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THE SPECTRUM OF AN EQUATIONAL CLASS
OF GROUPOIDS

J. FROEMKE AND R. QUACKENBUSH

The spectrum of an equational class % is the set of positive
integers Spec(3ίΓ) = {n 1321 G JC, | 21 | = n}. It is obvious that 1 G
Spec($O and JC, y G Spec(3Γ) implies xy G Spec(3O for any
equational class %\ i.e. Spec(3Π is a multiplicative monoid of
positive integers. Conversely, G. Gratzer showed that given
any multiplicative monoid of positive integers ff there is an
equational class JC such that Sf = Spec(3O. In this paper we
show that j/ί can be chosen to be an equational class of
groupoids.

Our first step is to give a simplified proof of Gratzer's
theorem. For n ^ 1 let An = {0,1, , n}. Define the function p (x) on
An by p(x) = JC + 1 (modtt + 1). Let t(x,y,z) be the ternary dis-
criminator function (t.d.f.) on An\ i.e. ί(jc,y,z) = z if JC = y and
t (x, y, z) = x if x / y. If the reader is not familiar with the properties of
t(x, y,z) he should consult [6]; for the concepts and notations of
universal algebra see [2]. Let %n = (An;t9p).

THEOREM 1. (G. Gratzer [1]). Let ^ be a multiplicative monoid
of positive integers. There is an equational class % of type (3,1) such
that Spec(5ίf) = 9>.

Proof Let 3Γ = {«;_,!n eS?-{l}} and let JC = HSP{W). Be-
cause the t.d.f. is represented by t(x,y,z) on each %9 JC has distributive
congruences. Hence by the well known theorem of B. Jόnsson [3] we
have that JC = PsHSPP(Xf). In particular the subdirectly irreducible
members of JC are contained in HSPP{JC'). Let SI' be a prime product of
members of JC\ say {St/|/G/} (the reader is referred to [2] for
properties of prime products). If 2Γ is finite then it is isomorphic to
some %. Thus let 2Γ be infinite. Since t(x,y,z) represents the t.d.f.
on W, all subalgebras of 2Γ are simple. Using p(x) we can form a
sentence σn in the first order theory of % which implies the existence of
at least n distinct elements and which is true in %m for m g
n - 1. Since SΓ is infinite, σn is true in almost all members of {21, \j;E /}
and so σn is true in %f for all n. Hence every subalgebra of ?Γ is
infinite. This means that the finite subdirectly irreducible members of
JC are contained in HS(X'). But each 21, GJC' is simple and has no
proper subalgebras. Hence up to isomorphism the finite subdirectly
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irreducible members of W are the members of 3C'. Finally we note that
because of ί(jc,y,z), 3ίf has permutable congruences. Since each
% E 3Γ is simple this means that every finite algebra in % is a direct
product of algebras from jfC so that if = Spec(Sίf) and the theorem is
proved.

COROLLARY 1. Let {3ίπ | n ^ 1} be algebras of type τ with |Stn | =
n + 1. Let t(x,y,z) and p(x) be polynomials of type τ such that
t(x,y,z) represents the t.d.f. on each 2ln andp(x) = JC 4- l(mod n + 1) in
each 5ϊn. Given any multiplicative monoid of positive integers if there is
an equational class % of type τ such that if = Spec(3ίf).

Proof. Note that the proof of Theorem 1 only requires that
t(x,y,z) and p(x) be polynomials, not that they be operations.

Thus we need to construct a set of groupoids {93n} satisfying the
conditions of Corollary 1. First we will construct {S3n | n ^ 3} and later
construct 33! and 332. The multiplication table for 93Π = ({0,1, ,n}; ω)
for n g 3 is given in Fig. 1.

MULTIPLICATION TABLE FOR 93n, n ^ 3
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FIGURE 1

The multiplication table is filled in according to the following rules;
the reader should check that for n ^ 3 these rules are consistent (all
addition is mod n + 1):

(1) ω(jc,jc) = jc + 1 f o r al l x.

(2) ω(jc + l , jc) = x - l f o r al l JC.
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(3) ω(0,l) = ω(n,0) = 0; ω(x,x + l )= 1 for jc^O,n.
(4) cu(n,x) = 0 for x^0,n - \,n.
(5) ω(0,n - l) = n; ω(θ,jc) = jt for JC^O, l,n - l,n.
(6) O>(JC,0) = JC forx^0, l ,n.
(7) In all other cases, α>(jc,y)-^ 1.

LEMMA 1. Tfcere are groupoid polynomials ί'(x,y,z) and
such that t\x,y,z) represents the t.d.f. on each 3lπ,nδ3 and such that

x + l(mod n + 1) m 3ίn,n g 3 .

Proo/. The proof will consist of a list of definitions of polynomials
together with their values on Sίn. The reader should have no trouble
verifying each member of the list.

(1) α(jc)ΞΞω(jc5jc) = jc -hi. Thus p(x) = α(jc).
(2) β ( x ) ^ ω ( a ( x ) , x ) = χ - L

(3) γ(x) = ω(x,α(x)) = i , ..
r v ' \\ otherwise.

(4) C,(x)
(5) Clx) sβ(C,(jc)) = 0; Cn(jc)^/8(C(JC)) = n.

(6) δn_!(x) = γ(ω(C π (x),x)) = | Λ ..
' 10 otherwise.

δo(χ) = δ(

(8)

(9)

(10)

(12) ω(0,ω(0,y)) = y and ω(n,ω(n,y)) = 0.
(13) x y^ α(ω(/3(δo(x)), ω(/3(δo(x)
(14) l y = l , 0 y = y.
(15) σ(x)^ω(C0(x),x); σ\x) = JC.
(16) τ(x)^ω(x,Co(x)); τ\x) = x.
(17) x + y - ω(τ2(x),σ(y)); 1 + y = y + 1 = y.
(18) ω(jc,α(y))=l iff (x = y and x^0,n) or ((x,y) =(0,n)) or

((jc,y) = (3,l)).
(19) ε(x,y)sΔ0,0(_Λ,y)

+ (Δn,π (x, y) + (Δ0,n (x, y) (Δ3>1(x, y) 8 ,(ω (x, α (y)))))).
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(20)

(21)

(22)

otherwise.

ί
This concludes the proof of Lemma 1.

Each of the 93n, n ^ 3, is a primal algebra (i.e. a finite nontrivial
algebra such that every function on the algebra is representable by a
polynomial). A theorem of E. S. O'Keefe [4] asserts that a set of
pairwise nonisomorphic primal algebras of a type consisting of just one
operation is independent. In particular this guarantees that for any
finite subset of {93Π} there is a polynomial representing the
t.d.f. However, this does not guarantee that there is a polynomial
representing the t.d.f. on all 93n.

Now consider 95, and 932 as given in Fig. 2. It is well known that
931 is primal. To see that 932 is primal we invoke a theorem of
G. Rousseau [7] which states that if % is a finite nontrivial algebra of
type (n) with n g 2 then % is primal iff 91 has no proper subalgebras, has
no proper automorphisms, and is simple. It will be shown shortly that
every element of 932 is the value of a constant polynomial. Hence the
first two conditions hold. To see that 932 is simple note that if 0 = 1
then 0 = ω(0,1) = ω(l, 1) = 2; if 0 = 2 then 1 = ω(0,0) = ω(2,0) = 2, and
if 1 = 2 then 0 = ω(0,1) = ω(0,2) = 1. Hence 932 is primal. Thus by
the above mentioned theorem of O'Keefe there is a polynomial
t"(x,y,z) representing the t.d.f. on 951 and 932.
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FIGURE 2

LEMMA 2. There is a polynomial φ(jc,y) such that φ(x,y) = x in
95,,952 while φ(x,y) = y in 2ln, n ^ 3.

Proof. Again we make a series of definitions and statements each
of which is easily verifiable.
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(1) a(x) = ω(x,x) = x + \ in 93π,n g 1.

fa permutation in 33i,932,

ion in 93i,932,(5)

(6)

(7) C[{x) - y W O O ) =

rsn Γ'^y^ - ai(r'(v\\ - ί a Permutation in 93,,932,
(8) (o(x) = β ( C ( x ) ) - J
(9) Compose CΌ(x) with itself sufficiently many times to get

ίx in 85,,%,
(

(10) μ{x,y)**
__ ίa permutation in x of order 2 in 93i,932,

[a permutation in y of order 2 in 93n,n ^ 3.
fjc in 951 932

(11) φ(x,y) = μ(μ(x,y),μ,(x,y)) = < . ™' '
[y in >on, n == 3.

This concludes the proof of Lemma 2.
THEOREM 2. Given any multiplicative monoid of positive integers

if there is an equational class of groupoids % such that if ^
Sρec(3O. If if^ {1} then there are uncountably many such equational
classes of groupoids and each is generated by its finite members.

Proof Let {93n \n g 1} be as defined in Fig. 1 and 2. Let T =
{95,-1| n e SP - {1}} and let 3T = HSP(W). Then taking p(jc) = a(x) and
ί(x,y,z) = φ(ί"(x,y,2),ί'(jc,y,z)) we see that by Corollary 1, if-
Spec(3Γ). If ^ 1 let m E 5 ^ with m > 1. Then for n > 1 we can
include or exclude 93mn from 3C' without changing the spectrum of
HSP{W).

Problem 1. For which equational subclasses of groupoids does
Theorem 2 hold? It is known to be false for semigroups. If we
consider idempotent groupoids, note that there are up to isomorphism,
only three two element idempotent groupoids and any equational class
containing one of them has a complete spectrum: all positive
integers. For 2&Sf it is likely that there is an equational class of
idempotent groups whose spectrum is if.
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Problem 2. If if is finitely generated then we may take 3Γ to
consist only of those 93n_i for n in a given finite generating set of
if. Thus % will be generated by a finite algebra (the product of the
93n_i). Hence by a result of Kirby Baker, 5ίf is finitely based and so by
[5] 1-based. On the other hand, if 9ίf is finitely based then necessarily if
is recursive. Is the converse true; namely if if is recursive is the
corresponding 3Γ finitely based?
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