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A NOTE ON BANACH SPACES OF
LIPSCHITZ FUNCTIONS

JERRY JOHNSON

This note is divided into two sections. The first establishes
some properties of extreme Lipschitz functions that, it is hoped,
will lead to satisfactory ways of characterizing them in
general. The second section shows how ideas due to Linden-
strauss can be used to establish the existence of Lipschitz spaces
that fail to be injective and fail the approximation property.

Introduction. Our notation will follow essentially that of [6]
and [11]. Given a metric space (S, rf), Liρ(S, d) denotes the Banach
space of bounded real-valued functions on S with norm given by
11/11 = max(ll/im/ll,), where

The closed subspace of functions / for which \f(s) - / ( ί ) | = o(d(s, t)) is
denoted by lip(S, d). If A CS, A denotes its complement in S, and if
/: S->R is a function, M, denotes {s: \f(s)\ = ||/||oo}.

In [11], Roy showed that a function / is an extreme point of the unit
ball of Liρ(S, d), with 5 the unit interval and d the usual metric, if and
only if I/Ί = 1 a.e. on Mf and ||/| | = \\f%. = 1. (See [10] for more along
these lines.) The purpose of §1 of this note is to discuss some results
that we hope will provide clues to possible characterizations of these
extreme points for more general metric spaces by presenting two ways
in which the bond imposed by the condition "(/' | = 1 a.e. on M," may be
broken.

In §2 we observe that if (5, d) is the unit ball of Enflo's space [4],
then Liρ(5, d) fails the approximation property.

We also show that Liρ(5, d), where (S, d) is the Hubert cube, is not
injective, ie., is not a &k space for any A (see [2, p. 94]). This last result
uses techniques due to Lindenstrauss [8], and contrasts with the many
examples where Lip(5, d) is isomorphic to the sequence space L. (See
the discussion preceding Proposition 2.2.) The results of §2 point out
how large the class of spaces Lip(5, d) is, although they are always dual
spaces [6] and, for S infinite, always contain a copy of L [7].

1. We begin by giving a lemma, mainly for the sake of complete-
ness, which is very similar to the technique of Phelps that was used in
[11, p. 1159].
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LEMMA 1.1. Let E be a Banach space, F a dense subspace of E
and U* the unit ball of the dual E* ofE. If sup{x*(jc): x* e sd} = \\χ ||
for all x E F, then U* is the weak*-closed convex hull of si.

Proof. Let K be the weak*-closed convex hull of sd. If x%E
U*~K, then there is some x0 in E with a = sup{jc*(jc0): x*E K}<
Xo(*o) = j3. Choose y0EF with | |JC0-yo||<Kβ ~«)• Then
sup{jc*(y0): * * G K}M(<* + β) <**(yo), a contradiction.

PROPOSITION 1.1. Let (S, d) be a compact, connected metric
space. Let sέ denote the collection of all functions f in the unit ball of
Lip(S, d) with ||/||oo = 1 such that there is a finite nonempty set P CS with
the property that given any s E M,, \f(s) — f(t)\ = d(s,t) for some
t EL P. Then si is a sup-norm dense subset of the extreme points of the
unit ball of Lip(S, d).

Proof Let / G si and suppose ||/ ± g || ^ 1. If s G Mf ΠP then
there is some tEP such that \f(s,t)\ = l where f(s,t) =
f(s)-f(t)ld(s, t). Since |/(s, t)±g(s, ί ) | ^ 1, g(s, O = 0 and therefore
g(s) = g(t). If s EMb g(5) = 0. Hence g(S) = {0}Ug(P). Since S
is connected and P is finite, g(S) is a singleton. But ||/||oo= 1, so
0 G g(S). Hence g = 0 and / is extreme. Thus si is a subset of the
extreme points. Now, let F denote the linear span of the point
evaluations in the dual of Lip(S, d). As was shown in [6, p. 157] the
dual of F can be canonically identified with Lip(5, d) and w*-
convergence of bounded nets in Lip(5, d) is equivalent with uniform
convergence. Hence, if we show that sup{φ(/): / G sέ} = || φ || for each
φ E F, we will reach the desired conclusion by Lemma 1.1 and the
K2 - M3 - R theorem [2, p. 80]. To this end, let φ = Σf=1 λ,€Sί. (Here
*.:/->/(*).) If P = {si, ,s.}, then clearly μ | | S | | φ k | | . By [12,
Prop. 1.4 ], we can extend each function in Lip(P, d), without increase
of norm, to an element of Liρ(5, d). Thus, | |φ || = \\φ\p ||, where φ |p is
short for φ |LiP(P,d). Now φ\p attains its norm on the unit ball of the finite
dimensional space Liρ(P, d) at an extreme point g. We extend g in a
norm preserving way to S by the technique of Sherbert [12, Prop. 1.4] as
follows: Let go(s) = maxi^^gίsy) - d(s, s}) and let

if - l = i
if g o ( s)>l
if g o ( s ) < - l .

Since / extends g, we have \\φ\\ = \\φlp\\ = φ{p(g) = φ(f). If we
show / E si, we are finished.

First, 11/11 =£ \\g \\ = 1 and since g is extreme ||g ||. = 1. Thus, | |/| |. =
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1. Let sGMf. Then | / ( s ) | < l , so f(s) = go(s) = g(s/)-d(s,S/) for
some j = l, ,n. But f = g on P, so /(s) = /($/) — d(s,Sj) or
\f(s)~/(5;)I = d(s, Sj) Hence, f E.sέ. This completes the proof.

REMARK. Define 38 to be the set of all functions / in the unit ball of
Liρ(S, d) such that there is a finite subset P of S with the property that
for each sGS, we have \f(s)-f(t)\ = d(s,t) for some
t ε M / U P . The same argument as above shows / is an extreme point
of the unit ball. It is not difficult to see that the function defined in [11,
Lemma 1.3] is in 35 (P = 0 in this case) and that si C $ .

Here we digress momentarily in order to show how the technique
of the above proof can also be used to prove the following.

PROPOSITION 1.2. Let 0 < α < 1 and (S,d) be a compact metric
space. Then U β>a Lip(S, dβ) is dense in liρ(S, da).

Proof. We apply the technique mentioned earlier ([11, p.
1159]). Let φ =ΣΓ=,λίeSι be taken in the dual of lip(S,dα) with | |φ | | =
1. As in the proof of Proposition 1.1, we consider φ = φ(p as an
element of Lip(P, d α )* where P = {su , sn}. Its norm is attained at
an extreme point h of the unit ball. Given € > 0, choose β > a
sufficiently near a so that infi^jd

β~a(shsj) and (diamS)^"α are greater
than 1/(1-he). Define/0 by

/o(s) = supjh(s}) - dβ(sh s)

and then let / be the truncation of f0 as in Proposition 1.1. Now,

dβ g (1 + e) ||h ||d. ̂  1 + €, by our choice of β. Since

d°(s,t) "" d'(s,t)

(l + 6 ) ^ ( l + €)2 where p is the diameter of
S. Let g = (1 + e)~2f. Then g belongs to Lip(5, dβ) and to the unit
ball of lip(5, d°): Also φ(g) = (1 + eY2φ{f) and φ(f) = φ(h) = | |φ | p || =
| |φ | | taken in Lip(5, dα)*. It follows from lemma 4.6 in [6] that the
norm of φ taken in Lip(S, da)* is equal with its value in
liρ(5, da)*. Therefore, φ(g) = (1 + β)"2. But e > 0 was arbitrary, so
1 = ||φ II = sup φ(g) where the supremum is taken over all g in the unit
ball of lip(S, da) that lie in U β>a Lip(S, dβ). It was proved by Jenkins
[5] that the point evaluations span a norm dense subspace of
lip(S,dα)*. Hence the unit ball of lip(S,dα)* is the norm-closed
convex hull of the subset consisting of members of U β>a

Lip(S,dβ). This completes the proof.
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The last result we include in this section is not very satisfying since
we have been unable to establish it for metric spaces more general than
an interval and also since it cannot, at least in its present form, be made
to work if lip(S, d) is nontrivial (as an examination of the proof will
show). The only reason we include it is that, as mentioned in the
introduction, there have to our knowledge been no characterizations of
extreme Lipschitz functions, other than that of Roy [11], and no real
clues as to how to extend his characterization. We only hope that the
next proposition, as well as Proposition 1.1, may give some ideas as to
possible directions to take.

In what follows 3)s denotes the set of point derivations at 5 in
Lip(S, d)* (See [12, §8]). We now turn to

PROPOSITION 1.3. Let f be in the unit ball of Lip(J, d), with
||/Hoc = 1, where I is the unit interval and d the usual metric. Then f is
extreme if and only if the weak* closure of the linear span of U s j ί M /

{φE2s:\\φ\\ = \φ(f)\=l} contains U , *„,©,.

Proof Suppose the condition holds. If ||/ ± g || ̂  1, then φ(g) =
0 for all φ G U s^Mf2s. Hence, by [12, Prop. 9.10], g is in lip(Λ, d) for
each component A of Mf and is therefore constant on each A. Since
g = 0 on M/, g = 0 on /. Thus, / is extreme. Now assume / is
extreme. Then by Roy's characterization [11, Theorem 3.1], | / ' | = 1
a.e. on Mf. Let Ms denote the set of multiplicative linear functional
x* in the dual of !•«,(/) such that x*(g) = g(s) for each continuous
function g o n l . If D: Lip(J, d)->LJίI) is defined by Df = f (to be
precise, the equivalence class containing /'), then D*MS is contained in
{φ G 3)s: | |φ || = I φ(f) I = 1} for each s 0 Mf here D* denotes the adjoint
of D. If we show U s^MfD*Ms is weak* dense in U ŝ M/®5 we will be
finished. Suppose /GLip(I, d) and Φ(/) = 0 for each
φ G U S£MfD*Ms. Then x*(f) = 0 for each JC* G Ms, s£Mf. We will
show /' = 0 a.e. on Mf. Given e >0, there is a compact K CMf with
μ(Mf ~ K) < e (μ = Lebesgue measure on /.) Let h be continuous on
/ with h = 1 on K and h = 0 on Mf. Then JC*(/'/I) = O for each
JC* G U sGIMs, the whole maximal ideal space of LJ^I). Thus, f'h = 0
a.e., so f = 0 a.e. on K. But μ(Mf - K)<e, so μ{s E Mf: f'(s)^O}<
e. Hence /' = 0 a.e. on Mf and thus / is constant on each component of
Mf. Now, if φ G 2S and s G M,, then / is constant in a neighborhood of
s and thus φ(/) = 0 for each φE3)s. Since φ(/) = 0 for all
φ G U s£MfD*Ms implies φ(f) = 0 for all φ G U S£Mf3)s, we conclude
that the former is weak*-dense in the latter. This completes the proof.

Let us remark that the above proposition holds for complex
scalars. We are forced to use real scalars in Proposition 1.1 since our
norm preserving extensions are not available otherwise without extra
assumptions on (S, d) such as the Lipschitz 4-point property (see [5]).
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2. In this section we present two applications of the paper of
Lindenstrauss [8] which indicate just how general the class of spaces
Lip(S, d) is.

The first is a relatively straightforward application of two powerful
theorems to give the following.

PROPOSITION 2.1. Let E be a Banach space without the approxi-
mation property (see [4], of course) and let S denote its unit ball with d
given by the norm. Then Liρ(S, d) fails the approximation property.

Proof. Let φ{x) = x if x G 5 and φ(x) = JC/||JC || if JC£ 5. Then
| |φ(jc)-φ(y) | |^2| |JC - y || for each J C J E E . To see this, consider the
cases (1) x,yks and (2) x G S, y fέ S.

(l) UW-φiyn^-^

JlblHMH, 1
" Ibll Ibll

Ibll Ibll

\\^—\\χ

(2)

2

~ii7i" x ~ y "" 2 " x ~ y "'
Now, T:f-*f°φ is easily seen to be an isomorphism ( = linear
homeomorphism) of Lo into E # where L0 = {fE Lip(5, d): /(0) = 0} and
E* = {f: E-*R: \\f\\d <oo, /(0) = 0}. Let Q be the restriction mapping
of E* into Lip(5, d), P the projection of E # on E* guaranteed by [8,
Theorem 2], and / the mapping of Lip(S, d) into Lo defined by
Jf = f~ /(0). Then QPTJ is a projection of Lip(5, d) on QE*. Hence
E* is isomorphic to a complemented subspace of Lip(S, d). Since E
fails the approximation property, so does E* and hence
Liρ(S, d). This completes the proof.

We have as yet been unable to prove or disprove the existence of a
compact metric space for which Lip(5, d) fails the approximation
property. For a discussion of reformulations of this problem, see [6, p.
168].

We now turn our attention to another application of [8] in which we
show that Lip(5, d), with (5, d) the Hubert cube, is not injective. This
contrasts with the case where (S, d) is the unit interval with the usual
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metric and the case where (5, d) is an infinite compact subset of
Euclidean space with d = | |α, 0 < α < l . In all these situations
Lip(5, d) is isomorphic to the sequence space /. and is hence
injective. (For 0 < α < l , see [1]; for the interval and a = 1, the
assertion follows from [9] and the fact that ||/||d = \\f \\« in L*(I).)

Let us remark that it is not hard to show in addition that Lip(S, d) is
isomorphic to L for any compact infinite subset of the line. Simply let
/ be a closed interval with S in its interior. Then for each / in Lip(S, d
let Tf be the function obtained by extending / linearly in each
component of / ~ 5. T is an isomorphism of Liρ(5, d) into Lip(/, d)
whose composition TR with the restriction map is a projection on
T Lip(5, d). But it is a well known fact due to Lindenstrauss that a
complemented infinite dimensional subspace of L is isomorphic to L.

It is tempting to conjecture that if (5, d) is a compact subset of
Euclidean space, Lip(5, d) is injective. We have been unable to prove
it however.

The proof of Proposition 2.2 is broken down into two
lemmas. Lemma 2.1 is certainly well-known and is even a corollary to
far stronger results. We sketch a proof only for completeness.

LEMMA 2.1. An infinite dimensional reflexive subspace E of the
continuous functions C(X) on a compact Hausdorff space X is not
complemented in C(X).

Proof If P is a projection of C(X) on E, P is weakly compact
because E is reflexive. By [3, Corollary VI. 7.5], P is compact. But P
is onto E, so E is finite dimensional.

In the sequel, C will denote the continuous functions on [0, 1], £ an
isometric copy of l2 in C, and (S, d) the Hubert cube in E* = E.

LEMMA 2.2. There is no map a: S —> C* and no constant M >0
such that α(jc*),E=x* and | | α ( x * ) - α ( y * ) | | ^ M | | J C * - y * | | for each
Jc*,y*GS.

Proof (The idea for this proof is due to Professor Joram Linden-
strauss, to whom I express my thanks for permission to include it here.)

Suppose such a mapping exists. We will construct a map
j8.:JE*->C* with the same properties. First, we may assume, by
replacing a by α - α ( 0 ) , that α(0) = 0. Let K* =
{0}U{μ e C * | μ , B =JC* and ||μ II^M||JC*| |} and define

cnal-x*) if x*EnS

0

I if Jc*^nS
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If Π is the product of those Kf s with x * E U nnS, then an El l for
each n. In fact, for JC*, y* E nS, we have

||αn(x*)--απ(y*)||

\\ J C * y |= \\na(- x*) - na(-
n

= M| | x*-y* | | .

Now, each X* is weak*-compact, so Π is compact in the product
topology. Thus, there is a subnet {any} of {an} converging to some
member β of Π. Let JC*, y * E U n S . Pick n0 so that x*, y*E
n0S. Then there is an index γ0 such that ny S n0 for all γ ^ γ0- If
xEQ \\x\\^l, we have |j8(x*)-β(y*))(x)| = Um y i J(α l l y (x*)-
ttnγ(y*))(*)I. But nγ ^ n0for γ g γ 0 and S is circled,sox*,y * E nySfor
γ g γ0. Thus, ||αΠγ(x*) - any(y*)|| S M ||JC* — y*|| for each γ g γ0, and
||j8(jc*)- j8(y*)| |gM||jc*-y*||. Now, UnS is dense in E*, so β
extends uniquely to all of E * and || β (x *) - β (y *) || ^ M || JC * - y * || for all
JC *, y * E E *. Since β = limγ αrtγ, we have /3 (x *) ) E = JC * for each
x* E U πS. But β is continuous on E* and U nS is dense in E* so
β(x *)\B = ^ * for aH x * E E*. Hence β is the required
mapping. Now, define T:C**^E** by TF(x*) = F(βx*) for
F 6 C * * , J ί * E B * (see the proof of Proposition 2.1 for the definition of
A*). T is linear and continuous and by [8, Theorem 2] there is a
projection P of E** onto E**. Consider PΓ i c : C-» E**. If x E E,
let Fx(μ) = μ(x) for each μ £ C * . Then TFx(x*) = Fx(βx*) =
(j3x*)(x) = x*(x). This says TFX = Fx, so PΓFX = Fx. Thus, identify-
ing E and E**, we obtain a projection of C onto E, a contradiction.

PROPOSITION 2.2. // (5, d) is the Hilbert cube, Lip(5, d) is not
injective.

Proof. A necessary and sufficient condition for a Banach space A
to be injective is that for each Banach space F, subspace F 0 CF, and
bounded linear operator Γ: Fo-» A, there is a bounded linear operator
T.F-+A with flFo=T (see [2, p. 94]). We continue to use the
notation of Lemma 2.2. Let Γ: E-»Liρ(S, d) be defined by
Tx: x*-*x*(x), x* E S. If Lip(S, d) is injective, there is an operator
f: C-*Lip(S,d) that extends Γ. Let α : S ^ C * be given by
α(x*): x -> (fx)(x*). Then α satisfies the conditions in Lemma 2.2, an
impossibility. This completes the proof.
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