < 0) and a homogeneous ideal is an
ideal which can be generated by homogeneous elements. A homogene-
ous ideal H in $t is said to be irrelevant in case it contains every
homogeneous element of sufficiently large degree. Otherwise, H is
said to be relevant.

(2.4.2) The graded subring if = S^(JR, A) = R[tau , tan] of ^ is
the restricted Rees ring of R with respect to A.
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(2.4.3) The form ring ofR with respect to A (or, A-form ring ofR),
&(R9A), is the graded ring 07=<>A7Am. It is known [3, Theorem 2.1]
that 3F = &(R,A) = <3llu0i, where 9t = 9t(R, A), and in this isomorph-
ism the A-form of an element x in R corresponds to the coset xtk + u$l
in 0ilu0i. (The assumption in [3] that JR be local is not essential.)

THEOREM. 2.5. Let A be an ideal in a Noetherian ring R, let
9ί = 0t(R,A\ and let if = &>(R, A). Fix a positive integer k,fixxEAk,
and consider the following statements:

(i) x is a v.s.s. element of degree k for A.
(ii) JC is a v.s.s. element of degree k for Aίf in ίf.
(iii) x is a v.s.s. element of degree k for u!3i in 01.
(iv) xtk is not in any prime divisor of A1 if, for all i ^ 1.
(v) u,xtk is an 31-sequence.
(vi) An+k Π JCJR = xAn, for every integer n ^ 1.
(vii) A n+kίf Πx<f = xA nSr, for every integer n ^ 1.
(viii) un+k$i Π x$k = (jcwn)$£, for every integer n ^ 1.
(ix) x is a nonzero-divisor and xnR' Π R = A"\ for every integer

n ^ l , where Rf = R[Aklx].
Then the following hold:

(2.5.1) (i)-(v) are equivalent and each implies (vi)-(viii).

(2.5.2) (vi)-(viii) are equivalent and, if x is a nonzero-divisor, then
each implies (i)-(v) and (ix).

(2.5.3) If k = 1, then (ix) implies (i)-(viϋ).

Proof (i)->(iii). x = uk(xtk)Euk0l, and u"+k®,: x0l =
un(3l: xtk(3i 3un0ί. For the opposite inclusion, let ytr G
un+k(3l: JC$. Then, with m = n 4- fc -f r, there exists α G Am such that
xyίr = un+katm. Therefore, xy = aGAm; hence y EAn+r+k:xR =
A"+Γ, by (i). Therefore, y ί n + Γ G ^ , so ytrGuH$l. Hence, since
u"£%: JC£% is homogeneous, (iii) holds.

(iii) implies u0i = uk+ι9ί: x& = w* + 1 $: uk(xtk)0l =
(w*+ 1$: Mk3?): xtk0l = M3? : xtk(3l. Hence (iii) implies (v), since u is not
a zero-divisor in £%.

(v)-^(iv). Let i g l and let at" EA'Sf: xtk&. Then atnxtk E
Ai9>= uι0lΓ)!f (this can be seen much as in the remainder of this
paragraph). Hence atn G M'S? : xtk$l = (by (v)) w'S?, and so αί n + l G 3?,
thus α G A n + i . Therefore a = Σ fegcg, where feg G A ' and cg GAn, hence
αί" = Σ b g ( c / ) G Λ ' y , and so (iv) holds.

(iv)->(ii). Since Aιίf\ xΐf ΏA'ι-kSf, for all i g k, and both ideals
are homogeneous, let ytr be an arbitrary homogeneous element in
AΎ'.xΐf. Then xytr G A^A'Sf, say xyίΓ = Σ f A A j ( c , j ί Γ ) , where
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each ag,j G A ' Λ bgJ EA\ and cjr e ίf, so xtkytr = Σβ Jα f J(ίv/ί*) (cβ Jί
Γ),

where each α w 6 A H and bgJcgJ
r+k 6 ^ . Hence xtkytr E A^Sf, so

that yίΓ GΛ'- k y, by (iv), and so (ii) holds.
Since S?CjR[ί], (ii) implies, for all / ^ fc, A'"* = Λ ' " k y ΠΛ =

(A ' ^ : xSf) ΓΊ 1? = (A ιSf Π jR): (jcSP Π 1?) = A R: xR, hence (ii) implies
(i). Therefore, (i)-(v) are equivalent, and if (i) holds, then

(*) An+k ΠxR=x(An+k:xR) = JCA", for all n δ 1, hence (i) im-
plies (vi). Similarly (ii) implies (vii) and (iii) implies (viii). Therefore,
(2.5.1) holds.

(2.5.2) (viii) ^ (vii) much as in the proof that (v)-»(iv); and
(vii)-»(vi), since ΣfCR[t]. For (vi)-»(viii), let at1 E un+k9t Πx9l =
x(un+k$l: x0l), so α ί ' = x b f ' e i ι " + * 9 ϊ , for some bVG
un+k0l: x9t. Therefore, with g = n + i + k, a = bx GA8, so
b £A8:xR, hence xb Gx(A8: xR) = A8 ΠxR = (by (vi))
jcAn+i. Therefore xb =ΣxCfdf, where xcfGxAn and dfEAι, hence
at' =xbtι ExAn$l Qxun(3l, and so un+k9t Πx&l =x(un+k9t: x$l)C
xun9i, since un+k0l Πx0i is homogeneous. Hence (viii) holds, since
xun(3lQun<3ί and since x GAk implies un+k$l\x0iΏun(3i. Further, if JC
is a nonzero-divisor, then (vi) implies (i), by (*), and so (ix) holds, by
(2.3).

Finally, for (2.5.3), if k = 1, then (ix) implies (i), by (2.3).

THEOREM 2.6. Let R, A, x and k be as in (2.5), let $t = 9?(JR, A k ) ,
let if - ίf(R,Ak), and consider the following statements:

(i) x is a s.s. element for Afc.
(ii) x is a s.s. element for Ak&.
(iii) x is a s.s. element for u9l.
(iv) xt is not in any prime divisor of Akiίf, for each / S i .
(v) u,xt is an ^-sequence.
(vi) Ank ΠxR = xAnk~k, for all integers n g 1.
(vii) A nky Dx9> = xA *-kSf, for all integers n S 1.
(viii) un(3l Π x0l = xun~ι% for all integers n g 1.
(ix) x is a nonzero divisor and xnR' ΠR = A"*, for all integers

n S I , where R' = R[Aklx].
Then the following statements hold:

(2.6.1) (i)-(v) are equivalent and each implies (vi)-(viii).

(2.6.2) (vi)-(viii) are equivalent and, if x is not a zero divisor, then
each implies (i)-(v) and (ix).

(2.6.3) (ix) implies (i)-(viii).

Proof This follows from (2.2.1) and (2.5).
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3. Applications. In this section we give three applications
of Theorems (2.5) and (2.6).

REMARK. 3.1. Let α,, ,αm be an R- sequence in a Noetherian
ring R, and let A = (aί9 , am)R.

(3.1.1) [2, Corollary 3.7]. If R is locally Macaulay, then aλ is a
s.s. element for A.

(3.1.2) If I? is a Macaulay local ring, then each of the following
statements hold:

(i) ([5, Lemma 6, p. 402] and [1, Theorem 119].) Each ax is a s.s.
element for A.

(ii) [5, Lemma 5, p. 401]. The prime divisors of A n(n ^ 1) are the
prime divisors of A and each has height m.

We note that it follows from (3.1.2) that parts (i) and (ii) of (3.1.2)
also hold for an ideal generated by an R- sequence in a locally Macaulay
ring. However, it follows from (3.2) below that (3.1.2) (i) holds even if
R is not locally Macaulay.

PROPOSITION1 3.2. Let R be a Noetherian ring, let au -,am be an
R-sequence, and let A =(al9-—,am)R. ThenA": atR = An'\ for every
integer n g 1 and for every ί = 1, , m.

1 I am grateful to the referee for mentioning that this result was proved in D. Taylor, "Ideals

generated by monomials in an R- sequence," Thesis, University of Chicago, 1966. Since her thesis

isn't readily available, the referee kindly provided the following proof of a generalization of (3.2):

Let R be a commutative ring with identity, Λf an R-module, at, , am an M-sequence in Ry and

A = (α,, ,a m )R. Then, for all positive integers n and for ί = 1, ,m, Λ"M: atR = An~λM.

Proof. Let S = Z[x,, , x m ] , / = (JC,, ,x w )5, φ: S^R by φ(x/) = α/ (so that R,M be-

come S- modules) and consider the commutative diagram:

5-Xs SI(In+XiS)

In order that A nM: atR = A "~'M it suffices that the bottom row remain exact upon applying ®RM.

Hence, it suffices that Torf(£, Λf) = 0. But E is easily seen to have a filtration all of whose

factors are = F = 5/(JCI, ,x m )5 (F = Zy of course). Thus, a sufficient condition for

AnM: aft = Λ"" !M, all n, is that Torf(F, M) = 0, which is immediate if α,, ,α*, is a regaular

sequence on M.
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Proof. Let <3i = <3l(R, A). By [4, Theorem 3.5.1], at is not in any
prime divisor of u&t, for every i = 1, , m. Hence, we are done by
(2.5) (i) and (v).

Clearly, (3.2) and (2.5) show that, with R, au- -,am and A as in
(3.2), each ax is a s.s. element for AS* in Sf = &(R,A) and for u0t in

DEFINITION 3.3. Let A be an ideal in a Noetherian ring JR. For all
integers s, the s-component Hs of a homogeneous ideal if in 9? =
^ ( £ , A) is the ideal in £, ίί s = {b G I? |ί'& e H}.

It is easy to see that a homogeneous ideal H in 3? is irrelevant if
and only if Hs = A % for all (or, for some) sufficiently large
s. Equivalents, H is irrelevant if and only if H D (A *) s = (As)*, for
all (or, for some) sufficiently large s, where B* = RR[w, ί] Π έ%, for each
ideal 2? in R. (2.5) (v) shows that a sufficient condition for u9i to have
no irrelevant prime divisors is the existence of a v.s.s. element x of
some degree k for A. That is, if xί* is not in any prime divisor P of
wί%, then clearly no power of xtk can belong to P. (3.4) below shows
that the converse also holds.

THEOREM 3.4. Let A be an ideal in a Noetherian ring R, and let
01 = $fc(R, A). A necessary and sufficient condition for u9l to have no
irrelevant prime divisor is that there exists a v.s.s. element of some
positive degree for A.

Proof By the preceding discussion, it suffices to prove the
"necessary part." Let A * = AR [M, t] Π Sϊ, let Px, ,Ph be the prime
divisors of u$l, and let Ng = {crt

r; crt
r E Pg and r ^ 1} be the set of all

homogeneous elements of positive degree contained in Pg, for each
g = 1, , h. If we can find a homogeneous element of positive degree
in $1 and not in any of the Ng9 then we are done by (2.5) (i) and (v).

Since Ph is relevant by hypothesis, Ph35A*; therefore, there exists
some a GA such that atf£Nh. If at £ G = UJ=i Ng9 we are done. If
ateG, then, say, atei=Πτ=ιNi and flί^/=U/*.m+,Ni. We can
assume there are no containment relations among the Ng thus / ' £ /',
where / ' = UΓ=iN; and / ' = !Ί?= m + 1N,. To see this, note that each
homogeneous element in Nm+ι- Nh is in /', because the N} are subsets
of ideals. Therefore, if / ' C /', then (Nm+ι - Nh)9t C Ur=, P, hence
there exists an i (1 ̂  i ^ m) and a / (m + 1 ̂ / ^ Λ) such that N, C N,
which contradicts the assumption. Therefore, let bV be a homogene-
ous element of positive degree such that bV EJf and bte£Γ. Then
xte = (at)e + b r satisfies (2.5) (v).
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COROLLARY 3.5. Let A be an ideal in a Noetherian ring JR, and let
9 be the form ring of R with respect to A. Then a necessary and
sufficient condition for there to exist a v.s.s. element of some positive
ddegreeforA is that the zero ideal in SFhas no irrelevant prime divisor.

(An irrelevant (homogeneous) ideal in 9 is defined in an analogous
manner to (2.4.1).)

Proof This follows immediately from (3.4) and the fact that
[3, Theorem 2.1], where 91 = 0ί(R,A).

COROLLARY 3.6. Let A be an ideal in a Noetherian ring JR, and
assume there exists an element x in A such that Am: xR = Am~\ for all
integers m^r, where r is some fixed positive integer. Then the follow-
ing statements hold, for each integer i S r:

(3.6.1) JC1 is a v.s.s. element of degree one for A1.
(3.6.2) If M is a maximal ideal in R such that ACM, then

u0i(<): Mi = u0i(0, where 9t(0 = 9tOR, Aii), and Jd =
(MR[uft]Π9tii\u)9tiiK

Proof (3.6.1) is clear, because (A1)"*1: jci? = (AinH: xR): xilR =
(A1)", for all integers n^l. (3.6.2) follows from (3.6.1) and (3.4).

We conclude this paper with the following three observations.

LEMMA 3.7. Let A be an ideal in a ring R, and assume x is an
element in R such that An: xR = An, for every integer n ^ 1. //

R, then x is a v.s.s. element of degree one for (A,JC)JR.

Proof
(A,x)nR: xR=(A\x(A,x)nl)R:xR

= A": JCJR + (A,x)n-ιR = A" + (A,*)"'1 = (A,jc)n"!,

for every integer n § 1.

COROLLARY 3.8. Assume A is an ideal in a Noetherian ring R
containing a v.s.s. element x of degree k. Then xtk is a v.s.s. element of
degree one for both (u,xtk)0l in Θl = ̂ (i?,A) and (A,xtk)& in Sf =

Proof. Clear by (3.7) and the equivalence of (2.5) (i), (iv), and (v).
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Let A be an ideal in a Noetherian ring R, and let 9? = ί% (R, A). It
is easily shown (cf. [3]) that for every ideal B in R, B* = ££[w, ί] Π 9?
is such that B*: u0l = B*, and B*nl?[w,ί] = BnR[u,t], but it is not in
general true that B*π = (2?n)*. However, it follows from considering
homogeneous elements that A*n = 04n)*, for each n ^ 1.

COROLLARY 3.9. Let A and B be ideals in a Noetherian ring R
such that A+B^R,and let 0i = ^(1?, A). If (B*)n = (Bn)*, for each
n ^ 1, then u is a v.s.s. element of degree one for (B*,u)0t.

Proof (B*, u)3l^Θl, since A + B^ R. Therefore (3.9) follows
from (3.7), because (B*)n: u0i =(Bn)*: u$l = (Bn)* = (B*)π, for each

l

It is also clear, by the preceding discussion, that (3.9) holds, in
particular, whenever B - A.
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