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CHARACTERIZING LOCAL CONNECTEDNESS
IN INVERSE LIMITS

G. R. GORDH, JR. AND SIBE MARDESIC

Let X denote the limit of an inverse system X —
{Xa paa >; A} of locally connected Hausdorff continua. The main
purpose of this paper is to define a notion of local connectedness
for inverse systems, and to prove that if X is locally connected,
then so is the limit X. If the bonding maps paa> are surjections,
then X is locally connected if and only if X is. The following
corollaries are obtained. (1) If X is σ-directed and surjective,
then X is locally connected. (2) If X is well-ordered, surjective,
and weight (X«) ^ λ for each a in A, then either weight (X) ^ λ,
or X is locally connected. (3) If X is σ -directed and the factor
spaces Xα are trees (generalized arcs), then X is a tree (generali-
zed arc). (4) If X is well-ordered and the factor spaces X« are
dendrites (arcs), then either X is metrizable, or X is a tree
(generalized arc).

1. Introduction. By a continuum we mean a compact con-
nected Hausdorff space. Let X denote the limit of an inverse system
X = {Xα; pαα A} where the factor spaces Xa are locally connected
continua, and A is an arbitrary directed set. It is well-known that every
continuum X can be obtained as the limit of such a system where the
factor spaces are polyhedra (see Theorem 10.1, p. 284, [2]). Hence local
connectedness of the factor spaces Xa does not imply local connected-
ness of the limit X. It is the main purpose of this paper to introduce a
notion of local connectedness for inverse systems, and to prove that for
such systems X the limit space X is locally connected (see Theorem 1).
The converse holds if X is a surjective system, i.e., if the bonding maps
paa, are surjections. An immediate corollary is the known result that if X
is a monotone inverse system, then X is locally connected [1].

In §3 the main theorem is applied to well-ordered and σ-directed
inverse systems, i.e., systems in which every countable subset of the
index set is bounded above. The following somewhat surprising results
are obtained. (1) If the inverse system X is ςr- directed and surjective,
then the limit X is locally connected. (2) If X is well-ordered,
surjective, and weight (Xtt) = λ for each a in A, then weight (X) Si λ or
X is locally connected.

Section 4 contains similar results about well-ordered and σ-
directed inverse systems of trees (i.e., locally connected, hereditarily
unicoherent continua [9]) and generalized arcs (i.e., ordered continua).
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For example, the limit of a σ- directed inverse system of trees (general-
ized arcs) is a tree (generalized arc).1

The problem of characterizing locally connected inverse limits has
been studied from a different point of view in [3].

The reader is referred to [1] for basic results concerning inverse
limits of compact Hausdorff spaces.

2. Locally connected inverse systems. A continuum X
has property S if given any open cover °U of X, there exists a finite
cover <€ of X which refines % and consists of connected subsets of X.
A continuum is locally connected if and only if it has property 5 (e.g.,
Chapter IV, Theorem 3.7, p. 106, [11]).

DEFINITION Let f:X->Y be a mapping of locally connected
continua, and let FCU CY where F is closed and U is open. We
define the splitting number <>(/, U,F) of the triple (/, U,F) to be the
number of components of f~\U) which meet f~ι(F).

LEMMA 1. The splitting number s(f, U,F) is finite.

Proof. Since X is locally connected, the components of /"*( U) are
open sets. By compactness, only finitely many components of f~\U)
can meet the closed set f~\F).

DEFINITION. Let X = {Xa p α α ' ; A} be an inverse system of con-
tinua over an arbitrary directed set A. We say that the system X is
locally connected if (1) the factor spaces Xa are locally connected; and
(2) whenever Fa C Ua CXa, where Fa is closed and Ua is open, there
exists a n α ' ^ α in A such that the splitting number s(paa,Ua,Fa)
agrees with s(paa», Ua,Fa) for every α " g α ' .

THEOREM. 1. The limit of a locally connected inverse system is
locally connected.

Proof. Let X = {Xa paa,; A} be a locally connected inverse sys-
tem with limit X and projections pa: X -H> Xα. We shall prove that X
has property 5. Let °U be any open cover of X. There exists an a G A
and a finite open cover %α = ([/,, , Un) of Xa such that {p~ι(Ui)}n

i=ι
refines °U (e.g., Lemma 3.7, p. 263, [2]). Choose open covers °U'a =
(ί/i, , 1/0 and %: = (I/?, , U"n) of Xa such that U]Ccl(U]) C U\ C
cl(LΓ ) C Uh Let F> = cl (C/'/) and consider the pairs (l/',,F,). Since the
system X is locally connected, there exists an a'EA such that for
a"^a' we have s(paa,, U'hF,) = s{paa., U^F,) for l S i i n . Let s,
denote the splitting number s(paa>, U'hFi). For α ' G A as above, let

1 M. Smith has announced results similar to Corollary 5 and Theorem 6 at the Topology

Conference held at the University of North Carolina at Charlotte, March, 1974.
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{Va/}?=i denote the collection of components of Paar\U'i) which in-
tersect Paa~ι(Fi). For α " δ α ' there are also sf components of p^'^C/ )
which intersect pββ'" l(F i). Denote these components by {Vi-/}jLi, and
assume that they are labelled so that j w ί V l ^ C V1

ΛΊ. Define Cι

aΊ~
cl(VL7) for all α ' ^ α ' , and let

Since {FJ covers Xα, it follows that {C«»;} covers Xα» for each α " § α'.
To every x EX one can assign a pair (/, /) such that pa»(x) E C^. Since ί
and / vary through a finite set, some pair (/, /) occurs cofinally often; and
consequently x E C}. Consequently, {C{}y covers X and refines
ίPβ!(Uί)}i-i which refines %. Since each C\ is a subcontinuum of X, it
follows that X has property 5.

The next theorem provides a converse to Theorem 1 for inverse
systems with surjective bounding maps.

THEOREM 2. Let X = invlimX where X is a surjective inverse
system of continua. If X is locally connected, then the system X is
locally connected.

The proof of Theorem 2 depends on two simple lemmas.

LEMMA 2. Let X,, X2 and Y be locally connected continua and
suppose that f•: Xi•-> Y (i = 1,2) and g: X2 -» Xx are continuous suήec -
tions such that f2 = fig. Let F CU CY where F is closed and U is open.
Thens(fuU,f)3ίs(f2,U,F).

Proof Let s, = s(fu U, F), and let Vu , V,, denoted the compo-
nents of fV(U) which meet /T!(F). For each i S s j , at least one
component of g'ι( V,) meets g~ι(fΊι(F)) = fV(F). Since each component
of g~!(Vi) is a component of fV(U)9 at least Si components of f'2\U)
meet /2!(F). Thus sλ ^ s(f2, U, F).

LEMMA 3. Let A be a directed set and N the set of natural
numbers. If π: A -*N is an order preserving bounded function, then TT
is eventually constant.

Proof. Let m = max π(Λ), and choose a E A such that τr(α) =
m. Thus for a1 § α, ττ(α') = m.

Proof of Theorem 2. Let X = {Xα paa>\ A} be a surjective system
of continua with locally connected limit X and projections pa: X —» X«.
Since the projections pa are surjections (e.g., Theorem 2.6, [1]), each
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factor space Xa is the image of a locally connected continuum; hence
each Xa is locally connected (e.g., Theorem 3-22, p. 126, [5]). Given
α G Λ , let A(a) = {a'E A \af δ a}9 and let FaCUaCXa where Fa is
closed and Ua is open. Define π: A(α)—» N by π(α ;) = s(paa', Ua9Fa).
Lemma 2 implies that π is order preserving and bounded by
s(pa, Ua,Fa). By Lemma 3, there exists a' 6 A ( α ) such that for all
α " g α ' , τr(d') = ir(α"); i.e., s(paa,, Ua,Fa) = s(pαα», l/β,Fβ).

COROLLARY I. Lei X be a suήective inverse system of locally
connected continua with limit X. Then X is locally connected if and only
if X is locally connected.

A surjective continuous function f: X-+Y between continua is
monotone if f~ι(y) is a continuum for each y E Y. An inverse system of
continua is monotone if each bonding map is monotone.

COROLLARY 2. (Capel [1]). The limit of a monotone inverse sys-
tem of locally connected continua is locally connected.

Proof. Let {Xα,; paa A} be a monotone inverse system of locally
connected continua. Let Fa C Ua CXa where Fa is closed and Ua is
open in Xa. If a' g α, then since pαα is monotone, the splitting number
s(paa', Ua,Fa) is precisely the number of components of [/α which meet
Fa. Thus, for a' S α the splitting number s(paa, Ua,Fa) is independent
of α', and so the inverse system is locally connected. By Theorem 1,
the limit of the system is locally connected.

3. Well-ordered and or-directed inverse systems of
locally connected continua. We say that a quasi-ordered set A
is σ-directed (directed) if every countable (finite) subset of A is
bounded above. Thus every bounded quasi-ordered set is σ-directed.
Clearly, an unbounded well-ordered set is σ-directed if and only if it
contains no cofinal sequence. Another example of a σ-directed set is
the collection of all countable subsets of a given set, ordered by
inclusion. An inverse system is said to be σ-directed {well-ordered) if its
index set is σ-directed (well-ordered).

LEMMA 4. Let A be a σ-directed set and let N denote the set of
natural numbers. If π: A-+N is an order preserving function, then π is
eventually constant.

Proof. If π is not eventually constant, then there exists an
increasing sequence {α,}I=i in A such that {TΓ («,)},=, is cofinal in N.
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Since A is σ-directed, there exists a EΛ such that α( g α for every
i E N. Thus π(α t) S π(α) for every ί, which is a contradiction.

THEOREM 3. The limit of a σ-directed surjective inverse system of
locally connected continua is locally connected.

Proof. Let X - {Xα; paa; A} be a σ-directed surjective inverse
system of locally connected continua. According to Theorem 1, it
suffices to show that X is a locally connected system. Let Fa CUa CXa

where Fa is closed and Ua is open. Let A(a) = {af E.A\af ^a} and
note that A (a) is a σ- directed set. We define a function π: A (a) -> N
by π(α') = s(paa, Ua,Fa). By Lemma 2, TΓ is an increasing
function. Thus, by Lemma 4, TΓ is eventually constant, and there
exists a' EA(a) such that π(a') = τr(α") whenever α' ̂  α". Thus for
a' ^ α " we have s(pα α, Ua,Fa) = s(pα α, l/«,Fβ), and X is locally con-
nected.

COROLLARY 3. 1/ X is the limit of a σ-directed inverse system of
hereditarily locally connected continua, then X is hereditarily locally
connected.

Proof Let X = invlim{Xα; paa \ A} where A is σ-directed and
the factor spaces Xα are hereditarily locally connected continua. Let
Y be any subcontinuum of X. Then {pa(Y);paa\pa(Y);A} is a
σ-directed surjective inverse system of locally connected continua with
limit Y (see [1]). By Theorem 3, Y is locally connected.

The weight of a topological space X, denoted w(X), is the smallest
cardinal number λ such that X admits a basis for its topology of
cardinality λ.

THEOREM 4. Let X be the limit of a well-ordered surjective inverse
system X of locally connected continua Xa such that w(Xa) ̂  λ for each
Xa. Then, either w(X) S λ, or X is locally connected. In particular, if
the factor spaces Xa are metrizable, then either X is metrizable, or X is
locally connected.

Proof. Let A denote the well-ordered index set for the system
X. If A contains a cofinal sequence, then X is the limit of an inverse
sequence of continua Xn such that w(X n )gλ; hence w(X)^
λ. Otherwise, A is σ-directed and X is locally connected by Theorem
3.
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REMARK. Suppose that the nonmetrizable continuum X is the
limit of a well-ordered surjective inverse system of metric continua
Xa. If X is non-locally connected, then by Theorem 4 the factor spaces
Xa are eventually nonlocally connected as well. This remark applies to
all continua of weight Mi, since such continua are known to be limits of
well-ordered surjective inverse systems of metric continua [7].

COROLLARY 4. Let X be the limit of a well-ordered inverse system
X of hereditarily locally connected continua Xa such that w(Xa) ^ λ for
each a E A. Then either w(X)^λ, or X is hereditarily locally con-
nected.

4 Well-ordered and cτ-directed inverse systems of
trees and generalized arcs. A continuum X is a tree [9] if each
pair of points is separated by a third point. A continuum X with
precisely two nonseparating points is called a generalized arc (or an
ordered continuum). According to [9], a continuum X is a tree if and
only if X is locally connected and hereditarily unicoherent. Clearly
every subcontinuum of a tree X is a tree, and consequently X is
hereditarily locally connected. It follows immediately from Theorem
4.1(3) of [4] that a tree is a generalized arc if and only if it is atriodic.

It is known that the limit of a monotone inverse system of trees is a
tree (see the proof of Theorem 4.2 in [4]); and that the limit of a
monotone inverse system of generalized arcs is a generalized arc
(Lemma 4.7 of [1], or [8]). We shall obtain the same conclusions for
σ- directed inverse systems of trees and generalized arcs without any
assumptions about the bonding maps.

LEMMA 5. Suppose that X is the limit of an arbitrary inverse
system of trees (generalized arcs). IfXis locally connected, then X is a
tree (generalized arc).

Proof Since the factor spaces are hereditarily unicoherent, X is
also hereditarily unicoherent by a routine application of ((2.9), p. 235,
[1]). Consequently, X is a tree. If the factor spaces are generalized
arcs, then X is chainable (e.g., [6]). Since chainable continua are
atriodic, X is an atriodic tree; i.e., a generalized arc.

REMARK. The proof of Lemma 5 can be modified to show that a
locally connected tree-like (arc-like, i.e., chainable) continuum is a tree
(generalized arc). If X is tree-like, then X is hereditarily
unicoherent. Consequently, if X is locally connected, then X is a
tree. If, in addition, X is arc-like, then X is atriodic; hence X is a
generalized arc (see [8] for a different proof).
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THEOREM 5. If X is the limit of a σ-directed inverse system of trees
(generalized arcs), then X is a tree (generalized arc).

Proof. Apply Corollary 3 and Lemma 5.

THEOREM 6. Let X be the limit of a well-ordered inverse system of
trees (generalized arcs) Xa such that w(Xa)^λ for each Xa. Then,
either w(X)^λ, or X is a tree (generalized arc).

Proof. Apply Corollary 4 and Lemma 5.

COROLLARY 5. Let X be the limit of a well-ordered inverse system
of dendrites (arcs). Then, either X is metrizable, or X is a tree
(generalized arc).

Proof. A dendrite (arc) is a metrizable tree (generalized arc) (see
(1.1), p. 88 and Theorem (6.2), p. 54 of [10]). Thus the desired
conclusion follows from Theorem 6.

REMARK. The limit of a well-ordered inverse system of arcs need
not be metrizable. For example, the long line (p. 55, [5]) is the limit of a
well-ordered monotone inverse system of arcs.
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