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A DIRICHLET-JORDAN THEOREM FOR DUAL
TRIGONOMETRIC SERIES

ROBERT B. KELMAN

An analog of the DiricMet-Jordan theorem and a unique-
ness theorem are established for dual trigonometric series
equations when the right hand sides of the dual equations
are given functions of bounded variation. In the usual
fashion there are two series in these equations one of which
has coefficients, say, {jlnn} or {jjn — 1/2}, and the other coef-
ficients {jn}. In the first series we establish ordinary con-
vergence and in the second Abel-Poisson convergence. In
general j n Φ o(l) and the second series does not converge in
the ordinary sense on any set of positive measure. A best
possible estimate on growth conditions for {jn} needed for
uniqueness is given. In the proof a mixed boundary value
problem of potential theory is associated with the dual series.
Conformal mapping replaces this potential problem with one
in which a Dirichlet boundary condition can be associated with
the dual series. Analysis of this new problem provides the
denouement.

1.0. Problem statement. Perhaps the most important theorem

in the application of Fourier series is the celebrated result of Dirichlet

and Jordan [4, p. 114; 26, p. 57] describing the behavior of trigono-

metric expansions of functions of bounded variation. I establish

here an analog of this theorem and the uniqueness of the expansions

for the four dual trigonometric equations given below which are

the canonical forms to which all classical dual trigonometric series

can be reduced by elementary transformations [19, p. 150]. Let p

denote the interval 0 < x < π and 6 be a fixed point in p. Let I

denote the interval 0 < x < b and x the interval b < x < π. Let f(x)

and g(x) be functions of bounded variation for which we use the

notation f(x) = (f(x + 0) + f(x — 0))/2. The dual trigonometric series

to be studied are:

lim Σ ( °^~ c o s (n ~
r=i-o»=i \ n — 1/2

(IB) l i m Σ U n c o s ( n — l/2)x)rn = g ( x ) , x e x
r=l—0 %=1

(2A) lim Σ ( — ^ T ^ Γ s i n (» - 1/2)»V = /(*), * e I ,
r=l-0 n=l \ % — 1/2 /. Λ - 1/2
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(2B) l i m Σ U n s i n ( n - l/2)x)rn = g(x), x e x ;
l 0 l

(3A) lim Σ f-̂ - sin M V W = /(»), α e I,
r=l-0 Λ = 1 \ % /

(3B) lim Σ Un sin nx)τn = g(x), xex;
r=l-0 n = l

(4A) j \ + lim Σ ( - ^ ^ cos w^ )r% = f(x), xel ,
r=l-0 w = l \ n /

( 4 B ) l i m Σ Un+icos ^ ^ ) r w = ^ ( ί c ) , x e x .
r=l-0 n=l

1.1. Background. These dual series have primarily been examined
in connection with applications, especially in mechanical engineering as
explained in [19] (see [1; 2; 9; 12; 20; 16] and references [6; 8] in [10] for
more recent applications). Understandably this has led to the develop-
ment of formal answers and special methods with little information
on the limitations needed to insure their validity, cf., [19; 4; 7; 10;
24] and references [1; 2; 9-17] in [10]. This paper was motivated
by the desire to present a unified approach to these equations and
to answer basic mathematical questions of existence, uniqueness, and
behavior raised earlier. The need for this was made more urgent
by Srivastav's interesting formal construction [21] showing eq. (4A-B)
does not have a unique solution and the discussion that has occurred
for some solutions e.g., reference [1] in [10] and Math. Rev. 37
(1969), #5632.

Shepherd [18] established rigorously the existence of a solution
to (3A-B) with b = π/2, f = sin mx, and g = — m sin mx. His procedure
requires an explicit solution of an infinite vector equation Ap — q
where p and q are infinite column vectors and Amn = (m + n — 1/2)"1

(more recent applications of this method are found in [8; 6]). By
extending the method along lines suggested in [18], one can obtain
a special case of the results given in Theorem 3 for eq. (3A-B), but
further generalizations appear difficult because of the explicit quantities
involved in the proof and the fact that the inverse of A is not unique
[14; 22]. In [23] a general formulation of both dual integral equations
and dual series was given, but the results are formal and applications
to specific series have not been forthcoming. In [11] we established
an existence and uniqueness theory for dual orthogonal equations in
Hubert space applicable to dual series associated with potential pro-
blems with mixed boundary conditions of the second and third kind,
cf. [5], but as pointed out in [11] this technique breaks down for
the series studied here in which one of the mixed conditions is a
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Dirichlet condition.

1.2. Outline and comments. The idea of the proof is this. We
associate with each dual trigonometric series a mixed boundary value
problem in a semi-infinite strip which we conformally map onto a
rectangle to obtain a separated variable solution, since in this form
we can use the full armamenatarium of the theory of Fourier series
to directly analyse the solution. The rectangle is mapped back onto
the original domain in such a way that the dual series can now, in
a certain sense, be associated with a Dirichlet condition—an asso-
ciation which is the denouement. To make the required connections
between solutions requires uniqueness theorems which we are able
to present in a simple manner by means of Wolf's reflection principle
[25].

It might occur to the reader that in §2.0 it would be easier to
map the above mentioned strip onto a half-plane and obtain a Keldysh-
Sedova problem. However, this would require more restrictive con-
tinuity assumptions on / and g [13, p. 347] and, more importantly,
would not permit use of the theory of Fourier series in so direct a
fashion as can be done with a separated variable solution in a rectangle.

The gist of the paper can be obtained by reading Theorems 1-3
whose statements involve little technical detail. Roughly, our most
important result is that each of the eqs. (iA~B) has one, and only
one, solution such that

(5) t\Jn\ = o(N*ι>)

and for establishing uniqueness this estimate is best possible. As
shown in Theorem 3 a general theory of dual series cannot limit
itself, as has been the case previously, to ordinary summation, since
in general the series in (iB) diverge almost everywhere in the ordinary
sense even for very smooth functions / and g, e.g., / = 1 and g = 0
in eq. (2A-B). There is merit, I believe, in pointing this out.

1.3. Notation. Standard notation for Fourier series is used
[4; 26]. R will denote the closure of R. Integrals and measure
are in the sense of Lebesgue. In the set forming symbol, say
{z: A(z)}, we often suppress the bound variable when the meaning is
clear and write {A(z)}. Abel-Poisson summability will be called
summability A. We denote by Io the set of points {(x, 0):xeϊ\ with
x0 and p0 defined similarly. Let f(x, y) be defined in a set R and
along some open arc p in the boundary of R. We say / is con-
tinuous at (#o, Vo) e p (adding 'relative to R if needed for clarity)
if for each sequence {{xnf yn)} in R U P for which (xn, yn) -> (α?0, yQ)f
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one has f(xn, y%) -+ f(xOf y0).

2.0. A Dirichlet-Jordan theorem. In our proof we make use
of the following theorem which paraphrases results in [25].

THEOREM W. Let D be a domain in the upper half plane which
contains an open segment c of the real axis on its boundary. Each
point of c contains a circular neighborhood whose upper half lies
in D. Let φ{x,y) be a function harmonic in D,φ-+0 as y—>+0
for a ec, and φ — o(y~2) as y—»+Q uniformly in x for xec. Then
φ can be analytically continued into the domain D* symmetric to D
with respect to the real axis. If ψ is conjugate to φ and ψ = o(y~2)
as y—•*• + 0 uniformly in x for xec, then F = ψ + iφ can be analytically
continued into D*.

REMARK 1. This is based on Theorems G and D in [25] in which
there is allowed an exceptional subset T of c on which φ need not
tend to zero as y —* + 0. If T is not the empty set, it is easy to
see that these theorems are in need of modification, vid., Math. Rev.
9(1948), p. 420. Our use is limited to the case in which T is the
empty set.

We proceed to our main result.

THEOREM 1. Let f and g be functions of bounded variation on
I and x respectively. Then there is one, and only one, solution (j\,
j 2 , •••) satisfying (5) to each of the dual trigonometric equations
(1A-B), i = 1, 2, 3, 4.

Proof. It is sufficient to give the proof for eq. (1A-B), since
the proof for the other three dual equations is practically identical.
Let Rz be the half strip {x ep y > 0} and Sz the subset of Rz in
which y > 0. We associate with (1A-B) the boundary value problem
Pz: find a function T(x, y) harmonic in Sβ, bounded in Rz, and satisfy-
ing the boundary conditions

(6 ) Tx = 0 on {x = 0; y > 0} and T = 0 on {x = π; y > 0} ,

( 7 ) lim T = f(x) as y --> + 0 f or x e I,

( 8 ) lim Ty = g{x) as y —* + 0 for xex .

REMARK 2. A boundary condition written in the form of (6)
implies Tx is continuous relative to Rz at each point (0, y), y > 0,
whereas (7) only implies for each x e I that T is continuous on the
right as function of y at y = 0.
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In the w(= u + ii;)-plane let λ be the interval 0 < u < 1 and p
the interval 0 < v < tc where tc is a positive constant. Let λ0 be the
set {(u, 0): u e λ}, ρ0 the set {(1, v): v e p], and Rw the rectangle {u e λ;
vep}. It is well known [13, p. 202] that there exists a function,
say w(z), conformally mapping Rz onto Rw with the correspondences
0—>0, b—>1,π—>1 + i/r, and oo ~+i/c for a proper choice of fc. For
future use we note the following properties of w[13, Ch. II §§11.29,
3.35, and 3.37]:

(A) w is continuous on x0 and continuously differentiable on
Xo U (0, TΓ);

(B) in the neighborhood of z = b, w = (z — b)ιH(z) + 1 where
t(z) is a function analytic at z = b and ί(&) Φ 0;

(C) the inverse function z{w) is twice continuously differentiable
on p0.

We define φ(u) on λ and 7(v) on p by φ = f(x(u, 0)) and 7 =
g(x(l, v)). Since a?(̂ , 0) is bounded and increasing on λ, φ is a function
of bounded variation on λ. Similarly, 7 is a function of bounded
variation on p.

Let Sw be the subset of Rw in which % < 1 and v > 0. We define
a new potential problem Pw: find a function τ{u, v) harmonic in Sw,
bounded in Rw, and satisfying the boundary conditions

(9 ) τu = 0 on {u = 0; v e p} and τ = 0 on {w e λ; v = Λ:} ,

(10) lim r = φ(u) as v • + 0 for u e λ ,

(11) limr% = —y(v)\z'(w)\ as % >1 — 0 for vep .

Since 2' is continuous on ρ0 as a function of v (Property C), it
is an obvious verification to show T is a solution to Pz if, and only
if, τ defined by τ(u, v) = T(x, y) is a solution to Pw.

We shall show that a solution to Pw is

(12) r(», v) = Σ ^ sin ( « » ) cosh f ™L) csch (ϋ2L) + Λ

( ) sinh (w7r(/ί; — v)) csch
Λ = l

(13) ^ = ^=2 Γ7(V) Γl^i-Π sin (<™)dv , n = 1, 2, ,
r Jo LI rfw |J«=i \ tz 1

S I

^(tt) cos (nπu)du , n — 0, 1, .
0

Since φ and 71 z'\ are functions of bounded variation, fn - Oin"1)
and gn = O(^"x) [26, p. 48]. Thus r is harmonic in Sw and satisfies
(9). By the Abel-Poisson sum theorem [26, p. 97], τ also satisfies
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the boundary conditions (10) and (11). It remains to show τ is
bounded. The first series in (12) is dominated by a series with
constant terms O(n~2) so that it is bounded on Rw. If we set φ( — 0) ==
Φ( + 0) and φ(l + 0) = ^(1 — 0), the second series in (12) tends to the
bounded function φ(u) as v —* + 0 for uex. By the positiveness of
summation A [26, p. 98], this series is bounded on Rw. Thus τ is
a solution to Pw.

We introduce η{v) = τ(l — 0, v) for ve p. For future reference
note that y(v(x, 0)) is in L\τ) because rj(v) is a bounded continuous
function on p and v(x, 0) is continuous on r. We introduce a third
boundary value problem Qw: find a function v(u, v) harmonic in Sw,
bounded in Rw, and satisfying the boundary conditions (9), (10), and
v—>r](v) as u—>1 — 0 for vep. Clearly τ is a solution to Qw. Let
us show that it is the only solution. If Qw had more than one
solution, there would exist a solution, say θ, satisfying Qw with
^ = 0 and Ύ] = 0. Theorem W implies θ is continuous along λ0 and
p0. Applying the maximum principle [17, p. 105] it follows that
^ Ξ 0 which shows Qw has at most one solution.

REMARK 3. The uniqueness of the solution to Qw is the key to
the proof of Theorem 1, since from this uniqueness we obtain existence.

We proceed to our last boundary value problem Qz: find a function
U(x9 y) harmonic in Szf bounded in Rz, satisfying (6), (7) and U—>
η(v(x, 0)) as y —> + 0 for xex. Let h(x) be defined by

(15) h(x) = f(x), x e Γ, and h(x) = ηv(x, 0)), 6 < x ^ π .

Then Qz has a solution

(16) U(x, y) = £ [JΛn - 1/2)] exp (-(n - l/2)y) cos (n - lβ)x
n — \

(17) — h i = Ά\*h(χ) cos (n - l/2)a? dx .
w — 1/2 π Jo

Since /̂  e Z/2({>), it follows after a bit of algebra that {jJ satisfies (5).
Clearly, U is a solution to Qz if, and only if, v defined by v(u, v) =.
?7(ίc, y) is a solution to Qw. Since τ = v, U is a solution to Pz from
which follows the validity of (1A-B).

We now examine uniqueness. If a second solution existed, there
would be constants (kl9 k2, •••) satisfying (5) such that the function

W(x, y) = Σ KK/(n - 1/2)] cos (n - l/2)a? exp (-(w - 1/2)7/)
n = l

satisfies P r, except perhaps for boundedness on Rz, with / and g set
equal to zero. To establish uniqueness it suffices (as will be seen)
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to show W is continuous along p0. To this purpose we introduce the

function X conjugate to W,

X(x, y) = C-it [Klin - 1/2)] sin (n - l/2)a exp (~(n - 1/2)?/) ,
1

where C is a constant. We set F(z) = X + iW and G = Fy so that

G(z) = - i Σ *Λ exp (i(n

Let us now show that G — o(y~s!2) as y —> + 0 uniformly in a; for
#G p. Indeed for xep and y ^ 2, one finds | G| is bounded by
e Σ IKI f* where r = β~y. Now by virtue of (5) there is a sequence
of nonnegative constants {δn} such that δn = o(l) and

zr-1 = Σ Γέ \K\\r* =g Σ 3.

This establishes the required growth for G. Since TFj, —•> 0 as y —•> +
0 for xex, it follows from Theorem W that G is analytic on r0 so
that X is constant on x0. Choose C such that X = 0 on r0. Let H —
i(z — δ)1/2F, and write H = Hx + iH2. Clearly, H is analytic in Rz

and H2(x, y) —* 0 as # —> + 0 for # 6 I U x. By modifying the argument
used above for G it follows from (5) that F = o(y~112) as y-+ + 0
uniformly in x for #e}3. This implies: H2(b, y) —>0 as ?/—>+0;JΪ =
o{y~ιβ) uniformly in x for a? e £. Whence by Theorem W, H is analytic
on j>0. Therefore T7 is continuous on £<>• Since T7 can be reflected
through {x = 0; y > 0} and {x = π; y > 0} similar, but easier, argu-
ments show W is continuous at z — 0 and z = π. Applying the
maximum principle [17, p. 75] we obtain W == 0. Since {cos (w — l/2)a?}
is a complete orthogonal set, kn = 0 for w — 1, 2, .

3.0. Behavior of the expansions. We describe certain charac-
teristics of the solutions and the ways in which our results can be
considered best possible. Let us denote by S^x) the series in eq. (iA),
e.g.,

S&) = Σ UJ(n - 1/2)] cos (n - l/2)s .
1

THEOREM 2. Let us assume the hypothesis of Theorem 1. Then
Si(x), i — 1,2, 3, 4, converges to an absolutely continuous function on
x, has two sided continuity at x — b, in particular,

(18) S{(b) = f(b - 0)
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the coefficients (j\, j2, ) satisfy

(19) j n = 0(1)

summation A in eq. (iA) can be replaced by ordinary summation.

Proof. From Properties A and B of the mapping function, we
see that v(x9 0) is absolutely continuous on x. Now let us show that
Ύ]{v) is absolutely continuous on p. First we consider the series

W = ^±gncoth(«L) cos ( » * * ) , vep
K n = l \ K I \ K 1

Since #% = 0{n~ι), it follows that IeL2(ρ) and the series can be inte-
IdVj

0

is absolutely continuous and J(0) = 0. Next we consider the series

F{v) = /„[(*: - v)/2ιc] + Σ(- l)*Λsinh (nπ(κ - v)) csch (^/c) ,

Clearly, η = F + J. Since / Λ = O^"1), F i s an infinitely diff erentiable
function on d ̂  v ^ /c for δ > 0. After a little algebra one can write

where ^im) = O(e~%), m = 0, 1, uniformly in v for v 6 jό, and further
pn(0) = 0. Therefore utilizing the fact that cos?m6 is symmetric
about w = 1 and the Abel-Poisson summation theorem [26, p. 97]
one concludes that i*\+0) = f(b — 0) and F is continuous on p. Let
Φ(%) denote the even extension of φ with period 2 so that

/o/2 + Σ /• COS (̂ 7Γi6) = Φ(tt) , - oo < U < co .
Λ = l

At the point u = 1, Φ has a symmetrical derivative equal to zero so
that Fatou's theorem [4, p. 160] implies

lim Σ ((-ί)nfnn)rn = 0 as r > 1 - 0 .
» = 1

Thus J?7'^) is continuous on p. Consequently, η(v) is absolutely con-
tinuous on p. Since v(x, 0) is increasing and absolutely continuous
on r, η(v(x, 0)) is absolutely continuous on x as a function of x [15,
p. 195]. From the computations above, h has two sided continuity
at x — b, so that by the Dirichlet-Jordan theorem (18) is valid as
well as the convergence of ^ on ϊ. Since h is of bounded variation
on p, (19) follows from (17). Finally, by Littlewood's Tauberian
theorem [26, p. 81] we can replace summation A in (IA) by ordinary
summation.
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We turn our attention to examining the extent to which the
results in Theorems 1 and 2 can be regarded as best possible.

Under the hypothesis of Theorem 1, we know that h is of bounded
variation on p. Therefore, if j n — o(l), it follows from (17) that
h is continuous on p [26, p. 60], which is false in general. If
j n Φ o(l), then by the Cantor-Lebesgue theorem [4, p. 174] the series
in (iB) do not converge in the ordinary sense on any set of positive
measure.

Let us consider eq. (2A-B) with 6 = 1, / = 1, and ^ Ξ O . For
this case an easy computation shows

(20) j n = — + — \\'{x) cos (n - l/2)α? dx .
π 7Γ Ji

Since h is absolutely continuous on x, it follows that h! e L(x)
[15, p. 268]. Therefore, by the Riemann-Lebesgue theorem [26, p. 45]
the integral in (20) tends to zero as%->oo. Hence, the estimate (19)
cannot be improved.

Finally, we show that (5) is a best possible estimate for uniqueness,
i.e., if (5) is replaced by

(21)
1

uniqueness fails. Counterexamples can be constructed for each of
the four dual equations. The simplest example we have found is for
eq. (2A-B). Consider the function

y)

where the square roots are taken nonnegative. It is easy to verify
that T is harmonic in Sz and satisfies the boundary conditions T — 0
on {x = 0; y > 0}, Tx = 0 on {x = π; y > 0},

lim T = 0 for x e I and lim Ty = 0 for x e x as y > + 0

with b = π/2. It is also clear that

lim T = (— cosx)~112 as y > +0 for xet .

After verifying in the fashion of § 2 that an appropriate uniqueness
theorem holds, it follows that T has the representation

T(x, V) = Σ b'J(n - 1/2)] sin (n - l/2)a exp ( - ( * - l/2)y)
1

L =2_[τ sin (n - l/2)x dχ

n - 1/2 π J*/2 (-cos a;)1'2
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If we set t = x — π/2 and use the addition formula for sines, we
find that jj(n — 1/2) is the sum of four integrals with constant
multipliers whose absolute values are independent of n. One of
these integrals is

• = [π'2 sin nt cos (t/2) ,,

Jo (sin t)1'2(sin t)1

Now

a n d c o s

sint t 2

where G and L are analytic. Thus

sin nt

Further, if we set an = i/(nπ/2), then

because of well known properties of Fresnel integrals. The three
remaining integrals in the sum for jj(n — 1/2) can similarly be shown
to be O(n~lβ). Thus {jn} satisfies (21) and is a nonzero solution to
eq. (2A-B) with / == 0 and g = 0. In summary we have established

THEOREM 3. Theorems 1 and 2 are sharp in the following sense.
Theorem 1 is false if summation A in (iB) is replaced for any i,
1 = 1, 2, 3, 4, by ordinary summation on any subset of r of positive
measure. The growth estimate (5) is best possible for if (5) is replaced
by (21) the uniqueness assertion in Theorem 1 is false. The estimate
(19) is best possible for if (19) is replaced by j n = o(l), then Theorem
2 is false.
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