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CONVEX INTEGRANDS ON SOUSLIN LOCALLY
CONVEX SPACES

M. VALADIER

R. T. Rockafellar has proved a formula for the conjugates
of convex integral functionals on vector spaces of measurable
vector-valued functions. This formula is extended to the case
where the spaces of values of the measurable functions is a
Souslin locally convex space. Rockafellar's definition of
decomposable space of measurable vector-valued functions
is extended to other than normed spaces. In the first section
technical results on measurable set-valued functions are given.

Introduction* Let (Γ, ^ μ) denote a measure space with a
positive σ-finite measure μ and ^ complete. Let E be a real locally
convex space and E' its dual. Let Sf (resp. £f*) be a vector space
of functions from T to E (resp. E'). Hypotheses will be made which
ensure that for each ue^f and each v€£f'9 the function tv-+(v(t)9

u(t)) is integrable. The pairing I (v(t), u(t))μ(dt) will be denoted by

O, u).
A function / : Γ x E-^R(— [— oo, oo]) will be called an integrand.

Under certain hypotheses 11-» f(t, u(t)) is measurable for each u e Jzf.
We shall consider the functional on Sf defined by If(u) = 1 f(t, u(t))μ(dt)
(with the convention that the integral is +oo if the positive part of
f(t, u(t)) is nonintegrable). Denote by /*(ί, •) the conjugate function
of f(t, •) this is

/*(ί, x') = sup {<>', x) - f(t, x)\xeE} for x'e E' .

As above //* denotes the functional on S^f defined by I/*(v) =

*(«, v(t))μ(dt).
Then roughly speaking the result proved by Rockafellar is the

following: if Jz? contains sufficiently many functions (see below the
definition of decomposable spaces) then //* is the conjugate functional
of // with respect to the duality ^ βSf'.
More precisely, for each v e £f',

IΛv) = (If)*(v)(= sup {<v, u) - If(u) \uej*f})

Rockafellar first proved this formula for E = Rn ([11] Th. 2 p. 532),
then for separable Banach spaces ([13] Th. 2 p. 225). The inequality
If*{v) ^ (If)*(v) is obvious. The converse inequality is proved using
measurable selection theorems (and the fact that Sf contains suf-
ficiently many functions). Standard measurable selection theorems
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require Polish spaces. But if E is a separable Banach space its dual
may fail to be Polish, and then it is difficult to prove (I/*)* = I/**.

In [5] (Theorem 5) Gastaing proved the two formulas (I/)* = I/*
and (//*)* = //** for E separable Frechet but T metrizable compact.
In [6] he succeeds to prove the same formulas for abstract T and
E separable Banach space, using th,e fact that Er endowed with
σ(E', E) is a Lusin space.

Here we shall extend the formulas to a Souslin locally convex
space E whose dual Er is also a Souslin space for at least one locally
convex topology compatible with duality. That is the case if E is
a separable Frechet space, and many locally convex spaces deduced
from separable Frechet spaces (for example most of the spaces
encountered in the theory of distributions) have that property. Some
new results on measurable functions and measurable set-valued
functions with values in a Souslin space are given in a preliminary
section. In particular Lemma 2 extends Bourbaki ([2] Ch. IV § 5).
For applications and further references see Ioffe-Levin [7], Ioffe-
Tikhomirov [8], Rockafellar [12].

1* Functions and set-valued functions with values in a Souslin
space* We shall denote by &{E) the Borel d-ίield of a topological
space E. A Souslin space is a Hausdorff topological space S such
that there exists a Polish space P and a continuous map h from P
onto S.

LEMMA 1. Let S be a Souslin space, P a Polish space and h
a continuous map from P onto S. Let Γ be a set-valued function
from T to the closed nonempty subsets of S, whose graph belongs to
i f ® ^(S). Then

(a) Γ admits a sequence of selections (un), such that, for every
t the un(t) are dense in Γ{t), and such that there exist measurable
maps σn: T—+P with un — h°σn.

(b) Moreover un has the following properties:
1. un is (<έf, &($)) measurable (that is VAe &(S), u~1(A)e <if)
2. un is the limit of a sequence of ^-measurable functions

assuming a finite number of values.
3. Moreover if T is a Hausdorff topological space, and μ a

Radon measure, then un is Lusin μ-measurable.

Proof, (a) Let G denote the graph of Γ and prΓ denote the
map (t, %)\->t from Γ x S t o Γ . Put φ(t) = h~\Γ(t)). It is a closed
nonempty subset of P. Recall that if U is a subset of P, φ~{ U)
denotes the set {t e T\ φ(t) Π UΦ 0}.
Then if Ue <^(P) one has
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VΦ 0}

0}

= Γ~(h(U))

= prΓ(G n (Γ x

It is easy to see that Gf](T xh(U)) belongs to <if®&(h(U)). But
h(U)is a Souslin space (because Z7is Borel hence Souslin). Thus by
the projection theorem (Aumann [1], Sainte Beuve [14]; for com-
pleteness we sketch a short proof in the Remark 2 below) φ~(U)
belongs to ^ . Thus we can apply standard theorems on measurable
selections: Castaing ([4] Th. 5.2) and for abstract measurability
Valadier ([16] Th. 0.3). The conclusion is: φ has a sequence of
measurable selections (σn) such that for every t the σjt) are dense
in φ(t). Put un(t) = hoσjt). Then the un(t) are dense in Γ{t).

(b) 1. As σn is ( ^ &(P)) measurable and h is continuous
(hence (^(P) , &(S)) measurable), un is ( ^ &(β)) measurable.

2. The function σn is the limit of a sequence of ^measurable
functions assuming a finite number of values. Hence u% has the
same property.

3. Finally if T is a Hausdorff topological space and μ a Radon
measure (see Bourbaki [3] Schwartz [15] for measures on Hausdorff
spaces), it is well known that, as P is Polish, σn is Lusin measurable.
That is for each compact Ka T and ε > 0, there exists a compact
Kε<zK such that μ(K— Kε) ^ ε and σn is continuous on Ke. Obviously
un has the same property.

REMARKS.

(1) Existence of one measurable selection has been proved by
Sainte-Beuve [14] under a weaker hypothesis: Γ is not supposed
closed-valued. She extends Aumann's theorem, which was stated
for a Lusin space.

(2) We sketch now a short proof of the projection theorem.
The statement is the following: if S is Souslin and Ge <&®&(S),
the projection of G onto T belongs to ^ When S is compact metri-
zable, this theorem is well known (Meyer [9], Neveu [10]): Gis analytic
and its projection is analytic, hence belongs to ^ which has been
supposed complete.

If S is Polish, S is Gδ (countable intersection of open sets) in a
compact metrizable space E. Then it is obvious that ^ ® ^ ( S ) c
^® &{E) and the projection theorem is true for S Polish. Finally
if S is Souslin: let P be a Polish space and h: P—+S continuous and
onto. Then if G e <gf(g) &(S), (lτ x ^"'(G) belongs to
and
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p r Γ G = p r Γ [(1Γ x h)-\G)\ .

Here lτ x h is the m a p (ί, x) H-> (t, λ(a?)) from Γ x P t o T x S, and

p r Γ denotes either the projection from T x S onto JΓ or the projection

from T x P onto Γ.

COROLLARY. If S is a Souslin space and u: T~+S is a function
whose graph belongs to ^(x) &(S), then u has the following properties:

(1) u is ( ^ &{S)) measurable
(2) u is the limit of a sequence of ^-measurable functions

assuming a finite number of values
(3) Moreover if T is a Hausdorff topological space, and μ a

Radon measure, then u is Lusin μ-measurable.

Proof. Apply Lemma l(b) to Γ(t) = {u(t)}.

LEMMA 2. Let E be a Souslin real locally convex vector space,
and u: T—>E a function.

(a) Then the four following properties are equivalent:
(1) u is (^ ^{E)) measurable
(2) u is the limit of a sequence of ^-measurable functions

assuming a finite number of values
(3) u is scalarly measurable (that is for each x'e E\ <V, u( ))

is measurable)
( 4 ) the graph of u belongs to < (̂x) ^(E).
(b) Moreover if T is a Hausdorff topological space, and μ a

Radon measure, consider the property
( 5 ) u is Lusin μ-measurable.

Then the five properties (1), , (5) are equivalent.

Proof, (a) The corollary to Lemma 1 yields the implications
4 ==> 1 and 4 ==> 2. 1 => 3 and 2 => 3 are obvious. We prove now
3 => 4. By Lemma 3 below, there exists a sequence (e'n) in E' which
separates points of E. Thus the graph of u is

Π {(«, x)eTx E\ {e'n, x) = (e'n,
n

Hence if u is scalarly measurable, the graph of u belongs to

(b) Suppose that T is a Hausdorff topological space and that
μ is Radon. Then 5 => 3 is obvious and 4 => 5 is the corollary of
Lemma 1.

LEMMA 3. Let S be a Souslin space and (ft)ieI a family of
real-valued continuous functions which separates points of S (that
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is if x Φ y, there exists i such that fi(x) Φ fi(y)), then there exists a
countable subset D of I such that the subfamily (fi)iBD separates
points of S.

Proof. The fact that (fi)i&1 separates points of S is equivalent
to

S2 - As = U (/, x fi)'W ~ ΔR) .
iel

In this formula ft x ft denotes the map (x, y) H+ (ft(x), My)), and ΔE

denotes the diagonal in E x E. As S2 is Souslin, there exists a Polish
space Q and a continuous onto map k: Q —» S2. Put

U< = (/, x fd'W - ΔR) .

It is an open set. It is well known that there exists a countable
subset D of I such that

U ( i ) U
ieD iel

As k is onto, that implies

U ut = u σ;.

Hence the countable subfamily (f^izD separates points of S.

REMARK. This result has been proved by Schwartz [15] in a
more general form.

LEMMA 4. Let Ebe a Souslin locally convex space and u: T—>E
scalarly measurable. Then the function (t, x') i-» <#', u(t)} defined on
T x E', is <if (x) &{E') measurable.

Proof. This follows from property (2) of Lemma 2.
Indeed let u = lim un where the un are ^measurable functions

assuming a finite number of values. Then un(t) = xζ if t e Tξf and

<^f un(t)) = <a/, «;> if ί e Γ j .

Thus (t, α?f) H^ (x'f un(t)) is ^ 0 ^ ( £ " ) measurable on Tξ x £", hence
on all Γ x E\ Finally <a/, w(ί)> = lim (x\ un(t)) is a
measurable function of {t, xf).

LEMMA 5. Let E be a Souslin locally convex space and u: T—*E
scalarly measurable. Then there exists a sequence (TJ in & such
that u(Tn) is compact, and T — \J Tn is μ-negligible.
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Proof. As μ is σ-finite it is sufficient to prove the result when
μ is bounded. By property (1) of Lemma 2 one may consider the
measure v = μ°u~ι on (E, &(E)). As E is Souslin, v is a Radon
measure (Bourbaki [3] Prop. 3 p. 49). Therefore there exists a
sequence of compact sets (Kn) in E, such that v({jK%) = v(E). The
sets Γw = u~\Kn) have the required properties.

2* Decomposable vector spaces of functions* Integrands*
Prom now on E is a Souslin real locally convex vector space and
its dual E* is supposed to be Souslin for at least one topology com-
patible with duality (we remark that this is equivalent to supposing
that Ef is Souslin for the weak topology σ(E', E)).

We denote by <£f (resp. £?') a vector space of scalarly measurable
functions from T to E (resp. E')f and by L (resp. I/) the space of
equivalence classes for equality almost everywhere. Note that by
property (2) of Lemma 2 for each u e £f, and each v e £?', t h-» (v(t),
u(t)} is measurable. We make the hypothesis that for each u e *Sf
and each v e £f\ t h-» (v(t), u(t)) is integrable. We denote by (v, u)

the number I (v(t), u(t))μ(dt). We denote by ^£r

E

k (resp. ̂ Jί) the

space of scalarly measurable functions from T to E (resp. Ef) such
that f(T) is compact (here it is important to choose a Souslin topology
on E').

DEFINITION 1. The space Sf is said to be decomposable if
and μ(A) < <>o imply

(χA denotes the characteristic function of A).

REMARK. If E is a separable reflexive Banach space, then E
and Er are Polish for the norm topology, hence Souslin for all
topologies compatible with duality. Our definition is equivalent to
Rockafellar's (where 5̂̂ °° is taken in place of

EXAMPLE. Let E be a separable Frechet space. Then its dual
E[ with the topology σ(E', E) is Souslin. We may take ^f^Sf^
and oSf'= £f£k. Indeed, £?E is obviously decomposable. And
-21?; = * f̂c*, because for a closed subset of Έf

s compactness is equivalent
to equicontinuity. Thus £f^ is decomposable.

LEMMA 6.

(1) If Sf is decomposable and v e £f\ then Vue^Sf, (v, u) = 0,
implies v = 0 a.e.
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( 2 ) // £f and Jzf are decomposable, the bilinear map (u, v) M>
(v, u) defines a separated duality between L and U.

Proof. ( 1 ) Let 4 e ^ with μ(A) < oo. It xeE and φ is a
real valued bounded measurable function, then ψx belongs to ^E

k.
Hence χAφx e ^f. This entails I (y{t), x)φ(t)μ(dt) = 0, for each x and

each φ. Hence (v( ), x) = 0 almost everywhere on A, hence on T.
As E is the dual of £", it contains a sequence (en) which separates
points of Έf (Lemma 3). Therefore v — 0 a.e.

( 2 ) The second part is obvious from the first.

DEFINITION 2. A function f: ΓxJ57—*JR( = .[—oo, oo]) is said to
be a normal integrand on T x E if for every t, f(t, •) is lower semi-
continuous and f is ^ ® &(Έ) measurable. It is said to be a convex
normal integrand if it is a normal integrand and for every t, f(t, )
is convex.

In the following lemma epi f(t, ) denotes

{(a?, r) G E x R \ r ^ /(ί, a?)} .

LEMMA 7. T%e function f is a normal integrand iff the set-
valued function t\-> epi f(t, •) is closed valued and its graph belongs
to i f ® &?{E) x

Proof. First note that the closure of epi/(ί, •) is equivalent to
lower semi-continuity of /(ί, •)•

(1) Suppose /is a normal integrand. The graph G of ίh-*epi/(ί, •)
is given by the formula

G = {(*, s, r) I r ^ /(*, x)}

and hence belongs to
(2) Suppose that the graph G belongs to

Therefore, for each reR, {(ί, a?) | (ί, a?, r)e G} belongs to
(Neveu [10] Prop. ΠI-1-2). But

Thus / is <g*(g) ̂ ( S ) measurable.

REMARK. It is easy to see (using the fact that R has a countable
basis of open sets) that &{E) (x) &(R) = &{E x R).

LEMMA 8. If f is a normal integrand on T x E, then the func-
tion defined by
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/*(*, x') = sup{<*', z> - fit, x)\xeE]

is a convex normal integrand on T x E'.

Proof. By Lemma 7 (and the remark) the set-valued function
ίi-*epi/(£, •) has a measurable graph. By Lemma 1 there exists a
sequence of measurable selections (un, rn) such that for every t the
(un(t), rn(t)) are dense in epi/(ί, •)•
Thus by Lemma 4

/*(ί, a?') = sup [<*', !*.(*)> - r.(ί)]

is a measurable function of (t, x').

3* Conjugate integral functional^*

DEFINITION 3. Let f be a normal integrand on T x E. An
integral functional is defined on Jίf by

If(u) = \ f(t,u(t))μ(dt), with the convention (+°°) + (— °°) =
JT

+ oo, that is the integral is + oo if positive and negative parts of
f(t, u(t)) are nonintegrable.

THEOREM. If S f is decomposable, if there exists u0 e <£? such
that If(u0) < oo, then If*f is the polar functional of If, that is, for
every v e Jzf'

If*(v) = sup {(v, u) — If(u) I u e

If in addition f is convex, £f' decomposable and I/*(v0) < °° for at
least one v0 6 £f, then If and If* are mutually convex lower semi-
continuous polar functional on £f and £f\

Proof. The proof follows Rockafellar [13].
We can rewrite the formula

s u p {(v(t), x) - f{ty x)\xe E}μidt)

= sup j J (vit), uiφμidt) - J fit, u(t))μ(dt) \ u e

(If we rewrite the second member

sup ) J [(vit), uiφ - fit, u(t))]μ(dt) \ueJ*f]

we have to use the opposite convention, that — oo prevails over
+ oo.) Thus the inequality ;> is obvious. To prove ^ , let βe R such
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that β < If*{v) and let us find u such that (v, u) — If(u) ^ β.
(1) As If(u0) < oo there exists a0 e £fι such that (v(t), uo(t)) —

f(t, uQ(t)) ̂ > aQ(t) a.e. (for example one can take ao(t) = (v(t), uo(t)) —
f+(t, uo(t))). Remark that f*(t, v(t)) ^ ao(t).

(2) Now we prove that there exists ax e Jίf1 such that

[ aj{t)μ(dt) > β and a^t) < /*(ί, v(ί)) a.e. Indeed let h e Sf1 have
strictly positive finite values (we recall that μ is σ-finite). 1/ I/*{v) < oo
put at(t) = /*(ί, v(ί» ~ eλ(*) with ε > 0 sufficiently small.

If If.(v) = + oo put

inf(nA(ί),-5-/*(ί,v(ί))) if /*(«, v(ί)) > 0
/it

/•(ίf v(ί)) -

Then e. 6 £έ>\ (U is increasing, and ξn(t)-+(l/2)f*(t,v(t)) if f *(*,<(*)> 0.
By the monotone convergence theorem I £Λ ̂  —> CXD . Choose n large
enough such that 1 ξn μ > β and put ^ = ζn. In each of the three

cases /*(ί, v(ί)) = +<*>, finite > 0 or ^ 0, one has ax{t) < f*(t, v(t)).
(3) Let Γ(t) = {xeE\ <v(ί), ίc> - /(ί, a?) ̂  aft)}.

It is a closed almost everywhere nonempty set. The graph of
Γ is

{(*, x) I <^(0, >̂ - /(«, a?) ̂  «i(«)}

and therefore belongs to ^ ® &(E). Then (Lemma 1) Z1 has a
measurable selection ut. By Lemma 5 there exists an increasing
sequence (Tn) in & such that

-μ(Tn)<oo

— T — U Tn is negligible

—ut(Tn) is compact .

For n large enough one has

ί a,μ + [ aQμ^ β .
\ rp 1 rp rn

Put

t(t) if te Tn

Then ^ € £? because ^f is decomposable.
On Tn one has

), u(t)) - f(t, u(t)) ^

and on Γ - T n
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(V(t), u(t)) - fit, U(t)) ̂  aa(t) .

Hence

I (v(t), u(t))μ(dt) - \ f{t, uit))μidt) ^\ aiμ
JT JT JT n

(Note that f+(t, u{t)) is integrable so that ί f(t, u(t))μ(dt) is not +00.)
That proves the inequality ^ . The remainder of the theorem is
obvious.
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