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ON GROSS DIFFERENTIATION ON
BANACH SPACES

Hui-Hsiung Kuo

Let p.(z, ) denote the Wiener measure in an abstract
Wiener space (H, B) with variance parameter ¢ > 0 and mean
z in B. It is shown that if f€ L*p,(x, -),t > 0 and « are fixed,

then the function p.f defined by p.f(x + k) = S FWplx + h,
dy) for h in H is infinitely Gross diﬂ’erentiabl: at z. The
first two derivatives are given by (Dp,f(x), h) =t *\ fy)(h,
Y — x)p.(%, dy) and (D*p.fl@)k, h) ="\ f) -,y z z) (k,
Yy — x) — (h, k)}p(zx, dy), where h and &k af'e in H. Moreover,
D*p,f(x) is a Hilbert-Schmidt operator and | D?p.f(x)], =
¢?t‘1{g I f )12 poe, dy)}m. An application to Uhlenbeck-
Ornstein ;rocess is also given.

1. Introduction. It is well-known that in a general Banach
space B the Frechet differentiable functions on B do not form a
very large class of functions. The works [1; 7], among others,
show that for many separable Banach spaces the bounded continuously
Frechet differentiable functions are not dense in the space of bounded
uniformly continuous functions. However, by regarding a real se-
parable Banach space B as an abstract Wiener space [3], Goodman
[2] is able to show that the set of bounded continuously quasi-differen-
tiable functions on B is dense in the space of bounded uniformly
continuous functions on B. Regarding B as an abstract Wiener space
has a more important advantage, namely, we can talk about whether
the second derivative is a Hilbert-Schmidt or trace class operator.

Let (H, B) be an abstract Wiener space. In [4], a real valued
function u defined in an open subset V of B is said to be H-differen-
tiable at € V if there is an element y in H such that |w(z + k) —
u(x) — (y, )| = o(|k|) for & in H, where |-| and (,) are the norm
and the inner product of H, respectively. y is easily seen to be unique
and is denoted by Du(x). Higher derivatives are defined similarly.
Let p,(x, -) denote the Wiener measure in (H, B) with variance
parameter t > 0 and mean x€ B. 9,0, -) will be written as p(-).
If f is a bounded measurable complex valued function on B, we

define p,f(x) = SBf (= + v)p(dy) .

THEOREM (Gross [4]). Let f be a bounded measurable function
on B. Then p.f is infinitely H-differentiable on B with the first
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and second derivatives given by

Dpf@, 1) =t | £+ )b, pdy)
DS @, 1) = ¢ | F@ + u)E(, 0)e 9) — (1, B)pAd) ,
where h and k are tn H. If T is a test operator then

trace [TDp.f(@)] = ¢ | f(o + 1)t Ty, v) — trace Thp(ay) ,

where {,) is the natural pairing between B* and B. Moreover,
D*p.f(x) 1s a Hilbert-Schmidt operator and

IDps@N s VE| £+ wiv@n)

The assumption that f is bounded makes the above theorem
uneasy to apply. For instance, it is desirable to differentiate the
function »,f defined by r,f(x) = g FWr(z, dy), where f e L*(p,) and

B
r,(x, ) = p,_,—2(e"*x, -) are the transition probabilities of Uhlenbeck-
Ornstein process. Since f may not be bounded, the above theorem
is not applicable. To overcome this difficulty Piech considers an
orthonormal basis of L*(p,) consisting of Hermite cylinder functions
and proves the following theorem.

THEOREM (Piech [6]). Let ge L*(p,). Then for p,—a.e. x and for
t >0, r,g s twice H-differentiable at x with derivatives given by

(Dr.g(x), b) = —[e'(1 — ™))™ Lg(y)(e”‘w — v, Wz, dy) ,

(D*r.g(x)h, k) = (¥ — 1) SBg(y){(l — e ) e tw — y,h)e e — y, k)
= (R, B)}rx, dy) .
Moreover, |Dr.g| and ||D*r.g|l, are in L*(p,).

In this paper, we will reexamine how the H-derivatives are
defined by Gross in [4] and prove his formulas in a rather general
situation which we believe will be quite useful in L*(p,)-theory asso-
ciated with Uhlenbeck-Ornstein process as well as other processes in
B. We will see that our theorem yields Piech’s in a beautiful way.
The novelties in our approach are Lemma 1, Theorem 2 and the
way we rewrite the expressions in Gross’ theorem. For instance,

the first derivative will be rewritten as t*lg F@)(h, y — x)px, dy),
B
which exist when f e L¥(p/(z, -) since (&, - —x) e L¥(p(z, -)).
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DEFINITION 1. Let V be a subset of B and z in V. V is called
H-coset open at x if there exists 6 = d(x) > 0 such that 2 + he V
for all || < d in H. V is called H-coset open if V is H-coset open
at every point of V.

Obviously, if G is an open subset of H then z + G is H-coset
open for any z in B. An open subset of B is also H-coset open
because B-norm is weaker then H-norm. But there are other subsets
which are H-coset open. For instance, let (H, B,) be another abstract
Wiener space with B,C B then any open subset of B, is also H-coset
open. Perhaps this is the reason why our theorem is easier to apply
because whenever a function is defined on an H-coset open set then
we can talk about Gross differentiation of f defined below.

DEFINITION 2. Let f be a function defined on an H-coset open
subset V of B. Let e V. If the function v(h) = f(x + h) defined
on some H-neighborhood of 0 is kth(k = 1) Frechet differentiable at
0, then we say that f is kth Gross differentiable at x. The jth
Gross derivative Dif(x) of f at x is defined to be the jth Frechet
derivative of v at 0. (Hence Dif(x) is a j-linear form on H,1 =
J=k).

From now on, ¢ > 0 and z < B will be fixed through §4. Suppose
f e LAp(z, -)), it will follow from Lemma 1 that f e L'(p,(x + &, *))

for all » in H. Therefore, p.f(x + h) = Lf (¥)px + h, dy) is a func-
tion defined on the H-coset open set x + H.

THEOREM 1. Let f € L¥(pJ(x, -)). Then the function p.f defined
on the H-coset open set x + H 1is infinitely Gross differentiable at
2. The first and second Gross derivatives are given by

Dp.fa), W=t F@)k, v — Dpa, dv) ,
Dpf @, B) = ¢ | F@E(h, ¥ — @)k, ¥ — ) — (b, B}, d0) -
If T is a test operator then

trace TD*p,f(x) = ¢t SBf(:L/){t“< Ty —2),y — )
— trace T}p(z, dy) .
Moreover, D*p.f(x) is a Hilbert-Schmidt operator of H and

1Dp @) = v 2| 170 pG )
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The proof of this theorem will be given in §4. In §2 and §3
we will state some integral formulas and prove some lemmas necessary
for the proof. We remark that the idea of the proof comes essen-
tially from [5, Proposition 1]. In §5 we will apply our theorem to
Uhlenbeck-Ornstein process and derive Piech’s theorem.

2. Some integral formulas. In the following » and % are in
H and J,(h, z) = exp{[—|h]|* + 2(h, 2)]/2t}, he H and z€ B.

F1). L(h, rpddz) = t| R .

F2). SB(h, 2)'pddz) = 32| A" .

F3). SB(h, 2pddz) = 105 8| A" .

F4). | b, 2ypude) = e

F5). [ 7w, 2'pda) = e

F6). Let 6,(r) = & — 46" 4 6™ — 3,72 0.

Then | [J(0, 2) — 11'pd2) = O,().

3. Some lemmas. Recall that ¢ > 0 and x € Bare fixed. Note
that for % in H the distribution function of (&, ¥ — x) with respect
to »,(x, dy) is the same as that of (k,z) with respect to p,(dz).
Hence if ¢ is any complex valued Borel measurable function on R

then S o((h, ¥y — x))p(2, dy) = S #((h, 2))p,(dz). This remark will play
B B
an important role in the following computations.

LEMMA 1. If fe L¥(pJ(x, -)) then f e L'(p(x + h,-)) for all h
wn H. In fact,

17 pe + b, dy) = o7l |70 Fodo, dpp
Proof. By the translation formula for the Wiener measures,

px + h, dy) = J(h, ¥y — 2)p(%, dy) .

Hence
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[I7@p + b, ay)
= {70, v — oy, )] {{ |7 @)Fpia, a0
= ({700, 2rpaal™{] 1r @ PP an}”
= 6"”2/”{SBI @) pd, dy)}m .

1/2

Here we have used the integral formula F4).

LEMMA 2. If fe LXp(x, +)) then for all h and k in H, f(-)(h,
-—2) and f(C)t7'(h, - —2)k, - —x) — (h, k)} are in L (p(z, -)). In
fact,

[ 17 @),y = Dnde, a) = VTR | 17@) 0, )]
7@,y = 2k, ¥ = ©) = (&, DY pe, dv)

= L+ VIR 1F@)F Pk, duy”
Proof. Use F1), F2) and the Schwarz inequality.

LemMa 3. If feLpfx, -)) then f(-)(k, -—z)e Li(pfe + k, -))
for all b and k in H. In fact,

SBlf W)ty y — )| ple + &, dy)
= V3V Ile | |7 @i a)}

Proof.
7@k, v = ) pie + E, dv)

= | 1711, 5 = 91y = D), dy)

= {| 00 v = o'po, an)} || 1k v — e, )}

<{[ )7 @ P, )}
= {|. 00, 2rpaa} || st aviaa}|| 1r@ 0 anl”
= 3V | f @) Ppde dp)}

1/4
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Here we have used integral formulas F2) and F5).

4. Proof of Theorem 1. By Lemma 1 the function p,f(x + h)
is defined on the H-coset open subset & + H of B. We divide the
proof into several steps.

Step 1. To show that p,f is Gross differentiable and (Dp.f(x),
h)=t" SB F@)(h, y — x)p,(x, dy). (This integral exists by Lemma 2).

Define () = p.f(@ + h) — p.f@) — | F@®h, v = 2)p.(x, dy).
We need to show that |#(h)| = o(|k]|) for small |k|. Let

8.0 = £ \£@)0, v — ) | 16, ¥ — ) — 1dspla, d) ,
500 = | @) | sIhPIGsh, v — 2)dsp @, dy) -

Then by [4, p. 153] we have ¢(h) = ¢,(h) — ¢,(h). But now we have
to make better estimates.

)|
= ({17 @ o an (| @, 2wia0)

= {S SB[J‘(Sh’ 2) — 1]‘pt(dz)ds}1“

1/4

1
0
1/4

<{{ 1@z, )} "3y 0. 1)
V3T 17 @ e an) ([ oas1nbas|

Il

Here we have used the integral formulas F2) and F6). It is easy

to see that Sﬁt(slhDds-—»O as |h|—0. Hence |g, (k)| =o0(|h]) for
0

small |2|. On the other hand,

tloml = 11| 5[] F@MGsh, v — 2w, dy)|ds
= (np (|| f@wia + sh, aw)as
< nf {setrenl| | 7@ Ppde, dy)) s
=t = D{| 1F@)Fpie, dn)] -

Hence |¢.(h)| = o(|k]). Therefore, we have |g(h)| = o(|R]).
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Step 2. To show that p.f is twice Gross differentiable and
(D*p.f(2)k, h) = t"SBf W7, y — 2)k, ¥y — 2) — (b, k)}pdz, dy) .
It is easy to see that
Dp.f+ 0,0 =t | @), ¥ — DI v — 2p (s, )
— | £, DIk, ¥ — 2)p o, dv)
Hence we have

(Dp.f@+ ), 1) — (Dp.f ), 1) =t | F@)t, v -2
x[Jk, y — @) — 1=, dy) — ¢
x| f@)n, 0k, y - o), dy) -
Note that
ey — @) = 1=t | [k, y — ) = s|kFWsk, ¥ — 0)ds -
Therefore,
(Dpf (@ + 1), 1) = (Dp.f (@), 1) = 2| @)k, v — )i, = 2)
x| Tek, v — dsp @, dy) — ¢+ | F@, v — 0)
x| 515k, y — 2)dsp(o, du) = (R, 1)
x| f@Ie v = e, ) -
Now, define
Vb, k) = (Dpf @ + ), 1) = (Dpf ), 1)
— 1| F@E 0, v — ) v — 2) — (b, B, )

Wi, &) = £ | F@)0, v = @), v — ) | [k, v — ) — Ldspia, do)
W B = | f@)k, v — )| s1kIT6, ¥ — D)dspi(e, dy)
Vi ) = 0, B | F@UE, ¥ - ©) = U, do) -

Then by the above computation, we have (h, k)=,(h, k) +s(h, k) +
vo(h, k). We will show that +;(h, k) = 0(|k])o(|k|) and our assertion
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in this step follows immediately.
el B = 4| 1@ ot an} {] 0, v - 9rpie, an)
x{{,06 v — orpdo, an} | [ § 1ok, v — @)~ 11'p(o, anyas)
= Y15t 111 {{ |7@)F oo, an} | [0 kDds}

= o(lh Dok -
#1v, B = 15| ('s F@)B, ¥ — I8, ¥ = 2)pa, dupds|

1/8

= 118|{'s | _r@t v — 0wt + sk, dyys|

= 1kl |'s | 1700, v — ) pdo + sk, dy)is

= V3VTIIEP| | 7@ ipde, dp)} || settas)

= %/]'2'_7_t3/2lhl [63|kl2/2t — ll{gBlf(y) Izpt(x, dy)}uz
= O(|k]o(| ).

In the third step of estimating (%, k) we have used Lemma 3.
Finally,

i, 1)) < 1l 161 | [£@) o, an} || 1706 v — 2) - 119w, aw)}

= 1l 16| | 7@ pa, d)} .00
= O(kDo(leD.

1/4

Step 3. Let T be a test operator whose restriction to H is
symmetric. Then T can be expressed as follows:

Tx = le ni<ey, T)e;
=

where {,) is the natural pairing between B* and B, and e¢;¢ B*,
j=1,2, ..., n, are orthonormal. Then

trace TD*p,f(x) = é{ (TD*p.f(x)e;, €5)

MA(Dp.f(x)e;, ;)

Il
M

S
Il
-

Il
Ms

t Lf @t N<es ¥ — ) — Ny)pdz, dy)

1

| @i (T - @),y — 2) — trace Tinde, dv) -

.
I
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Hence, for any symmetric test operator T,

trace TD*p.f(x)
— ¢ SBf(y){t—1<T(y _ x)’ Yy — x> — trace T}pt(w, dy) .

Observe that Dp,f(x) is symmetric and that both sides of the above
equality depend only on the symmetric part of 7. Hence the above
equality holds for all test operators. Moreover, this equality implies
that

|[trace T'D*p,f (x)]
= e {| Ir@ipe, e} {] 11T@ - 0,0 -

— trace T)*p,(x, d?/)}u2

1/2

= t2{{ 17@Ppde, an)} {{ 17Tz, 2> — trace TPpa)]
=t {{ 17@ e, an)} VEITIL

Hence, by the same argument as in [4, pp. 155-156], D*p.f(x) is a
Hilbert-Schmidt operator and

1D s @l = VE| |70 o, a)]”

Step 4. To see the existence of the higher Gross derivatives of
»,f, observe that we need only the integrability with respect to
p(dz) of all polynomials in (%, 2) and in Jy(h, z) for h in H. It is
easy to see that the method used in the previous computation yields
the following estimate

anptf(x + k)(hl, ) hn) - antf(x)(hu %y hn)
— D" p f (@)(hyy < vy Bay B)| = O(Rs] -+ | Ro] = -+ | R ])o(|E])

where D"p,f(x) is the nth Gross derivative of p.f at x,n=38. Of
course, we have to note that D"p,f(x + k) is also a continuous =-
linear form on H for all & in H.

5. An application to Uhlenbeck-Ornstein process. Let r/(zx,
dy) = p,_—(e"'xz,dy),t > 0 and z€ B. {r/x, -);t > 0, x € B} generate
a Markov process with continuous sample paths known as Uhlenbeck-
Ornstein process. It is easy to check that p, is an invariant measure
for r(x, -) for all £ > 0. That is, for all Borel subsets A of B,
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|, e, A)p(dz) = p(4),t >0

THEOREM 2. Let ge L¥(p,). Then for each t > 0 there exists a
measurable subset B, of B such that p(B;) = 1 and g€ L¥r(x, ) for
all x in B,.

REMARK. In a less precise way the above theorem says that if
g € L¥p,) then ge LXr(x, -)) for a.e. x[p,].

Proof. By Fubini’s theorem and the invariance of p,

L] 1s@irie, au) piao)
= | Jowr | ri@, dnpda)
= gBlg(y)Izpl(dy) oo
Hence ge Li(r/x, +)) a.e. z[p,].

Let g€ L¥(p,). Then by the above theorem, we have g € L¥(r(z, -))
for all x€ B,. But

SBI 9@ 'r(=, dy) = Salg(y)lzpl-e-ze(e“x, dy) .
Hence g € L*(p,_.—«(e 'z, -)) for all x€ B,. Observe that p,_.—:g(e~*x) =
r.g(x). Hence the formulas for first and second derivatives in Piech’s

theorem follow follow from Theorem 1. Moreover, by Theorem 1,
for x € B,

| D*rg()|l. = €7*|| D*p,—o—2eg(e™"x) |l
<21 — e {| 19w o ste e, an)
B

=vEE - 07| Jo) i, an)
Hence
|| Dro@pda) = || Dro@|lipidz)
<20~ 17| | lo@)Fniz, dnp @)
=2 = 1 || 10@)Pr(s, av)pida)

= 26 — 1 | low)Ppian) -
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On the other hand, it is easy to see that for f in Theorem 1
we have

12

1Dp.f@)] = 7| 1) P, du))

Hence by the same argument above

| Drg@)] = @ = 04| Ja@)ri, dy) we B,

and

|| Dra@) o) = (@ — 17 | 9@ piay) -

The author is grateful to Professor M. Ann Piech for correcting
a mistake, i.e., the constant factor 1/ 2 in the estimate || D*p,f() ]l
is missing in the original manuscripts.
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