
PACIFIC JOURNAL OF MATHEMATICS

Vol. 58, No. 2, 1975

A MEASURE OF CONVEXITY FOR
COMPACT SETS

ROLF SCHNEIDER

For a subset M of d- dimensional real vector space R d let

c (M) = inf {λ ^ 0|M + Λ conv M is convex),

where convM is the convex hull of M and + denotes vector
addition of sets. Among the compact subsets of R d, the convex
sets are characterized by the equality c(M) = 0. It is proved
that c(M) ^ d for arbitrary subsets of jRd, with equality if and
only if M consists of d + 1 affinely independent points. If M is
either unbounded or connected, then c(M) ^ d - 1; the bound
d - 1 is best possible in either case.

For subsets MUM2 of d-dimensional real vector space Rd, the
Minkowski (or vector) sum is defined by

M,+ M2 = {x1 + x2|xί eMhi = 1,2}.

Minkowski addition plays an essential role in the theory of convex
bodies, due to the fact that the sum of convex sets is always
convex. On the other hand, the sum Mi + M2 may be convex without
Mi,M2 being convex; for instance, if M is the boundary of a convex
body K, then M + M = K + K. Moreover, it is easy to see that the sum
of an arbitrary subset M C Rd and a suitable multiple of its convex hull
is always convex. This leads us to the definition below. In the
following, the abbreviations cl, int, rel int, bd, afϊ, conv, dim denote,
respectively, closure, interior, relative interior, boundary, affine hull,
convex hull, dimension.

For a subset M CR\ define

c (M) = inf {λ δ 01M 4- λ conv M is convex}

(here λA ={λx\x E A}). The empty set 0 is considered as convex,
hence c(0) = 0. Clearly M + λ conv M is convex for all A >
c(M). If we write

Mλ =(l-hλΓ 1 (M +
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then Mλ C conv M C conv Mλ, hence we may also write

c(M) = inf{λ g 0|Mλ = convM}.

Our main object is to prove the following theorem.

THEOREM. For every set M CRd,

The equality sign on the left holds if M is convex, and for bounded M it
holds only if cl M is convex. The equality sign on the right holds if and
only if M consists of d + 1 affinely independent points.

Restricted to the family of compact sets, the functional c might,
therefore, serve as a "measure of convexity" (or rather "measure of
non-convexity", since it is minimal, instead of maximal, for convex
sets; but this is immaterial). The term "measure of convexity" is
chosen in reminiscence of the "measures of symmetry" for convex
bodies, as defined by Grunbaum [2,p. 234]. The functional c has
certain properties analogous to those which Grunbaum proposes to
consider for measures of symmetry, for instance

c(ΓM) = c(M)

for every M CRd and every nonsingular affine transformation T of
Rd. Furthermore, it can be shown that (compare Grunbaum [2, p. 243])

c(Mλ + M2) ̂  max {c(M0, c(M2)}

for MuM2CRd. However, in contrast to the situation studied by
Grunbaum, the following should be pointed out. If |||| is a Euclidean
norm on Rd, and if the set of nonempty, compact subsets of Rd is
endowed with the Hausdorff metric defined by

p(MuM2) = max]sup inf | | x - y | | , sup inf | |x-y| |f,
UeMi yeAf2 *eM2 yεMi J

then c is not continuous, even if restricted to the compact sets with
interior points. For instance, take a triangle T CR2 and replace one of
its edges by the two segments which join the endpoints of the edge to an
interior point of T. The resulting nonconvex quadrangle Q, which can
be chosen arbitrarily close to Γ in the Hausdorff metric, has c(Q) = 1,
whereas c(Γ) = 0.
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Let us now proceed to the proof of the theorem. We split it into a
series of simple propositions, thereby proving some additional results.

First let M consist of d + 1 affinely independent points; without
loss of generality we may assume that M = {eu -,ed+ι}, where

<β"β'>={-i/d, ί W ;
here (,) denotes a scalar product on Rd. Writing T{ =

{x E convM I(x, e{f) g 0} for ί = 1, , d 4-1 we easily see that

ex 4- dconvM = (1 4- d)Th

hence

M + d c o n v M = \J (1 + d)T>(= (l + d)convM,

which shows that c(M) ̂  d. If, on the other hand, M + λconvM is convex
for some λ ^ 0 , then 0 E M + ΛconvM, hence OEe, 4-λconvM for suitable
/ E {1, , d 4-1}, from which we deduce that λ ^ d. This shows that c(M) =
d.

(1) PROPOSITION. Md = convM/or et ery sef M CRd, hence c(M) g
d.

The following simple proof has been communicated to me by Dr.
Wolfgang Weil. It is clear that Md C convM. Let x E (1 4- d)convM.
By Caratheodory's theorem, there exists a set Y C Λf of affinely
independent points such that x E (1 4- d)conv Y. Since c(Y) = dim aff
Y §rf, we have Y 4- d conv Y = (1 4- d)conv Y, hence

x E (1 4- d)conv Y = Y 4- d conv Y C M 4- d convM;

thus conv M C Md, which proves (1).

(2) PROPOSITION. Md_, 2 (bdconvM) Π (convM) for M CRd.

Proof Let xE (bdconvM) Π(convM). The point x lies in a
supporting hyperplane H of the convex set conv M, hence

XE.H Π convM = conv (if n M ) = ( H ί l Λf )„_, C Λfd_,,

where we have applied (1) to a suitable Rd~ι.
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(3) PROPOSITION, cl Md-X D bd convM for M CRd.

Proof. Let x G bd conv M. Because of (2) we may assume that
x gz conv M. Let U be a convex neighborhood of x then U contains a
point y G conv M. By Caratheodory's theorem, y is contained in the
relative interior of a simplex S whose vertices belong to M. If dim
S < d, put H = aff S and z = y if dim 5 = rf, let z G conv{x,y} Π bd 5
(z exists because of x £ S) and let H be the affine hull of a proper face
of S containing z. Then z G conv(H Π M) = (H Π M)d-X C Md_,. Since
z G [7 and 1/ was arbitrary, we arrive at x G cl Md_,, which proves (3).

Clearly the index d - 1 in Proposition (2) or (3) cannot be replaced
by a smaller one, as is shown by a set consisting of d + 1 affinely
independent points.

(4) PROPOSITION. If M CRd and conv M C c l M λ for some λ ^
d - 1, then

Proof Let e >0. Let JC GconvM. If x Gbd convM, then (2)
shows that JC 6 M M CMλ + €. Suppose, therefore, that x G int conv
M. The set JC + €(1 4- λ)~1(-convM + x) is a neighborhood of JC, hence,
because of JC GclMλ, it contains a point y £Mλ. But then we have

JcG(l + λ)(l + λ + eTιy + β(l + λ + eΓ'conv M

λconvM) + e(l + λ + e)" !convM

We have proved that c o n v M C M λ + € , hence c ( M ) g λ + e . As e > 0

was arbitrary, the assertion (4) follows.

(5) PROPOSITION, C (M) ̂ d - I for every unbounded setM CRd.

Proof. Let M Ci?d be unbounded. We have to distinguish two
cases:

First case, conv M contains a line L. Without loss of generality
we may assume that 0 G L. Let E be a subspace of /?d complementary
to L, and let π denote projection on to E in the direction of L. Then
(e.g., Grϋnbaum [3,p. 24])

cl conv M = (TΓ cl conv M) + L.

Let λ > d - 1, and let JC G convM. Then
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πx E TΓConvM = convτrM = (τrM)λ

by (1) (applied to £ ) , hence there exists a point m GM such that

(1 + A)TΓJC E πm + λ conv TΓM.

This yields

(l + λ)x E(H-λ)(ττx + L)Cπm + λconvΊΓM + L

= ra + λ conv TΓM + L (since 7rm +L = m +L)

Ccl M + λ(πclconvM + L)

= clM + AclconvM C (1 + λ)clMλ.

We have proved that convM CclMλ, hence (4) implies c(M)S
A. As λ > d - 1 was arbitrary, we deduce c(M) ^ d - 1.

Second case, conv M does not contain a line. Let λ > d - 1, and
let x E conv M. If x E bd conv M, then x E cl Md_! by (3). Suppose,
therefore, that x E int conv M. Since conv M is unbounded, there
exists a direction of infinity, that is, a vector w ^ 0 such that z + αw E cl
conv M for all z E cl conv M and all a g 0 (e.g., Grϋnbaum [3, p.
23]). Since conv M does not contain a line, the halfline {x - au | α ^ 0}
contains a (unique) point y E bd conv M. By (3) we have y E cl Md-U

hence any given neighborhood U of y contains a point z E Md-X. The
halfline L2 = {z + αw | α g 0} is contained in cl conv M, hence

L z Cz + ( λ - d + l)(l + λ)-\z\ conv M - z )

C cl[d(l + λ Γ M ^ + (λ - d + 1) (1 + λΓconv M]

= clMλ.

Since the neighborhood U may be chosen arbitrarily small, we see that
x E cl Mλ. We have proved that conv M C cl Mλ, hence (4) yields
c(M) έ λ . As λ > d - 1 was arbitrary, Proposition (5) is proved.

Clearly, the bound d - 1 in (5) cannot be replaced by a smaller
number: If M consists of d parallel lines, or halflines, and aff M = Rd>
then

(6) PROPOSITION. For bounded M C Rd, c (cl M) ^ c (M).

Proo/. It is well known that cl A + c l B Ccl (A + £ ) and
conv cl A C cl conv A for arbitrary A,B CRd, and that these relations
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hold with the equality sign if A is bounded. We deduce that (cl M)λ C
cl Λίλ in general, and that (cl Λί)Λ = cl Λίλ for bounded M. Now if
λ > c(M), then Mλ = conv M and hence (cl M)λ = cl Mλ = cl conv M =
conv cl M, so that c(cl M) g λ. The assertion follows.

The example of a triangle from which the relative interior of an
edge has been omitted, shows that c(clM)< c(M) is
possible. However, the following holds true.

(7) PROPOSITION. If c(M) >d-l, then c(cl M) = c(M).

Proof Let M CRd be a set with c(M)>d-\. If c(clM)<
c(M), we may choose A > d - 1 with c(cl M) < λ < c(M). Then we
have

conv M C convclM = (clM)λ C clMλ,

and (4) gives c(M)^λ, a contradiction.

(8) PROPOSITION. IfMCRdis bounded and c(M) = 0, then cl Mis
convex.

Proof. Let c(M) = 0. First suppose that M is compact. Let
λ > 0, and let x G conv M. Then JC G Mλ, hence JC = (1 + A)"!(mA + λy)
with suitable mλ 6 M and y G conv Λί, which implies

mλ G x 4- λ(-convM + x).

Since λ > 0 may be chosen arbitrarily small and since conv M is
bounded, we see that x G cl M hence M = conv M. If M is bounded,
but not necessarily closed, we have c(cl M) ^ c(M) = 0, hence cl M is
convex.

It is now clear that in order to complete the proof of the theorem, it
only remains to prove the following.

(9) PROPOSITION. If M CRd is compact and c(M) = d, then M
consists of d + 1 affinely independent points.

Proof. Let M be compact and such that c(M) = d. By (1)
(applied to I?*"1) Λί cannot be contained in a hyperplane, hence conv Λί
has interior points. Write

Rk = conv M \Λίλ.

We assert that
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(10) cl Rκ C int conv M for λ > d - 1.

For the proof let JcGbd convM. By (2) we have xEMd-{. If
a = ( λ - d + l)(l + λΓ\ then

x 4- α ( c o n v M - x ) C ( l — a)Md-ι + a convM = Mλ,

hence

l? λ CconvM\ U (x-ha(convM-Jc)]
xGbdconvM

which proves (10) because of a >0 .

If μ > λ, then

Mμ = (1 + μ)'xM + (μ - λ)(l + μ)'ι(l 4- AΓ'convM + λ(l + λΓconvM

D (+ μ)~xM + (μ - λ)(l 4- μ)- !(l + A)"!Af + λ(l + λ)"!conv M

hence λ < μ implies Rλ D Rμ. Since the sets cl Rλ are compact and
nonempty for λ < d, there exists a point

zG Π clRλ.
0<λ<d

By (10), z Gint conv M; but

(11) z£int(l + d)-χm +dconvM) form EM,

since otherwise for sufficiently large λ < d,

z G int(l + λT\m + λ convM) C intMλ,

which implies z£-clJRλ, a contradiction.

By Caratheodory's theorem there exists an affinely independent set
YCM such that z G conv Y, and some subset Y' CY satisfies z G rel
int conv Y'. If dimaff Y* < d, then every point of rel int conv Y' is
contained in rel int (1 4- d)'\y 4- d conv Y') for suitable y G Y\ Since
z G int conv M, we must have rel int conv Y, Cint conv M, from which
we deduce that z G int (1 + d)~\y 4-dconvM), which contradicts
(11). Hence Y is the set of vertices of a d- simplex S.
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The only interior point of S which is not contained in

is the centroid of S. Hence, according to (11), z is the centroid of the
simplex S. If M contains a point m & Y, we can replace an appropriate
point of Y by m to obtain an affinely independent set Ϋ C M which also
satisfies z E conv Ϋ. By the argument above it follows that Ϋ is the
set of vertices of a d- simplex, of which z is the centroid. Since Y and
Ϋ differ in precisely one point, this is impossible. Hence M = Y,
which completes the proof.

REMARK. There are many closed unbounded sets M CRd which
satisfy c(M) — 0, but are not convex; for instance, in Rι the set of all
integer points, or in the plane a parabola. Hence it is only for compact
sets M that c(M) measures, in some sense, the nonconvexity of M.

REMARK. Since Proposition (1) is an immediate consequence of
Caratheodory's theorem, it is clear that an improvement of this theorem
for special sets may yield a corresponding improvement of (1). In
particular, the following holds true (for the required variant of
Caratheodory's theorem see Danzer, Grϋnbaum and Klee [1, p. 117] and
the references given there).

(12) PROPOSITION. Suppose the set M CRd is the union of at most
d connected sets or is compact and the union of at most d convexly
connected sets then c(M) S d - 1.

The bound d - 1 cannot be replaced by a smaller number, even if
one assumes that M is compact and connected: The union of all those
edges of a d- simplex which contain a specified vertex of the simplex
provides a counterexample.

REMARK. For convex bodies K CRd we could also study the
derived functional b defined by b(K) = c(bdK). A moment's reflec-
tion shows that this is a well-known functional, namely the so-called
Minkowski measure of symmetry (Grϋnbaum [2, p. 246]). Hence we
have d~x g c(bdK) ^ 1, with equality on the left if and only if K is a
simplex, and equality on the right if and only if K has a centre of
symmetry.
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