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THE INVARIANCE PRINCIPLE FOR WAVE
OPERATORS

MANFRED WOLLENBERG

The invariance principle for wave operators is proved.
It is shown that the existence of wave operators W±(B, A)
does not imply the existence of W±(g{B), g(A)), in general.

1* Introduction* Let A and B be two selfadjoint operators on
a separable Hubert space Sίf and let PA and PB be the orthogonal
projections on the spaces of absolute continuity for A and B, respec-
tively. The wave operators W±(B, A) are defined by the strong limits

(1.1) W±(B, A) = 8-lim eitBe~itAPA

when they exist (cf. [2, Chapter X]). The invariance principle of
M. S. Birman and T. Kato says: If the wave operators W±(B, A)
and W±(g(B), g(A)) exist and g(X) is real-valued and piece wise monotone
increasing, with a certain mild smoothness, then

(1.2) W±(g(B), g(A)) = W±(B, A) .

As stated by T. Kato and S. T. Kuroda in [3]: "It would be
nice if the existence of W±(B, A) implied the existence of W±(g(B),
g{A)) and the invariance principle.

However, this has not been shown in general".
For example, the existence of W±{g{B), g{A)) and the invariance

principle have been proved under the condition that B — A or (B —
ξ)"1 — (A — ξ)-1(f a nonreal number) is a trace-class operator (see for
instance [2, Chapter X]).

The aim of this paper is

1. the proof of the invariance principle for wave operators,

2. the proof, that the existence of W±(B, A) does not imply the
existence of W±(g(B), g(A)), in general.

In the present work we restrict our considerations to real-valued
functions g(X) on (— oo, oo) with the following properties (cf. [2, p.
543]): The whole interval (— oo, oo) can be divided into a countable
number of subintervals Δn with lengths ln in such a way that min
ln > 0 and in each open subinterval g(X) is differentiate with g'(X)
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continuous, locally of bounded variation, and positive. A function
with these properties is called an allowable function. Furthermore,
we shall consider only the wave operators W+ because the theorems
and proofs for the wave operators W- are entirely similar. In §2
we prove

THEOREM 1 (in variance principle). Let A and B be two self ad joint
operators on a separable Hilbert space £$f and let g(X) be an allowable
function. If W+(B, A) and W+(g(B), g(A)) exist and if W+(B, A) is
complete, then W+(g(B), g(A)) = W+(B, A).

From Theorem 1 we also see that the existence of W+(B, A),
W+(g(B), g{A)) and the completeness of W+(B, A) imply the completeness
of W+((g, B), g(A)). The next two theorems concern the existence of
the wave operator W+(g(B), g(A)). They will be proved in §§2 and
3, respectively.

THEOREM 2. Let A and B be two selfadjoint operators on a
separable Hilbert space Sίf with the absolutely continous spectrum A
and let g(X) be an allowable function. If the wave operator W+(B, A)
exists, is complete and if g(X) is piecewise linear on A, then
W+{g{B), g(A)) exists.

THEOREM 3. Let A be a selfadjoint operator on a separable
Hilbert space Sίf with the absolutely continuous spectrum A Φ 0.
Let g(X) be an allowable function for which a finite interval A c (— oo,
oo) with \A Π A\ Φ 0 (Lebesgue measure) exists such that on A g'(X)
exists and is a continuous strictly monotone function. Then there
is a selfadjoint operator B such that W+(B, A) exists, is complete,
however, W+(g(B), g(A)) does not exist.

It is easily seen, for instance, that all allowable functions g(X)
which are piecewise twice continuously differentiable satisfy the assump-
tions either of Theorem 2 or of Theorem 3 for fixed A.

For the proofs of the theorems we use the following result of
H. Baumgartel [1, Theorem 3]:

(NS) Let W be a partial isometry with

w*w= PA, ww* = PB, WAPAW* a BPB .

Then W+(B, A) exists and W = W+(B, A) if and only if

(1.3) W=:PA + C,

(1.4) sΛimeitACe-itAPA = 0 .
£-+oo
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By Theorem 1 we obtain from (NS) that the existence and com-
pleteness of W+(B, A) imply the existence of W+(g(B), g(A)) if and
only if for the operator C defined by (1.3) the strong limit

(1.5) β-lim eitβ{A)Ce'UgU)PΛ = 0
t-*oo

exists. Here it was used that PgU) = PA for allowable functions
g(\) (see §2).

Hence we know that the proof of Theorem 3 leads to the con-
struction of an operator C for which s-lim^ eitACe~itAPA = 0 and
s-lim êo eitβU)Ce"itβU)PΛ does not exist for the function g(X) defined by
Theorem 3. To prove Theorem 2 we shall show that the equation

8-lim eitACe~itAPA = 0
t-*o°

implies s-limt^ eit(nA)Ce~~it9U) PA = 0 for piecewise linear functions
The invariance principle will be proved by means of

LEMMA 1. Let T be a nonnegative bounded selfadjoint operator
and g(X) an allowable function. If the strong limits

sΛimeitATe-itAPA - 0, sΛimeit9(A)Te~it9U)PA
t-*oo ί->oo

exist, then they are equal.

In §5 we prove Lemma 1 and formulate and prove two other
lemmas which concern the behavior of the function e~it9{λ) for large t.

2. Proof of Theorem 1. First we introduce several notations
and simple relations which are needed for the proof. As in §1 let
if be a selfadjoint operator on a separable Hubert space S^f and PH

be the orthogonal projection on the space of absolute continuity.
We note that for every allowable function g(X)

(2.1) Pa{m - PH .

(2.1) has been proved in [2, p. 545] for a class of functions slightly
more restrictive than the allowable functions. The proof can easily
be generalized for all allowable functions. Furthermore, we introduce
the notations {H}' for the commutant of H and

(2.2) V£(X) Ξ= s-lim eitHXe'itHPH ,

whenever for the bounded operator X the strong limit exists. If
VH(X) for the bounded operator X exists, then we have the unam-
biguous decomposition (cf. [1])
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(2.3) X = X, + X% ,

where

(2.4) X, = PBX, = I Λ 6 {JET}' ,

(2.5) V&XJ = 0

For continuous functions /(λ) and a selfadjoint operator X one
easily verifies that

(2.6) f(VaXX))=VB{f(X)).

Now we prove Theorem 1. By (NS), we find that W+(B, A) =
PA + C with Vt(C) = 0. Further we also have

(2.7) Vi(C*) = 0 ,

since

Vi(C*) = Vϊ(C* + PA) -PA= V+

A(WX(B, A)) - PA

= s-lim eitA Wt(B, A)e~itAPA - PA
t-*oo

= s-lim Wt(B, A)eitBe-itAPA - PA

= W%{B, A)W+(B, A) - PA = 0

with the intertwining relation W+{B, A)eitΛ = eitBW+(B, A). We define

(2.8) Wx = W*+(B, A) W+(g(B), g(A)).

From this definition we obtain that F+U)( W%{B, A)) exists and

(2.9) VitA)(W%{B, A)) = W,,

since

VtuλWt(B, A)) = s-lime^WUB, A)e~iwA)PA
ί->oo

= s-lim W\{B, A)eitg<B)e-Us(A)PA = W,.

By (2.3) and (2.5) then we have

(2.10) Wl(B, A) = Wi + Cλ

with

(2.11) VϊU)(Cd = 0

(2.12) Wi = PAW1= W,PA e {g(A)Y .

From the Definition (2.8) and the completeness of W+(B, A) one
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easily verifies that WΊ is a partially isometrie with

(2.13) WΪ wι = PA, w, wr = P1^PA.

Further we have

(2.14) VtuλCίP,) = 0 .

This follows from

VΐuACΐPύ = 0 *—» ViU)(Wt(B, A)C,*Pd

,. + ctwτ + PO - pt

B, A) W+(B, A)Pd - Px = 0

with VλACtW? + P0 = P t by Wί, P, 6 MA)}'. Combining (2.10) with
T7ί(J5, A) = PA + C* and (2.13) we obtain

cι- PΛ)

py^ + crpι(wι -
fi, = {w, - pίnw1 - po + c2.

By (2.11), (2.14) and (W1 - Pd, (Wt - Pd* e {g(A)Y we have 7+U)(Ct) =
0 and therefore,

(2.15) V ^ ί ί C P ^ ) = (Wι - P1)

Furthermore, it follows from (2.7) that

(2.16) 7KCPC*) = 0 .

The operator CPfi* satisfies the assumptions of Lemma 1. Hence,
we have (W, - P,)*( W, - PJ = 0 and also (Wt - P.) = 0. With (2.13)
and (2.8), we finally obtain WΊ = PA and

WM.B), 9(A)) = W4.B, A) .

3. Proof of Theorem 2. We shall use the same notations as in
§2. By Theorem 1 and (NS) it is necessary and sufficient for the
existence of W+(g(B), g(A)) that

(3-1) VtUC) = 0 .

Let ψ e PA^f, e > 0 and PA(Δ) be the spectral measure of A. Then
there is a finite interval Δ' such that

(3-2) W φ - e
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From the definition of the functions g(X) in Theorem 2 we see that
there exists a finite number of disjoint intervals Δn c Δ\n = 1, 2, - ,
N) such that

(3.3) 9{A)PAPA{Δn) = qnAPAPA{Δn) ,

(3.4) \
II

with 0 < qn < oo. By (3.2), (3.3), and (3.4) we find

(3.5) WCe-^P/pW £ -f ε + Σ \\Ce-^PA

C satisfies the relation (see (NS))

\\Ce-UAPAψ\\ >0 as t

for every ψ e έ%f* Hence, for the functions φn = PA(Δ^)φ there are
numbers Tn such that

(3.6) HCβ-^VJ! ^ ^ for all t > Tn .

By (3.5), (3.9) we obtain

\\Ce-itg{A)PAφ\\ ^ ε for t> T= max Γn

and (3.1) is proved.

4. Proof of Theorem 3. For simplicity we shall assume that
ΔczΛ and J = [0, 2π]. Let ^ e P ^ ) ? ^ with PA(Δr)uΦθ for all
/ c J , | / | ^ 0 . A restricted on the subspace <%t = sp{PΛ(Δ')u, Δ'aΔ
Borel set} is an operator with simple absolutely continuous spectrum
Δ. Hence we may identify <%? with £f\Δ) and α restricted on <%t
with the multiplication operator by λ on J*f\Δ) denoted by H.

Therefore it follows that for the proof of Theorem 3 it is sufficient
to show that for H such an operator B defined by Theorem 3 exists.
At first we construct a projector P such that V£(P) = 0 and Vϊ{H)(P)
do not exist. We consider the function

By Lemma 2 for ε = 1/2 we can find sequences of natural numbers
SHf Nn with SΛ9 Nn —> oo as ^ —> oo such that

(4.1) Σ I * Γ . I I = α . ^ l - s = i .
N £
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Now we define P by

(4.2) P=Σ/.( ,Λ),
n—l

309

(4.3) = Σ

Next we prove F#(P) = 0, i.e.,

(4.4) lim \\Pe-itHψ\\ = 0 for every ψ e ^ 2 (z/) .
t-»00

As is easily shown, for the proof of (4.4) it is sufficient to consider
the sequence | |Pβ" < n Λ r ^ 0 | | with n—* oo (n a natural number) and ̂ o =
l/VW.

We have

(4.5)

Σ Ψl
i/α«

where x(p) = r iί pe (Nr, Nr + 1, , Nr+ι - 1).
It is clear that x(p) —> oo as p —* °o. Since #(λ) satisfies the

assumptions of Lemma 3 we find l^Sβ(P)|*—>Ό as p—>oo and also
\\Pe-ipHf0\\2->0 as p-^oo. This proves (4.4). To prove that VilH)(P)
does not exist by Lemma 1 it is sufficient to show that there are a
ψ e J*f%J), a sequence of real numbers tn —> oo as % —* oo and an
X > 0 such that

(4.6) \\Pe-u^H)ψ\\ > X for all tn .

We set f = α̂ 0 = 1/vΊSr and tn = Sw (see (4.1)). Then by (4.1), (4.2)

= Σ KΛ,
l

L / Σ ~ V X

S..

This proves that U+{H)(P) does not exist.
Now we define by U = 1 — 2P a unitary operator and we set
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B = UHU. From the definitions of U, B, and (NS) it immediately
follows that W+(B, H) exists and U = W+(B, H). Since, however,
V^H)(—2P) does not exist, it follows from Theorem 1 and (NS) that
also W+(g(B), g{H)) does not exist.

5* Proofs of the Lemmas. Proof of Lemma 1: We shall prove
Lemma 1 indirectly. Thus we suppose that for a nonnegative bounded
self adjoint operator T and an allowable function g(X) the strong limits

(5.1) V\(T) = s-limeitATe-itAPA = 0 ,
ί-+oo

(5.2) Vtu)(T) = s-lim eitM Te~UMPA = S
t-*oo

exist with S Φ 0, and from these assumptions we construct a con-
tradiction. It is obvious that S is also a nonnegative bounded self adjoint
operator with S = SPA = PΛSe{g(A)}' by (2.3) to (2.5). By S Φ 0 it
exists a uzPA£ίf with Su Φ 0. From the definition of the allowable
functions g(X) it follows that there is a finite interval J c ( - o o , oo)
such that PA{Δ)u Φ 0, SPA(J)u Φ 0 and #'(λ) is continuous, positive and
of bounded variation on Δ. For a nonnegative operator S it follows
from Sv Φ 0 that also (v, Sv) Φ 0. Hence we have (PA(Δ)u, SPA{Δ)u) Φ
0 and then QSQ Φ 0 where Q is the orthogonal projection on the
subspace Sίfx = sp{PA(/lr)uf Δ' c Δ). It is Qe{A}' and therefore Qe
{g(A)Y. By Se{g(A)}' we obtain QSQe{fjr(A)}\ Since g(X) is strictly
increasing on Δ it is clear that {QAQ}' = {Q^(A)Q}'. From this identity
and QSQ e {̂ (A)}' we finally obtain QSQ e {A}'. Furthermore, we have
E(Δ)e{A}', where E(Δ) is the spectral measure of QSQ. We choose
a a > 0 such that #(0, α) < Q. With R = (Q - E(0, a)) e {AY and
(5.1), (5.2) we find

(5.3) Vl(RTR) = 0, Vΐu)(RTR) = i2Si2 ̂  0 .

is a nonnegative selfadjoint operator with the spectrum δ e 0 U
[α, 6](0 < α < 6 < oo). Now we consider continuous functions /(λ)
which are 1 on [α, δ] and 0 in a neighborhood of 0.

By (2.6) and (5.3) we find

(5.4) VKf(RTR)) = 0, VtUf(RTR)) = f(RSR) = R .

From the independence of the right sides of these /(λ) it can easily
be shown that (5.4) is also true for the step-function

= ί l on [a19 6J (0 < a, < a < b < b, < oo)

~ (0 λ ί [ α l f 6 J .

Hence we have

(5.5) Vt(P) = 0, VtUP) = R
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where P = f(RTR) is an orthogonal projection with P < R.
reduces A, P, R and P, R are distinct from 0 only on <%f. Thus
it is sufficient to consider (5.5) in Sίf^ A restricted on £g[ is an
operator with a simple absolutely continuous spectrum σ c Δ. Then
we may identify £(fx with =^2((7) and α restricted on Sίfx with the
multiplication operator by λ and regard Sίf^ = =S^2(σ) as a subspace
of the large Hubert space £f\Δ). In ^ 2 (zί) we may identify R with
the multiplication operator by % (̂λ), where XJ(X) is the characteristic
function on p cz σ with \p\ Φ 0. i ϊ denotes the multiplication operator
by λ in <Sf\Δ). Then we obtain from (5.5)

lim \\Pe~iHtf\\ = 0 for every ψ e
t

(5.6)

(5.7)

For the sake of simplicity, we shall assume that Δ = [0, 2π]. We
can write g(X) = α ^(λ) + β, where g(0) = 0, (̂2ττ) = 27Γ, and α, β are
real numbers with a > 0. Then we put

It is easy to verify that both φn and ψn form a complete ortho-
normal family in £f\Δ). Furthermore, we have | |χ7^ n | | 2 = G > 0.
With these notations we easily obtain from (5, 6), (5.7)

(5.8)

(5.9) \\Pψn\\2~ C=an >0 as n

We set ψs{X) = ΣmαΓ^m(λ). Now we consider the functions
n/rs(λ) for which

(5.10)
N

Λ = l

with fixed N> 0. For the functions ψs(X) =
2 we have

(\) by Lemma

]
< ε

where qu q2 are positive real numbers independent of s, ε and p is a
natural number independent of s. It is clear that then also

~ 2(5.11) jj^s — Σ a>71

with an appropriate p' independent of s. An elementary computation
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shows that for all ψs with

the inequality (5.10) is true.
Hence there are natural numbers iVi, sί and an a > 0 such that

for every fixed N with N> N, and s e (s^ ^ + 1, , [&N] + s j ^ s

satisfies (5.10). Now we consider the sum

N [αr,V] + s,

S W = Σ Σ !(?>„, f»)l2

and introduce the orthogonal projection P = 1 - P. Then

iV [αΛΓ]4-

Σ Σ
N [αiVl +

Σ Σ

^ Σ v

(5.12)

Σ {{(PP.,
71 = 1 S=Sj^

Σ l(P^1fs)i2)(Σ Σ

Σ
By (5.9) we have | | ίSκ | | 2 = 1 - C - as and with (5.8), (5.12)

iV

(5.13)

o — 2 J
 αs/

On the other hand, by (5.10) we find

(5.14) SN ^ [a£

Combining (5.13), (5.14) we obtain

Since eH, an are zero sequences, also
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are zero sequences. Hence for sufficiently large N the last inequality
which we have got from the assumption S Φ 0 is not true, which
proves Lemma 1.

LEMMA 2. Let g(X) be a real-valued function and gf(X) a con-
tinuous positive function on Δ — [0, 2π\. Then the functions ψs(X)e

defined by

(5.15)
V2π

possess the following properties: For every ε with 0 < ε < 1 and
every natural number s > 0 there exist two real positive numbers
ql9 q2 independent of s, ε and a natural number p independent of s
such that

(5.16) 2

Σ
[ ]

^ 1 - 6 .

Proof. Let ax = minλeJg'(λ), a2 = max ;,e j ί/r(λ). Let s be a fixed
natural number. We consider integral numbers m with m > s α2 or
s aί > m. For these m we have |s (/'(λ) — m\ > 0 and we can
write

1 Γ2π

— \

2π Jo

1 f 2~
3 = — 1 ax-

_( d β~i(sg{λ)~m'λ) \

2τz Jo — ΐ(s^'(λ) — m)\dX /

Integrating by parts and an elementary computation shows that

u r i a i | Γ _ i

27Γ IL — ι(sg (X) — m )

(5.17)

2
2π 11 sα — m \

1 ί 2

— m)

Jo Vsέ/'(λ) —

ilf s

m

— m2π l\sa — m

1

2π\sa — m

where M is the total variation of g\X) on A and a = a± if m < s-ax

or α: = α2 if m > s α2. Let p ' be a positive integral number, then
by (5.17) we have
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(5.18)
I a™

(2ττ)2

2 + ^

+
α2

and entirely analogous

(5.19)
~~ 7Tb\

2MY ^ J_

where [α] is the smallest integer r > a — 1.
For sufficiently large p' from (5.18), (5.19) we find

Σ
2 ] +

Σ
l / 2 ) ]

for all positive integral numbers s and every e > 0. With ĉ  = (l/2)αlf

g2 = 2 α2 and by |ψs\
2 = Σm I^Π2 = 1 we finally obtain (5.16).

LEMMA 3. Let g(x), ψs(X) be defined as in Lemma 2 and let
<7'(λ) be continuous, strictly monotone on A. Then the functions
ϊrs(X) possess the following properties: For every ε with 0 < ε < 1
there exists an N such that for all integral numbers m, s with s > N

(5.20) \dT\ <e .

Proof. From the continuity and strict monotony of the positive
function g'(X) on Δ it follows that for every real number x and e > 0
there is an interval Ax S Δ of the length lx ^ ε π such that

(5.21) a(e) = m i n ( m i n \g'(X) + x\)
xeRi λeΔ—Δχ

exists and a{ε) > 0. Hence with x = —m/s we have

- I f 2

| δ Γ l = - 2 ¥ i .
(5.22)

The domain of integration (Δ — Ax) consists of one or two intervals
in dependence on x and ε. Let Δr = [α, 5 ] g J be such an interval.
Then

I [bd\e-U{g{λ)-λ) = I Γ — (jLe-*w*>-»
I Jα I Jα -is(g'(χ) - χ)\dX
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< | Γ I e-is(9a)-*χ)Ί + [b

e-is(9a)-χx)d( 1 ΛI
— IL — is(g'(X) - x) J« )« V is(g'(X) -x)/\

(5.23) < -A- + V d(——l- )

M

s a s a

where a is defined by (5.21) and M= \g\b) - g\a)\. From (5.22)
and (5.23) we have

2 πs a

If we put iSΓ = (2/g.π).2 + M, then this implies (5.20).
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