THE INVARIANCE PRINCIPLE FOR WAVE OPERATORS

MANFRED WOLLENBERG

The invariance principle for wave operators is proved. It is shown that the existence of wave operators $W_{\pm}(B, A)$ does not imply the existence of $W_{\pm}(g(B), g(A))$, in general.

1. Introduction. Let A and B be two selfadjoint operators on a separable Hilbert space \mathscr{H} and let P_A and P_B be the orthogonal projections on the spaces of absolute continuity for A and B, respectively. The wave operators $W_{\pm}(B, A)$ are defined by the strong limits

(1.1)
$$W_{\pm}(B, A) \equiv \operatorname{s-lim}_{t \to \pm \infty} e^{itB} e^{-itA} P_A$$

when they exist (cf. [2, Chapter X]). The invariance principle of M. S. Birman and T. Kato says: If the wave operators $W_{\pm}(B, A)$ and $W_{\pm}(g(B), g(A))$ exist and $g(\lambda)$ is real-valued and piecewise monotone increasing, with a certain mild smoothness, then

(1.2)
$$W_{\pm}(g(B), g(A)) = W_{\pm}(B, A)$$
.

As stated by T. Kato and S. T. Kuroda in [3]: "It would be nice if the existence of $W_{\pm}(B, A)$ implied the existence of $W_{\pm}(g(B), g(A))$ and the invariance principle.

However, this has not been shown in general".

For example, the existence of $W_{\pm}(g(B), g(A))$ and the invariance principle have been proved under the condition that B - A or $(B - \xi)^{-1} - (A - \xi)^{-1}(\xi$ a nonreal number) is a trace-class operator (see for instance [2, Chapter X]).

The aim of this paper is

1. the proof of the invariance principle for wave operators,

2. the proof, that the existence of $W_{\pm}(B, A)$ does not imply the existence of $W_{\pm}(g(B), g(A))$, in general.

In the present work we restrict our considerations to real-valued functions $g(\lambda)$ on $(-\infty, \infty)$ with the following properties (cf. [2, p. 543]): The whole interval $(-\infty, \infty)$ can be divided into a countable number of subintervals Δ_n with lengths l_n in such a way that min $l_n > 0$ and in each open subinterval $g(\lambda)$ is differentiable with $g'(\lambda)$ continuous, locally of bounded variation, and positive. A function with these properties is called an allowable function. Furthermore, we shall consider only the wave operators W_+ because the theorems and proofs for the wave operators W_- are entirely similar. In §2 we prove

THEOREM 1 (invariance principle). Let A and B be two selfadjoint operators on a separable Hilbert space \mathscr{H} and let $g(\lambda)$ be an allowable function. If $W_+(B, A)$ and $W_+(g(B), g(A))$ exist and if $W_+(B, A)$ is complete, then $W_+(g(B), g(A)) = W_+(B, A)$.

From Theorem 1 we also see that the existence of $W_+(B, A)$, $W_+(g(B), g(A))$ and the completeness of $W_+(B, A)$ imply the completeness of $W_+((g, B), g(A))$. The next two theorems concern the existence of the wave operator $W_+(g(B), g(A))$. They will be proved in §§2 and 3, respectively.

THEOREM 2. Let A and B be two selfadjoint operators on a separable Hilbert space \mathscr{H} with the absolutely continous spectrum A and let $g(\lambda)$ be an allowable function. If the wave operator $W_+(B, A)$ exists, is complete and if $g(\lambda)$ is piecewise linear on A, then $W_+(g(B), g(A))$ exists.

THEOREM 3. Let A be a selfadjoint operator on a separable Hilbert space \mathscr{H} with the absolutely continuous spectrum $\Lambda \neq 0$. Let $g(\lambda)$ be an allowable function for which a finite interval $\Delta \subset (-\infty, \infty)$ with $|\Delta \cap \Lambda| \neq 0$ (Lebesgue measure) exists such that on $\Delta g'(\lambda)$ exists and is a continuous strictly monotone function. Then there is a selfadjoint operator B such that $W_+(B, A)$ exists, is complete, however, $W_+(g(B), g(A))$ does not exist.

It is easily seen, for instance, that all allowable functions $g(\lambda)$ which are piecewise twice continuously differentiable satisfy the assumptions either of Theorem 2 or of Theorem 3 for fixed Λ .

For the proofs of the theorems we use the following result of H. Baumgärtel [1, Theorem 3]:

(NS) Let W be a partial isometry with

 $W^*W = P_A, WW^* = P_B, WAP_AW^* \supseteq BP_B.$

Then $W_+(B, A)$ exists and $W = W_+(B, A)$ if and only if

$$(1.3) W = P_A + C,$$

$$s-\lim_{t\to\infty}e^{itA}Ce^{-itA}P_A=0.$$

By Theorem 1 we obtain from (NS) that the existence and completeness of $W_+(B, A)$ imply the existence of $W_+(g(B), g(A))$ if and only if for the operator C defined by (1.3) the strong limit

(1.5)
$$s-\lim_{t\to\infty}e^{itg(A)}Ce^{-itg(A)}P_A=0$$

exists. Here it was used that $P_{g(A)} = P_A$ for allowable functions $g(\lambda)$ (see §2).

Hence we know that the proof of Theorem 3 leads to the construction of an operator C for which $s-\lim_{t\to\infty} e^{itA}Ce^{-itA}P_A = 0$ and $s-\lim_{t\to\infty} e^{itg(A)}Ce^{-itg(A)}P_A$ does not exist for the function $g(\lambda)$ defined by Theorem 3. To prove Theorem 2 we shall show that the equation

$$s-\lim_{A\to\infty}e^{itA}Ce^{-itA}P_A=0$$

implies s-lim_{t→∞} $e^{itg(A)}Ce^{-itg(A)}P_A = 0$ for piecewise linear functions $g(\lambda)$. The invariance principle will be proved by means of

LEMMA 1. Let T be a nonnegative bounded selfadjoint operator and $g(\lambda)$ an allowable function. If the strong limits

s-lim
$$e^{it_A}Te^{-it_A}P_A = 0$$
, s-lim $e^{it_g(A)}Te^{-it_g(A)}P_A$

exist, then they are equal.

In §5 we prove Lemma 1 and formulate and prove two other lemmas which concern the behavior of the function $e^{-itg(\lambda)}$ for large t.

2. Proof of Theorem 1. First we introduce several notations and simple relations which are needed for the proof. As in §1 let H be a selfadjoint operator on a separable Hilbert space \mathcal{H} and P_H be the orthogonal projection on the space of absolute continuity. We note that for every allowable function $g(\lambda)$

$$(2.1) P_{g(H)} = P_H .$$

(2.1) has been proved in [2, p. 545] for a class of functions slightly more restrictive than the allowable functions. The proof can easily be generalized for all allowable functions. Furthermore, we introduce the notations $\{H\}'$ for the commutant of H and

(2.2)
$$V_{H}^{+}(X) \equiv s-\lim_{t\to\infty} e^{itH} X e^{-itH} P_{H},$$

whenever for the bounded operator X the strong limit exists. If $V_{H}^{+}(X)$ for the bounded operator X exists, then we have the unambiguous decomposition (cf. [1])

$$(2.3) X = X_1 + X_2,$$

where

$$(2.4) X_1 = P_H X_1 = X_1 P_H \in \{H\}',$$

$$(2.5) V_{H}^{+}(X_{2}) = 0$$

For continuous functions $f(\lambda)$ and a selfadjoint operator X one easily verifies that

(2.6)
$$f(V_H^+(X)) = V_H^+(f(X))$$
.

Now we prove Theorem 1. By (NS), we find that $W_+(B, A) = P_A + C$ with $V_A^+(C) = 0$. Further we also have

$$(2.7) V_A^+(C^*) = 0,$$

since

$$V_A^+(C^*) = V_A^+(C^* + P_A) - P_A = V_A^+(W_+^*(B, A)) - P_A$$

= $s-\lim_{t \to \infty} e^{itA} W_+^*(B, A) e^{-itA} P_A - P_A$
= $s-\lim_{t \to \infty} W_+^*(B, A) e^{itB} e^{-itA} P_A - P_A$
= $W_+^*(B, A) W_+(B, A) - P_A = 0$

with the intertwining relation $W_+(B, A)e^{itA} = e^{itB}W_+(B, A)$. We define

(2.8) $W_1 \equiv W_+^*(B, A) W_+(g(B), g(A))$.

From this definition we obtain that $V_{g(A)}^+(W_+^*(B, A))$ exists and

(2.9)
$$V_{g(A)}^+(W_+^*(B, A)) = W_1$$
,

since

$$V^+_{g(A)}(W^*_+(B, A)) = s-\lim_{t \to \infty} e^{itg(A)} W^*_+(B, A) e^{-itg(A)} P_A \ = s-\lim_{t \to \infty} W^*_+(B, A) e^{itg(B)} e^{-itg(A)} P_A = W_1 \;.$$

By (2.3) and (2.5) then we have

$$(2.10) W_+^*(B, A) = W_1 + C_1$$

with

(2.11)
$$V_{g(A)}^+(C_1) = 0$$

(2.12) $W_1 = P_A W_1 = W_1 P_A \in \{g(A)\}'$.

From the Definition (2.8) and the completeness of $W_+(B, A)$ one

306

easily verifies that W_1 is a partially isometrie with

$$(2.13) W_1^* W_1 = P_A, \ W_1 W_1^* = P_1 \leq P_A$$

Further we have

(2.14)
$$V^+_{g(A)}(C^*_1P_1) = 0$$
.

This follows from

$$V^{+}_{g(A)}(C_{1}^{*}P_{1}) = 0 \longleftrightarrow V^{+}_{g(A)}(W^{*}_{+}(B, A)C_{1}^{*}P_{1})$$

= $V^{+}_{g(A)}(W^{*}_{+}(B, A)C_{1}^{*}P_{1} + C_{1}W_{1}^{*} + P_{1}) - P_{1}$
= $V^{+}_{g(A)}(W^{*}_{+}(B, A)(C_{1}^{*} + W_{1}^{*})P_{1}) - P_{1}$
= $V^{+}_{g(A)}(W^{*}_{+}(B, A)W_{+}(B, A)P_{1}) - P_{1} = 0$

with $V_{g(A)}^+(C_1W_1^* + P_1) = P_1$ by W_1^* , $P_1 \in \{g(A)\}'$. Combining (2.10) with $W_+^*(B, A) = P_A + C^*$ and (2.13) we obtain

$$CP_1C^* = (W_1 + C_1 - P_4)^*P_1(W_1 + C_1 - P_4)$$

= $(W_1 - P_1)^*(W_1 - P_1) + (W_1 - P_1)^*C_1 + C_1^*P_1(W_1 - P_1)$
+ $C_1^*P_1C_1 = (W_1 - P_1)^*(W_1 - P_1) + C_2$.

By (2.11), (2.14) and $(W_1 - P_1)$, $(W_1 - P_1)^* \in \{g(A)\}'$ we have $V_{g(A)}^+(C_2) = 0$ and therefore,

(2.15)
$$V_{g(A)}^+(CP_1C^*) = (W_1 - P_1)^*(W_1 - P_1)$$
.

Furthermore, it follows from (2.7) that

$$(2.16) V_A^+(CP_1C^*) = 0$$

The operator CP_1C^* satisfies the assumptions of Lemma 1. Hence, we have $(W_1 - P_1)^*(W_1 - P_1) = 0$ and also $(W_1 - P_1) = 0$. With (2.13) and (2.8), we finally obtain $W_1 = P_A$ and

$$W_+(g(B), g(A)) = W_+(B, A)$$
.

3. Proof of Theorem 2. We shall use the same notations as in §2. By Theorem 1 and (NS) it is necessary and sufficient for the existence of $W_+(g(B), g(A))$ that

(3.1)
$$V_{g(A)}^+(C) = 0$$
.

Let $\varphi \in P_A \mathscr{H}$, $\varepsilon > 0$ and $P_A(\varDelta)$ be the spectral measure of A. Then there is a finite interval \varDelta' such that

(3.2)
$$|| \varphi - P_{\mathcal{A}}(\mathcal{A}') \varphi || \leq \frac{\varepsilon}{3 ||C||} .$$

From the definition of the functions $g(\lambda)$ in Theorem 2 we see that there exists a finite number of disjoint intervals $\Delta_n \subset \Delta'(n = 1, 2, \dots, N)$ such that

$$(3.3) g(A)P_AP_A(\varDelta_n) = q_nAP_AP_A(\varDelta_n)$$

(3.4)
$$\left\|P_{A}(\varDelta')\varphi - \sum_{n=1}^{N} P_{A}(\varDelta_{n})\varphi\right\| \leq \frac{\varepsilon}{3\|C\|}$$

with $0 < q_n < \infty$. By (3.2), (3.3), and (3.4) we find

$$(3.5) ||Ce^{-itg(A)}P_A\varphi|| \leq \frac{2}{3}\varepsilon + \sum_{n=1}^N ||Ce^{-itq_nA}P_A(\varDelta_n)\varphi||.$$

C satisfies the relation (see (NS))

$$||Ce^{-itA}P_A\psi|| \longrightarrow 0 \quad \text{as} \quad t \longrightarrow \infty$$

for every $\psi \in \mathscr{H}$. Hence, for the functions $\varphi_n = P_A(\mathcal{A}_n)\varphi$ there are numbers T_n such that

$$(3.6) ||Ce^{-itq_n A}\varphi_n|| \leq \frac{\varepsilon}{3N} ext{ for all } t > T_n.$$

By (3.5), (3.9) we obtain

$$||Ce^{-itg(A)}P_A \varphi|| \leq \varepsilon \quad ext{for} \quad t > T = \max_n T_n$$

and (3.1) is proved.

4. Proof of Theorem 3. For simplicity we shall assume that $\Delta \subset \Lambda$ and $\Delta = [0, 2\pi]$. Let $u \in P_A(\Delta)P_A\mathscr{H}$ with $P_A(\Delta')u \neq 0$ for all $\Delta' \subset \Delta$, $|\Delta'| \neq 0$. A restricted on the subspace $\mathscr{H}_1 = \overline{\operatorname{sp}} \{P_A(\Delta')u, \Delta' \subset \Delta$ Borel set} is an operator with simple absolutely continuous spectrum Δ . Hence we may identify \mathscr{H}_1 with $\mathscr{L}^2(\Delta)$ and a restricted on \mathscr{H}_1 with the multiplication operator by λ on $\mathscr{L}^2(\Delta)$ denoted by H.

Therefore it follows that for the proof of Theorem 3 it is sufficient to show that for H such an operator B defined by Theorem 3 exists. At first we construct a projector P such that $V_{H}^{+}(P) = 0$ and $V_{g(H)}^{+}(P)$ do not exist. We consider the function

$$rac{1}{\sqrt{2\pi}}e^{-it_g(\lambda)}=\sum\limits_m\psi^m_trac{1}{\sqrt{2\pi}}e^{-i\lambda m}\in\mathscr{L}^2(\varDelta)\;.$$

By Lemma 2 for $\varepsilon = 1/2$ we can find sequences of natural numbers S_n , N_n with S_n , $N_n \to \infty$ as $n \to \infty$ such that

(4.1)
$$\sum_{m=N_n}^{N_{n+1}-1} |\psi_{s_n}^m|^2 = a_n \ge 1 - \varepsilon = \frac{1}{2}.$$

Now we define P by

$$(4.2) P = \sum_{n=1}^{\infty} f_n(\cdot, f_n) ,$$

(4.3)
$$f_n(\lambda) = \sum_{m=N_n}^{N_{n+1}-1} \frac{1}{\sqrt{a_n}} \psi_{S_n}^m \frac{1}{\sqrt{2\pi}} e^{-i\lambda m} .$$

Next we prove $V_{H}^{+}(P) = 0$, i.e.,

(4.4)
$$\lim_{t\to\infty} ||Pe^{-itH}\psi|| = 0 \quad \text{for every} \quad \psi \in \mathscr{L}^2(\varDelta) \;.$$

As is easily shown, for the proof of (4.4) it is sufficient to consider the sequence $||Pe^{-inH}\psi_0||$ with $n \to \infty$ (*n* a natural number) and $\psi_0 = 1/\sqrt{2\pi}$.

We have

(4.5)

$$||Pe^{-ipH}\psi_{0}||^{2} = \sum_{n=1}^{\infty} |(f_{n}, e^{-ipH}\psi_{0})|^{2}$$

$$= \sum_{n=1}^{\infty} \left|\frac{1}{\sqrt{2\pi}} \int_{0}^{2\pi} f_{n}(\lambda) e^{ip\lambda} d\lambda\right|^{2}$$

$$= \sum_{n=1}^{\infty} \left|\sum_{m=N_{n}}^{N_{n+1}-1} \psi_{S_{n}}^{m} \frac{1}{\sqrt{a_{n}}} \delta_{m;p}\right|^{2}$$

$$= \frac{\Lambda}{a_{x(p)}} |\psi_{S_{x(p)}}^{p}|^{2},$$

where x(p) = r if $p \in (N_r, N_r + 1, \dots, N_{r+1} - 1)$.

It is clear that $x(p) \to \infty$ as $p \to \infty$. Since $g(\lambda)$ satisfies the assumptions of Lemma 3 we find $|\psi_{S_x(p)}^p|^2 \to 0$ as $p \to \infty$ and also $||Pe^{-ipH}\psi_0||^2 \to 0$ as $p \to \infty$. This proves (4.4). To prove that $V_{g(H)}^+(P)$ does not exist by Lemma 1 it is sufficient to show that there are a $\psi \in \mathscr{L}^2(\Delta)$, a sequence of real numbers $t_n \to \infty$ as $n \to \infty$ and an X > 0 such that

(4.6)
$$||Pe^{-it_n \cdot g(H)}\psi|| > X \text{ for all } t_n$$

We set $\psi = \psi_0 = 1/\sqrt{2\pi}$ and $t_n = S_n$ (see (4.1)). Then by (4.1), (4.2)

$$\begin{split} ||Pe^{-iS_{n}\cdot g(H)}\psi_{0}||^{2} &= \sum_{q=1}^{\infty} |(f_{q}, e^{-iS_{n}\cdot g(H)}\psi_{0})|^{2} \\ &\geq |(f_{n}, e^{-iS_{n}\cdot g(H)}\psi_{0})|^{2} = \left|\frac{1}{\sqrt{a_{n}}}\sum_{m=N_{n}}^{N_{n+1}-1}\psi_{S_{n}}^{m}\frac{1}{\sqrt{2\pi}}\int_{0}^{2\pi}d\lambda e^{iS_{n}\cdot g(\lambda)}e^{-im\lambda}\right|^{2} \\ &= \left|\frac{1}{\sqrt{a_{n}}}\sum_{m=N_{n}}^{N_{n+1}-1}|\psi_{S_{n}}^{m}|^{2}\right|^{2} = a_{n} \geq \frac{1}{2} \text{ for all } S_{n}. \end{split}$$

This proves that $U_{g(H)}^+(P)$ does not exist.

Now we define by $U \equiv 1 - 2P$ a unitary operator and we set

B = UHU. From the definitions of U, B, and (NS) it immediately follows that $W_+(B, H)$ exists and $U = W_+(B, H)$. Since, however, $V^+_{g(H)}(-2P)$ does not exist, it follows from Theorem 1 and (NS) that also $W_+(g(B), g(H))$ does not exist.

5. Proofs of the Lemmas. Proof of Lemma 1: We shall prove Lemma 1 indirectly. Thus we suppose that for a nonnegative bounded selfadjoint operator T and an allowable function $g(\lambda)$ the strong limits

(5.1)
$$V_A^+(T) = s - \lim_{t \to \infty} e^{itA} T e^{-itA} P_A = 0 ,$$

(5.2)
$$V_{g(A)}^+(T) = \underset{t \to \infty}{s-\lim} e^{itg(A)} T e^{-itg(A)} P_A = S$$

exist with $S \neq 0$, and from these assumptions we construct a contradiction. It is obvious that S is also a nonnegative bounded selfadjoint operator with $S = SP_A = P_A S \in \{g(A)\}'$ by (2.3) to (2.5). By $S \neq 0$ it exists a $u \in P_{A}\mathcal{H}$ with $Su \neq 0$. From the definition of the allowable functions $g(\lambda)$ it follows that there is a finite interval $\Delta \subset (-\infty, \infty)$ such that $P_A(\varDelta)u \neq 0$, $SP_A(\varDelta)u \neq 0$ and $g'(\lambda)$ is continuous, positive and of bounded variation on Δ . For a nonnegative operator S it follows from $Sv \neq 0$ that also $(v, Sv) \neq 0$. Hence we have $(P_A(\varDelta)u, SP_A(\varDelta)u) \neq 0$ 0 and then $QSQ \neq 0$ where Q is the orthogonal projection on the subspace $\mathscr{H}_1 = \overline{\operatorname{sp}} \{ P_A(\varDelta')u, \, \varDelta' \subset \varDelta \}$. It is $Q \in \{A\}'$ and therefore $Q \in \mathbb{C}$ $\{g(A)\}'$. By $S \in \{g(A)\}'$ we obtain $QSQ \in \{g(A)\}'$. Since $g(\lambda)$ is strictly increasing on Δ it is clear that $\{QAQ\}' = \{Qg(A)Q\}'$. From this identity and $QSQ \in \{g(A)\}'$ we finally obtain $QSQ \in \{A\}'$. Furthermore, we have $E(\Delta) \in \{A\}'$, where $E(\Delta)$ is the spectral measure of QSQ. We choose a $\alpha > 0$ such that $E(0, \alpha) < Q$. With $R \equiv (Q - E(0, \alpha)) \in \{A\}'$ and (5.1), (5.2) we find

(5.3)
$$V_A^+(RTR) = 0, \ V_{g(A)}^+(RTR) = RSR \neq 0.$$

RSR is a nonnegative selfadjoint operator with the spectrum $\delta \in 0 \cup [a, b](0 < a < b < \infty)$. Now we consider continuous functions $f(\lambda)$ which are 1 on [a, b] and 0 in a neighborhood of 0.

By (2.6) and (5.3) we find

(5.4)
$$V_A^+(f(RTR)) = 0, \ V_{g(A)}^+(f(RTR)) = f(RSR) = R.$$

From the independence of the right sides of these $f(\lambda)$ it can easily be shown that (5.4) is also true for the step-function

$$f(\lambda) = \begin{cases} 1 \text{ on } [a_1, b_1] (0 < a_1 < a < b < b_1 < \infty) \\ 0 \quad \lambda \notin [a_1, b_1] . \end{cases}$$

Hence we have

(5.5)
$$V_A^+(P) = 0, \ V_{g(A)}^+(P) = R$$

where P = f(RTR) is an orthogonal projection with P < R. \mathscr{H}_1 reduces A, P, R and P, R are distinct from 0 only on \mathscr{H}_1 . Thus it is sufficient to consider (5.5) in \mathscr{H}_1 . A restricted on \mathscr{H}_1 is an operator with a simple absolutely continuous spectrum $\sigma \subset A$. Then we may identify \mathscr{H}_1 with $\mathscr{L}^2(\sigma)$ and a restricted on \mathscr{H}_1 with the multiplication operator by λ and regard $\mathscr{H}_1 \cong \mathscr{L}^2(\sigma)$ as a subspace of the large Hilbert space $\mathscr{L}^2(\Lambda)$. In $\mathscr{L}^2(\Lambda)$ we may identify R with the multiplication operator by $\chi_{\overline{\rho}}(\lambda)$, where $\chi_{\overline{\rho}}(\lambda)$ is the characteristic function on $\overline{\rho} \subset \sigma$ with $|\overline{\rho}| \neq 0$. H denotes the multiplication operator by λ in $\mathscr{L}^2(\Lambda)$. Then we obtain from (5.5)

(5.6)
$$\lim_{t\to\infty} ||Pe^{-iHt}\psi|| = 0 \quad ext{for every} \quad \psi \in \mathscr{L}^2(\varDelta)$$
 ,

(5.7)
$$\lim_{t\to\infty} ||Pe^{-ig(H)t}\psi|| = ||\chi_{\overline{\rho}}\psi||.$$

For the sake of simplicity, we shall assume that $\Delta = [0, 2\pi]$. We can write $g(\lambda) = \alpha \cdot \overline{g}(\lambda) + \beta$, where $\overline{g}(0) = 0$, $\overline{g}(2\pi) = 2\pi$, and α , β are real numbers with $\alpha > 0$. Then we put

$$arphi_n(\lambda) \equiv rac{1}{\sqrt{2\pi}} e^{-i\lambda n}, \, \psi_n(\lambda) \equiv rac{1}{\sqrt{2\pi}} \sqrt{ar g'(\lambda)} e^{-in \overline g(\lambda)}$$

It is easy to verify that both φ_n and ψ_n form a complete orthonormal family in $\mathscr{L}^2(\mathcal{A})$. Furthermore, we have $||\chi_{\overline{\rho}}\psi_n||^2 = C > 0$. With these notations we easily obtain from (5, 6), (5.7)

(5.8)
$$|| P \varphi_n ||^2 = \varepsilon_n \longrightarrow 0 \text{ as } n \longrightarrow \infty$$

(5.9)
$$|| P\psi_n ||^2 - C = \alpha_n \longrightarrow 0 \text{ as } n \longrightarrow \infty$$
.

We set $\psi_s(\lambda) = \sum_m a_s^m \varphi_m(\lambda)$. Now we consider the functions $\psi_s(\lambda)$ for which

(5.10)
$$\left\|\psi_s - \sum_{n=1}^N a_s^m \varphi_n\right\|^2 \leq \frac{C}{2}$$

with fixed N > 0. For the functions $\overline{\psi}_s(\lambda) = (\sqrt{\overline{g}^i(\lambda)})^{-1} \psi_s(\lambda)$ by Lemma 2 we have

$$\left\| \overline{\psi}_{s} - \sum_{m=\lfloor sq_{1} \rfloor - p}^{\lfloor sq_{2} \rfloor - p} \overline{a}_{s}^{m} \varphi_{m} \right\| \leq \varepsilon$$

where q_1, q_2 are positive real numbers independent of s, ε and p is a natural number independent of s. It is clear that then also

(5.11)
$$\left\|\psi_s - \sum_{m=\lceil sq_1\rceil-p'}^{\lceil sq_2\rceil+p'} a_s^m \varphi_m\right\|^2 \leq \frac{C}{2},$$

with an appropriate p' independent of s. An elementary computation

shows that for all ψ_s with

$$s \in \left(\left[\frac{1+p'}{q_1}\right], \left[\frac{1+p'}{q_1}\right]+1, \cdots, \left[\frac{N-p'}{q_2}\right]\right)$$

the inequality (5.10) is true.

Hence there are natural numbers N_1 , s_1 and an $\alpha > 0$ such that for every fixed N with $N > N_1$ and $s \in (s_1, s_1 + 1, \dots, [\alpha N] + s_1) \psi_s$ satisfies (5.10). Now we consider the sum

$$S_{\scriptscriptstyle N} = \sum_{n=1}^{\scriptscriptstyle N} \sum_{s=s_1}^{\scriptscriptstyle [lpha N]+s_1} |(arphi_n, \psi_s)|^2$$

and introduce the orthogonal projection $\bar{P} = 1 - P$. Then

$$S_{N} = \sum_{n=1}^{N} \sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} |(p\varphi_{n}, \psi_{s}) + (\varphi_{n}, \bar{p}\psi_{s})|^{2}$$

$$\leq \sum_{n=1}^{N} \sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} \{|(p\varphi_{n}, \psi_{s})|^{2} + |(\varphi_{n}, \bar{p}\psi_{s})|^{2} + 2|(p\varphi_{n}, \psi_{s})| \cdot |(\varphi_{n}, \bar{p}\psi_{s})|\}$$

$$\leq \sum_{n=1}^{N} \sum_{s=s_{1}}^{\lfloor \beta N \rfloor + s_{1}} \{|(p\varphi_{n}, \psi_{s})|^{2} + |(\varphi_{n}, \bar{p}\psi_{s})|^{2}\}$$

$$+ 2\sqrt{\left(\sum_{n=1}^{N} \sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} |(p\varphi_{n_{1}}\psi_{s})|^{2}\right)\left(\sum_{n=1}^{N} \sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} |(\varphi_{n_{1}}\bar{p}\psi_{s})|^{2}\right)}$$

$$\leq \sum_{n=1}^{N} ||P\varphi_{n}||^{2} + \sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} ||\bar{P}\psi_{s}||^{2}$$

$$+ 2\sqrt{\left(\sum_{n=1}^{N} ||P\varphi_{n}||^{2}\right)\left(\sum_{s=s_{1}}^{\lfloor \alpha N \rfloor + s_{1}} ||\bar{P}\psi_{s}||^{2}\right)}.$$
But (5.0) we have $||\bar{D}| \cdot ||\bar{D}| = 1 - Q$, we choose $||\bar{D}| \cdot ||\bar{D}|$

By (5.9) we have $||\bar{P}\psi_s||^2 = 1 - C - \alpha_s$ and with (5.8), (5.12)

$$(5.13) \qquad S_N \leq \sum_{n=1}^N \varepsilon_n + [\alpha N](1-C) - \sum_{s=s_1}^{[\alpha N]+s_1} \alpha_s \\ + 2\sqrt{\left(\sum_{n=1}^N \varepsilon_n\right) \left(1-C - \sum_{s=s_1}^{[\alpha N]+s_1} \alpha_s\right)} \,.$$

On the other hand, by (5.10) we find

$$(5.14) S_{\scriptscriptstyle N} \geqq [\alpha N] \Big(1 - \frac{C}{2} \Big) \ .$$

Combining (5.13), (5.14) we obtain

$$\frac{C}{2} \leq \frac{1}{[\alpha N]} \left\{ \sum_{n=1}^{N} \varepsilon_n - \sum_{s=s_1}^{[\alpha N]+s_1} \alpha_s \right\} + 2\sqrt{\frac{1}{[\alpha N]}} \sum_{n=1}^{N} \varepsilon_n \cdot \sqrt{1 - C - \frac{1}{[\alpha N]}} \sum_{s=s_1}^{[\alpha N]+s_1} \alpha_s .$$

Since ε_n , α_n are zero sequences, also

are zero sequences. Hence for sufficiently large N the last inequality which we have got from the assumption $S \neq 0$ is not true, which proves Lemma 1.

LEMMA 2. Let $g(\lambda)$ be a real-valued function and $g'(\lambda)$ a continuous positive function on $\varDelta = [0, 2\pi]$. Then the functions $\overline{\psi}_s(\lambda) \in \mathscr{L}^2(\varDelta)$ defined by

(5.15)
$$\overline{\psi}_{s}(\lambda) \equiv \frac{1}{\sqrt{2\pi}} e^{-isg(\lambda)} = \sum_{m=-\infty}^{\infty} \overline{a}_{s}^{m} \frac{1}{\sqrt{2\pi}} e^{-i\lambda m}$$

possess the following properties: For every ε with $0 < \varepsilon < 1$ and every natural number s > 0 there exist two real positive numbers q_1, q_2 independent of s, ε and a natural number p independent of s such that

(5.16)
$$\sum_{m=\lceil sq_1\rceil-p}^{\lceil sq_2\rceil+p} |\bar{a}_s^m|^2 \ge 1-\varepsilon.$$

Proof. Let $a_1 = \min_{\lambda \in J} g'(\lambda)$, $a_2 = \max_{\lambda \in J} g'(\lambda)$. Let s be a fixed natural number. We consider integral numbers m with $m > s \cdot a_2$ or $s \cdot a_1 > m$. For these m we have $|s \cdot g'(\lambda) - m| > 0$ and we can write

$$ar{a}_s^{\,m} = rac{1}{2\pi} \int_{_0}^{^{2\pi}} d\lambda e^{-is \cdot g(\lambda)} e^{i\,m\lambda} = rac{1}{2\pi} \int_{_0}^{^{2\pi}} d\lambda rac{1}{-i(sg'(\lambda)-m)} \Big(rac{d}{d\lambda} e^{-i(sg(\lambda)-m\cdot\lambda)}\Big)$$

Integrating by parts and an elementary computation shows that

$$\begin{aligned} |\bar{a}_{s}^{m}| &\leq \frac{1}{2\pi} \left| \left[\frac{1}{-i(sg'(\lambda) - m)} e^{-i(sg(\lambda) - m\lambda)} \right]_{0}^{2\pi} + \int_{0}^{2\pi} e^{-i(sg(\lambda) - m\lambda)} d\left(\frac{1}{i(g'(\lambda)s - m)} \right) \right| \\ &\leq \frac{1}{2\pi} \left\{ \frac{2}{|s\alpha - m|} + \int_{0}^{2\pi} \left| d\left(\frac{1}{sg'(\lambda) - m} \right) \right| \right\} \\ &\leq \frac{1}{2\pi} \left\{ \frac{2}{|s\alpha - m|} + \frac{M \cdot s}{|s\alpha - m|^{2}} \right\} \\ &= \frac{1}{2\pi |s\alpha - m|} \left\{ 2 + \frac{M}{|\alpha - \frac{m}{s}|} \right\}, \end{aligned}$$

where M is the total variation of $g'(\lambda)$ on Δ and $\alpha = a_1$ if $m < s \cdot a_1$ or $\alpha = a_2$ if $m > s \cdot a_2$. Let p' be a positive integral number, then by (5.17) we have

(5.18)
$$\sum_{m=\lfloor s2a_2\rfloor+p'+1}^{\infty} |\bar{\alpha}_s^m|^2 \leq \frac{1}{(2\pi)^2} \left(2 + \frac{M}{a_2}\right)^2 \sum_{m=\lfloor s2a_2\rfloor+p'+1}^{\infty} \frac{1}{|m - \lfloor sa_2\rfloor - 1|^2} < \frac{1}{(2\pi)^2} \left(2 + \frac{M}{a_2}\right)^2 \sum_{n=p'}^{\infty} \frac{1}{n^2}$$

and entirely analogous

(5.19)
$$\sum_{m=\lceil s(1/2)a_1\rceil-p'-1}^{-\infty} |\bar{a}_s^m|^2 \leq \frac{1}{(2\pi)^2} \left(2 + \frac{2M}{a_1}\right)^2 \sum_{m=\lceil s(1/2)a_1\rceil-p'-1}^{-\infty} \frac{1}{|sa_1 - m|^2} \\ < \frac{1}{(2\pi)^2} \left(2 + \frac{2M}{a_1}\right)^2 \sum_{n=-p'}^{\infty} \frac{1}{n^2} ,$$

where [a] is the smallest integer r > a - 1.

For sufficiently large p' from (5.18), (5.19) we find

$$\sum_{a=[s2a_2]+p'+1}^{\infty} |\bar{a}_s^m|^2 + \sum_{m=[s(1/2)a_1]-p'-1}^{-\infty} |\bar{a}_s^m|^2 < \varepsilon$$

for all positive integral numbers s and every $\varepsilon > 0$. With $q_1 = (1/2)a_1$, $q_2 = 2 \cdot a_2$ and by $|\psi_s|^2 = \sum_m |\bar{a}_s^m|^2 = 1$ we finally obtain (5.16).

LEMMA 3. Let $g(\lambda), \overline{\psi}_s(\lambda)$ be defined as in Lemma 2 and let $g'(\lambda)$ be continuous, strictly monotone on Δ . Then the functions $\overline{\psi}_s(\lambda)$ possess the following properties: For every ε with $0 < \varepsilon < 1$ there exists an N such that for all integral numbers m, s with s > N

$$|\bar{a}_s^{\,m}|<\varepsilon\;.$$

Proof. From the continuity and strict monotony of the positive function $g'(\lambda)$ on Δ it follows that for every real number x and $\varepsilon > 0$ there is an interval $\Delta_x \subseteq \Delta$ of the length $l_x \leq \varepsilon \cdot \pi$ such that

(5.21)
$$\alpha(\varepsilon) \equiv \min_{x \in R_1} (\min_{\lambda \in J - J_x} |g'(\lambda) + x|)$$

exists and $\alpha(\varepsilon) > 0$. Hence with x = -m/s we have

(5.22)
$$\begin{aligned} |\bar{a}_{s}^{m}| &= \left|\frac{1}{2\pi}\int_{0}^{2\pi}d\lambda e^{-isg(\lambda)}e^{im\lambda}\right| \\ &\leq \frac{\varepsilon}{2} + \frac{1}{2\pi}\left|\int_{d-dx}d\lambda e^{-is(g(\lambda)-x\lambda)}\right|.\end{aligned}$$

The domain of integration $(\varDelta - \varDelta_x)$ consists of one or two intervals in dependence on x and ε . Let $\varDelta' = [a, b] \subseteq \varDelta$ be such an interval. Then

$$\left|\int_{a}^{b} d\lambda e^{-is(g(\lambda)-x\lambda)} = \left|\int_{a}^{b} \frac{d\lambda}{-is(g'(\lambda)-x)} \left(\frac{d}{d\lambda} e^{-is(g(\lambda)-x\lambda)}\right)\right|$$

$$\leq \left| \left[\frac{1}{-is(g'(\lambda) - x)} e^{-is(g(\lambda) - x\lambda)} \right]_{a}^{b} + \int_{a}^{b} e^{-is(g(\lambda) - x\lambda)} d\left(\frac{1}{is(g'(\lambda) - x)} \right) \right|$$

$$(5.23) \quad \leq \frac{2}{s \cdot \alpha} + \int_{a}^{b} \left| d\left(\frac{1}{s(g'(\lambda) - x)} \right) \right|$$

$$\leq \frac{2}{s \cdot \alpha} + \frac{M}{s \cdot \alpha}$$

where α is defined by (5.21) and M = |g'(b) - g'(a)|. From (5.22) and (5.23) we have

$$|a^m_s| \leq rac{arepsilon}{2} + rac{1}{\pi s} \cdot rac{2+M}{lpha} \; .$$

If we put $N = (2/\varepsilon \cdot \pi) \cdot \frac{2+M}{\alpha}$, then this implies (5.20).

ACKNOWLEDGMENT. It is a pleasure to thank Dr. H. Baumärtel for suggesting this problem and for many stimulating discussions.

References

1. H. Baumgärtel, Zu einem Problem von M. G. Krein, Mathematische Nachrichten, 58 (1973), 279-294.

T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1966.
 T. Kato and S. T. Kuroda, The abstract theory of scattering, The Rocky Mountain J. of Math., 1 (1971), 127-171.

Received August 27, 1974.

AKADEMIE DER WISSENSCHAFTEN DER DDR