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ON GROSS DIFFERENTIATION ON
BANACH SPACES

HUI-HSIUNG Kuo

Let pt(x, •) denote the Wiener measure in an abstract
Wiener space (H, B) with variance parameter t > 0 and mean
x in B. It is shown that if fe L2pt(x, -),t > 0 and x are fixed,

then the function ptf defined by ptf(x + fe) — I f(y)pt(x + h,
JB

dy) for fe in H is infinitely Gross differentiate at x. The

first two derivatives are given by (Dptf{x), fe) — t'11 f(y)(h,

y - x)Pt(Xf dy) and (D2ptf(x)k, fe) = r 1 \ / ( ^ {r 1 (fe, y - α?) (fc,
y — x) — (fe, k)}pt(x, dy), where fe and k are in H. Moreover,
D2ptf(x) is a Hilbert-Schmidt operator and || D2ptf(x) ||2 g

ί . An application to ϋhlenbeck-
(j5

Ornstein process is also given.

1* Introduction* It is well-known that in a general Banach
space B the Frechet diίferentiable functions on B do not form a
very large class of functions. The works [1; 7], among others,
show that for many separable Banach spaces the bounded continuously
Frechet diίferentiable functions are not dense in the space of bounded
uniformly continuous functions. However, by regarding a real se-
parable Banach space B as an abstract Wiener space [3], Goodman
[2] is able to show that the set of bounded continuously quasi-diίferen-
tiable functions on B is dense in the space of bounded uniformly
continuous functions on B. Regarding B as an abstract Wiener space
has a more important advantage, namely, we can talk about whether
the second derivative is a Hilbert-Schmidt or trace class operator.

Let (H, B) be an abstract Wiener space. In [4], a real valued
function u defined in an open subset V of B is said to be ίί-diίferen-
tiable at x e V if there is an element y in H such that | u(x + fe) —
u(x) — (y, h)\ = o(\h\) for h in H, where | | and (,) are the norm
and the inner product of H, respectively, y is easily seen to be unique
and is denoted by Du(x). Higher derivatives are defined similarly.
Let pt(x, •) denote the Wiener measure in (H, B) with variance
parameter t>0 and mean xeB. pt(0, •) will be written as 2>t( )
If / is a bounded measurable complex valued function on B, we
define pj{x) = \ f(x + y)pt(dy) .

JB

THEOREM (Gross [4]). Let f be a bounded measurable function
on B. Then ptf is infinitely H-differentiable on B with the first
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and second derivatives given by

(DPtf(x), h) = r 1 [ f(x + y)(h, y)pt(dy) ,

(D2ptf(x)k, h) = r 1 f fix + y){rι(h, y)ik, y) - (A, k)}Pt(dy) ,
JB

where h and k are in H. If T is a test operator then

trace [TD2pJix)] = r1 \ fix + y){r\Ty, y) - trace T}pt(dy) ,
JB

where (,) is the natural pairing between JB* and B. Moreover,
D2Ptfi%) is a Hilbert-Schmidt operator and

fix + τ/)|2

The assumption that / is bounded makes the above theorem
uneasy to apply. For instance, it is desirable to differentiate the

function rtf defined by rtfix) = \ fiy)rtix, dy), where / e L2ip,) and
JB

rtiχ, .) = pί_e-2tie~txf •) are the transition probabilities of Uhlenbeck-
Ornstein process. Since / may not be bounded, the above theorem
is not applicable. To overcome this difficulty Piech considers an
orthonormal basis of L\p^ consisting of Hermite cylinder functions
and proves the following theorem.

THEOREM (Piech [6]). Let g e LXpJ. Then for p, - a.e. x and for
t > 0, rtg is twice H-differentiable at x with derivatives given by

iDrtgix), h) = -[β'(l - e^)Γ f g(v){e-χ - y, h)rt{x, dy) ,

(B*r,g(x)h, k) - (e2ί - I)-1 ( g(y){(l - e-'We-'x - y,h)(e-'x - y, k)
JB

- (h, k)}rtix, dy) .

Moreover, \Drtg\ and \\D2rtg\\2 are in

In this paper, we will reexamine how the iϊ-derivatives are
defined by Gross in [4] and prove his formulas in a rather general
situation which we believe will be quite useful in L2(pi)-theory asso-
ciated with Uhlenbeck-Ornstein process as well as other processes in
B. We will see that our theorem yields Piech's in a beautiful way.
The novelties in our approach are Lemma 1, Theorem 2 and the
way we rewrite the expressions in Gross' theorem. For instance,

the first derivative will be rewritten as t~x \ fiy){h, y — x)pti%, dy),
JB

which exist when f e L2iptix, •) since (/&, — x) e L\ptix, •))•
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DEFINITION 1. Let V be a subset of B and x in V. V is called
H-coset open at x if there exists 8 — δ(x) > 0 such that x + he V
for all I h | < d in H. V is called H-coset open if V is iϊ-coset open
at every point of V.

Obviously, if G is an open subset of H then z + G is ίZ-coset
open for any z in B. An open subset of B is also iϊ-coset open
because j?-norm is weaker then iί-norm. But there are other subsets
which are ίί-coset open. For instance, let (iJ, BQ) be another abstract
Wiener space with BoczB then any open subset of Bo is also ίZ-coset
open. Perhaps this is the reason why our theorem is easier to apply
because whenever a function is defined on an iϊ-coset open set then
we can talk about Gross differentiation of / defined below.

DEFINITION 2. Let / be a function defined on an H-coset open
subset V of B. Let x e V. If the function v(h) = f(x + h) defined
on some iϊ-neighborhood of 0 is kth(k ^> 1) Frechet differentiable at
0, then we say that / is kth Gross differentiable at x. The ith
Gross derivative D3'f(x) of / at x is defined to be the jth. Frechet
derivative of v at 0. (Hence Djf(x) is a i-linear form on H, 1 ^
3 ^ k).

From now on, t > 0 and xeB will be fixed through §4. Suppose
f eL2(pt(x, •)), it will follow from Lemma 1 that f eU{pt(x + h, •))
for all h in H. Therefore, ptf(x + h) = 1 f(y)pt(x + h, dy) is a func-
tion defined on the iϊ-eoset open set x + H.

THEOREM 1. Let feL2(pt(x, •)). Then the function ptf defined
on the H-coset open set x + H is infinitely Gross differentiable at
x. The first and second Gross derivatives are given by

(DpJ(x), h) - r 1 ί f(y)(h, y - x)pt(x, dy) ,
)B

(D2ptf(x)k, h) = r ι \ f(y){rι(h, y - x)(k, y - x) - (h, k)}pt(x9 dy).

If T is a test operator then

t r a c e TD2ptf(x) = r 1 ( f{y){t~\T{y -x),y- x )
JB

— trace T}pt(x, dy) .

Moreover, D2ptf(x) is a Hilbert-Schmidt operator of H and

\\D*ptf(x)\\2 £ V~2
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The proof of this theorem will be given in §4. In §2 and §3
we will state some integral formulas and prove some lemmas necessary
for the proof. We remark that the idea of the proof comes essen-
tially from [5, Proposition 1]. In §5 we will apply our theorem to
Uhlenbeck-Ornstein process and derive Piech's theorem.

2* Some integral formulas* In the following h and k are in
H and Jt(h, z) = exp {[-\h\2 + 2(h, z)]/2t], h e H and z e B.

F l ) . ( {h, z)*pt(dz) = t\h\% .
JB

P2). \(h,z)ipt(dz)=Zf\h\i .

F 3). ( (h, zfpt{dz) = 105 f | h \3 .
}B

F4). f Jt(h, zfpt(dz) = e^2lt

JB

F5). ( Jt(h, zyptidz) = e6|*|2/t

JB

F6). Let θt(r) = eβr2/t - 4e3 A i + 6e*2/t - 3, r ^ 0 .

Then ( [Jt(h, z) - lYvAdz) = <?t(|Λ|).
JB

3. Some lemmas. Recall that t > 0 and xe B are fixed. Note
that for h in H the distribution function of (A, y — x) with respect
to pt(x, dy) is the same as that of (h, z) with respect to pt(dz).
Hence if <ρ is any complex valued Borel measurable function on R

then \ φ((h, y — x))pt(%, dy) = \ φ((h, z))pt(dz). This remark will play
JB JB

an important role in the following computations.

LEMMA 1. If f e L2(pt(x, •)) then f e U{pt{x + h, •)) for all h
in H. In fact,

\jf(y)\pt(x + h, dy) ^ e^<^\f(y)fPt{x, dy)Γ •

Proof. By the translation formula for the Wiener measures,

pt(x + h, dy) = Jt(h, y - x)pt(x, dy) .

Hence
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t \f(y)\Pt(x + Kdy)

rg [\jt{h, y - XγPt(x, dy)}1/2{\jf(y)\*pt(x, dy)}

Here we have used the integral formula F4).

LEMMA 2. If f e L2(pt(x, •)) then for all h and k in H, f(-)(h,
*—x) and f( ){t~~\h, >—x)(k, •— x) — {h, k)} are in U{pt(x> •))• In
fact,

\\f(v)(K V - a)lί>ι(a, dy) £ VT\h\{\jf(y)\*pt{x, dy)}"* .

( \f{y){rι(h, y - x)(k, y - x) - (h, k)}\Pt(x, dy)
JB

£ (1 + VΎ)\h\ \k\ {\B\f(v)\*pt{χ, dvr*

Proof. Use PI), F2) and the Schwarz inequality.

LEMMA 3. If f e L2(pt(x, .)) then f( )(h, . -x)e Lι(pt(x + k, •))
for all h and k in H. In fact,

\ \f(y)(h, y - x)\pt(x + k, dy)
JB

£ ^"3VT\hW^{\\f{y)\*pt(x, dy)}"

Proof.

I \f(y)(h, y - x)\pt(x + k, dy)
JB

= ( 1/(1/)I \(h,y- x)\Jt(k, y - x)pt(x, dy)
JB

^ I \ (h,y - xYpt(x, dy)\ \ \ Jt{k, y - xγpt(x, dy)\
KJB ) [ J B )

;, dy)
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Here we have used integral formulas F2) and F5).

4* Proof of Theorem l By Lemma 1 the function ptf(x + h)
is defined on the iJ-coset open subset x + H of B. We divide the
proof into several steps.

Step 1. To show that ptf is Gross differentiate and (Dptf(x),

h) = έ"1 \ f(v)(h, V — x)pt(x, dy). (This integral exists by Lemma 2).
JB r

Define φ(h) = ptf(x + h) - p*/(αθ - ί"1 \ /(i/)(fc, 1/ - x)pt(x9 dy).
JB

We need to show that \φ(h)\ = o(\k\) for small \h\. Let

Φι(h) = ί"1 j/(i/.)(Λ, 1/ - a;) y^ίsΛ* y - %) - l]dspt(x, dy) ,

&(A) = ί"1 \ f(v) \ s\h\2Jt(sh, y - x)dspt(x, dy) .
JB JO

Then by [4, p. 153] we have φ(h) = ^(Λ) — ̂ 2(Λ). But now we have
to make better estimates.

, z) - lY

Here we have used the integral formulas F2) and F6). It is easy

to see that Γ# t(s |&|)ίte-*0 as | & | - * 0 . Hence \φί(h)\ = o(\h\) for
Jo

small \h\. On the other hand,

t\φ2(h)\ ^ \k\2[s \ f(y)Jt(sh, y - x)pt(x, dy)
JO JB

ds

ds= ' h |2

Hence \fa(h)\ = o(|fe|). Therefore, we have \φ(h)\ = o(\h\).
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Step 2. To show that ptf is twice Gross differentiable and

(D2pJ(x)k, h) - tA f(y){rι(h, y - x)(k, y - x) - (h, k)}pt(x, dy).
JB

It is easy to see that

(Dptf(x + k), h) = r 1 ( f(y)(h, y - x)Jt(h, y - x)pt(x, dy)
JB

- ί"1 \ f(v)(h, k)Jt(k, y - x)pt(x, dy) .
JB

Hence we have

(DpJ(x + k\ h) - (Dptf(x), h) - r ι ί f(y)(h, y-x)
JB

x [Jt(h y - x) - l]pt(x, dy) - t~ι

x \ f(v)(h, k)Jt(k, y - x)pt(x, dy) .
JB

Note that

Jt(k, y — x) - 1 = t~x \ [(fc, y — x) — s | k |2] Jt(sk, y — x)ds
Jo

Therefore,

(Dptf(x + k), h) ~ {Dptf{x\ h) - r 2 ί f(y)(h, y - x)(k, y-x)
JB

x I Jt(sk, y - x)d8pt(x, dy) - t~2 \ f(y)(h, y-x)
JO JB

x I s\k\2Jt(sk, y — ̂ dspXcc, dj/) — t'^h, k)
Jo

x \ f{y)Jt(k, y - ^^(aj, dy) .

JB

Now, define

fih, k) = (DpJ(x + k), h) - (Dptf(x), h)
- t-Λ f{y){r\h, y - x)(k, y-x)- (h, k)}Pt(x, dy),

JB

ψ,(h, k) = r 2 ( f(y)(h, y -x)(k, y-x)[[Jt(sk, y-x)-l]dspt(x, dy) ,
JB Jo

S ri
f(y)(h, y - x) \ s\k\2J(sk, y - x)dspt{x, dy),

B Jo

U h , k) = r ι ( A , k) \ f(y)[Jt(k, y - x ) - l]pt(x, d y ) .
JB

Then by the above computation, we have ψ(h, fc)=^i(fc, k)+ψ2(h, k) +
ψs(h, k). We will show that ψ3(h9 k) = 0(|fe|)o(|fc|) and our assertion
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in this step follows immediately.

PMh, k)\ £ {\jf(y)\2pt(χ, dy)\n{\B(h, y -

x {̂ (fc, y - XγPt(x, dy)]1>S\ £ \yt(sk, y-x)- l]%(x, dy)dsγi

= VΊ5δt\h\ \k\ {\\f(y)?pt{x, dy)}υί[^θt{Φ\)ds\Vi

= o(| Λ |)o(| fc I ) .

f\ψ2(h, k)\ = I A; |21 £«jB/(y)(Λ, V ~ x)Jt(sk, y - x)Pt(x, dy)ds

= lk\\\o

s )/(y)(h> y - χ)Pt(χ + sk, dy)ds

S I A; |2 [s \ \f(y)(h, y - x)\pt(x + sk, dy)ds
Jo JB

k\*{J I f(y)\*pt(x, dy)

3 / 2 μ | [ e S | i | 2 / 2 ί -

In the third step of estimating ψz{h, k) we have used Lemma 3.
Finally,

k)\<ί\h\ \k\{\\f{y)\*pt(x, dy)]υ2^B[Jt(k, y-x)- lYpt(x, dy)}

= \h\ \k\{\B\f(y)\*Pt(x, dyifiθ

Step 3. Let T be a test operator whose restriction to H is
symmetric. Then T can be expressed as follows:

Tx = Σ

where <,> is the natural pairing between B* and 5, and eseB*,
j = 1, 2, •••,%, are orthonormal. Then

trace TD>ptf(x) = Σ(TZ>W(aOβJf β,)

= Σ Xj(D*ptf(x)e3; βj)

= Σ ί"1 ί /d/Mt- λ/β,, y - x)2 - Xs}Pt(x, dy)

= ί"1 ( /(y^t'KΆy - x), y - x) - trace T}pt{x, dy).
JB
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Hence, for any symmetric test operator T,

trace TD2ptf(x)

= t-1 \ f(y){rι(T{y -x\y-x}- trace T}pt(x, dy).
JB

Observe that D2ptf(x) is symmetric and that both sides of the above
equality depend only on the symmetric part of T. Hence the above
equality holds for all test operators. Moreover, this equality implies
that

\ 1/2

— trace T]2pt(x, dy)>

}12{S ~ t r a c e T]

Hence, by the same argument as in [4, pp. 155-156], D2ptf(x) is a
Hilbert-Schmidt operator and

Step 4. To see the existence of the higher Gross derivatives of
ptf, observe that we need only the integrability with respect to
pt(dz) of all polynomials in (h, z) and in Jt(h, z) for h in H. It is
easy to see that the method used in the previous computation yields
the following estimate

\Dnptf(x + k)(hlf , K) - Dnptf(x)(hlf , hn)

- D*+ιptf(x){hu , hn, k)I - O(\hxI Ih21 IK|)o(|k|) ,

where Dnptf(x) is the nth Gross derivative of pj at x, n ^ 3. Of
course, we have to note that Dnptf(x + k) is also a continuous n-
linear form on i ϊ for all k in iϊ.

5* An application to Uhlenbeck-Ornstein process* Let rt(x,
dy) = 3>i- -«(β~"*B, ώ?/), < > 0 and ice 5. {rt(α;, )ί^ > 0, xe B) generate
a Markov process with continuous sample paths known as Uhlenbeck-
Ornstein process. It is easy to check that pt is an invariant measure
for rt{xy •) for all t > 0. That is, for all Borel subsets A of B,
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\ rt(x, A)p1(dx) = pJiA), t > 0 .
JB

THEOREM 2. Let g e L2(Pi). T%ew /or eαcfe ί > 0 there exists a
measurable subset Bt of B such that Pi(Bt) = 1 and geL2(rt(x, •) for
all x in Bt.

REMARK. In a less precise way the above theorem says that if
geL2(pt) then geL2(rt(x, •)) for a.e.

Proof. By Fubini's theorem and the in variance of

\\L\jg(y)\2rt(x, dyϊ^ptdx)

= \ 19(V) I2 \ rt(x, dy)p1(dx)

= \ \g(y)\2Pi(dy)< - .
JB

Hence geL2(rt(x, •)) a.e.

Let g e L\pΐ). Then by the above theorem, we have g e L2(rt(x, •))
for all xeBt. But

I \g(y)\2rt(%, dy) = I |g(y)\*p1-.-n(β-% dy).
JB JB

Hence ^ e L2(p1_β-2ί(β-'α!, •)) f o r all α? e 5 e . Observe t h a t j>1_β-2#ί/(β""*sc) =
rtg(x). Hence the formulas for first and second derivatives in Piech's
theorem follow follow from Theorem 1. Moreover, by Theorem 1,
for x e Bt

\\D2rtg{x)\\2 = e'u

Hence

ί \\D2rtg(x)\\lpί(dx)=\ \\D2rtg(x)\\lP,(dx)
JB jBt

£ 2(e2ί - I)"2 ( ί I g(y) \*φ, dy)Pί(dx)
JBt JjB

= 2(e" - I)- 2 \ \ |flf(y)|V((a;, dy)Pl(dx)
}B JB
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On the other hand, it is easy to see that for / in Theorem 1
we have

\DpJ(x)\ ^ r

Hence by the same argument above

\Drtg{x)\ £ (β2ί - 1 Γ

and

( \Drtg{x)\*Vι{dx) <* (e2ί - I ) ' 1 ( \g{y)\2vidy) .
JB

The author is grateful to Professor M. Ann Piech for correcting
a mistake, i.e., the constant factor V 2 in the estimate || D2ptf(x) ||2
is missing in the original manuscripts.
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