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ON TREE STRUCTURES IN BANACH SPACES

R. E. HARRELL AND L. A. KARLOVITZ

The purpose of this note is to relate the structure of flat
Banach spaces to the "trees" of James. Based on this and
some recent work of several other authors, we explore a
similar relation for two further classes of spaces, namely
spaces which are dual to spaces containing a subspace isomor-
phic to h and spaces which are dual to spaces that are not
separable.

A Banach space X is said to be flat if the girth of its unit ball
(defined by Sehaffer [14] to be the infimum of the lengths of all
centrally symmetric curves which lie in the surface of the unit ball)
is four and if the girth is achieved by some curve (i.e., the infimum
is a minimum). This is equivalent to the statement that there exists
a function g: [0, 2] -+X such that

|| flr(ί) || = 1 for each t e [0, 2] , g(0) = -#(2) ,

and g is Lipschitz continuous with constant 1 .

Examples, consisting of common spaces, appear below. Some dis-
tinguished geometric properties of flat Banach spaces, including the
ones which give rise to the term flat, were given by the authors in
[3] and [4].

A Banach space X is said to have the infinite tree property
(James, [6]) if for some ε > 0, X contains a tree with an infinite
number of branches, i.e., there are elements x((2ί — l)/2%), i = 1, -2n~\
n = l,2, •••, in the unit ball of X which branch at each x( ) ac-
cording to

and

—¥~) ~Λ ^ ) + 1 \

•
The space is said to have the finite tree property (James, [6] if for
some e > 0 and for each positive integer N, X contains a tree with
N branchings (i.e., n = 1, , N).

At present it is known that X has the finite tree property if and
only if X is not super-reflexive (James, [8]) if and only if the girth
of the unit ball of X is equal to four (James and Schaffer, [9]). If
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X has the infinite tree property, then X contains a closed bounded
convex subset which is not dentable, and hence X is not reflexive;
however, there exist nonreflexive spaces which do not have the
infinite tree property (James, [6]).

It is our purpose to extend these uses of tree properties. As
our starting point we note that if X is fiat, then it has the infinite
tree property. (This is easy to see, and for completeness we note
that it follows immediately from Theorem 1 below.) However, the
converse is not true, nor is it true that a space with the infinite tree
property is isomorphic to a flat Banach space. We now introduce a
somewhat stronger property which will characterize flat Banach
spaces.

The space X is said to have the infinite supported tree property
if for some δ > 0 there are elements x((2i — 1)/2Λ), i = 1, , 2n~\
n = 1, 2, , in the unit ball of X and elements h*(k/2m), k = 0, , 2W,
m = 1, 2, •••, in the unit ball of the dual space X* so that (2) is
satisfied, and

/ J k \ (2i - 1\\ _ ί ~ δ f i f i/2*""1 ^ k/2m ,
( 4 ) \ h \ 2 r ) > x\ 2n )/ ( δ , i f k/2m S{i~ 1 V 2 " - 1 .

The geometric interpretation is clear. First, by (2) and (4), the x'a
form an infinite tree with ε = 2δ. Second, for each rational k/2m e [0, 1],
the infinite tree is supported by two hyperplanes as follows. By (2)
and (4), each point of the set {x((2i — 1)/2W)} either lies in one of the
two hyperplanes {x: <&*(&/2m), x> = δ}, {x: (h*(k/2m), x) = — δ}, or it is
a finite convex combination of points that do.

THEOREM 1. The Banach space X is isomorphic to a flat Banach
space Y if and only if X has the infinite supported tree property.

It is known that the infinite tree property is not preserved under
duality; c0 has the property while ix does not (James [6]). However,
the infinite supported tree property is preserved. This follows from
Theorem 1 and from the fact that the dual of a flat space is again
flat (Karlovitz, [10]).

COROLLARY. If a Banach space X has the infinite supported
tree property, then its dual space X* also has this property.
Moreover, X* is nonseparable.

EXAMPLE. The spaces C[0, 1] and L^O, 1], as well as Lι[μ] for μ
not purely atomic, and Cσ{K), for various choices of σ and K, are
flat (Harrell^Karlovitz, [3], [4], Schaffer, [15], and Nyikos-Schaffer,
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[13]) and therefore have the infinited supported tree property. Since
lλ fails to have the infinite tree property, both cQ and lx fail to have
the infinite supported tree property.

To see, in concrete terms, that Z/[0, 1] has the infinite supported
tree property, choose x((2ί — 1)/2W) to be the normalized characteristic
function of the interval \{i - l)/2*-\ ΐ/2""1] and choose &*(&/2m) to be
the linear functional

( )ds + ( )ds
0 }kl2m

The following two theorems relate the infinite supported tree
property to two further classes of spaces. They rely on some known
facts about flat Banach spaces, on recent work of James, [7], Hagler,
[2], Lindenstrauss-Zippin (see [12]), Stegall, [16], as well as on
Theorem 1.

THEOREM 2. Suppose X* is the dual of the Banach space X.
If X* has the infinite supported tree property, then it is not separa-
ble, but not conversely—not even if X is separable.

REMARK. It is interesting to compare Theorem 2 to the situta-
tion involving the infinite tree property (not necessarily supported).
The first part of the theorem remains true and is thus strengthened,
i.e., if X* has the infinite tree property then it is not separable. On
the other hand, the second part of the theorem is quite altered, and
thus shows an important difference between supported and unsup-
ported trees. For a recent result of Stegall [17] shows that if X is
separable and X* is not separable then X* has the infinite tree
property.

The first assertion depends on the abovementioned fact that an
infinite tree leads directly to a bounded closed convex set which is
not dentable. Thus X* does not have the Radon-Nikodym property
(Huff [5]), and hence it cannot be separable (Dunford-Pettis [1]).

THEOREM 3. Suppose X* is the dual of the Banach space X.
If X contains a subspace isomorphic to l19 then X* has the infinite
supported tree property, but not conversely.

A tree property which is stronger than the infinite supported
tree property and which characterizes those X* which are dual to a
space X containing a subspace isomorphic to lγ is the subject of a
forthcoming paper by the second author [11]. It is clear that the
structure of other classes of spaces should be expressible in terms
of trees.
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2. Proof of the theorems.

Proof of Theorem 1. Suppose first that Y is a flat Banach space.
Let g: [0, 2] -» Y be a girth curve of Y. Hence, if 0 ^ s < ί ^ 2,
2 = II 9(0) - g(2) || ^ || gφ) - g(s) \\ + || g(s) - g(t) || + || g(t) - g(2) || ^
β + (ί — s) + (2 - ί) = 2. Consequently,

( 5 ) || g(s) - g(t)\\ = \s- t\ , for each pair β, ί e [0, 2] .

For each ί e [0, 2], we choose a functional f*(t)e Y* satisfying:

( 6 ) </•(*), <7(ί)> = 1 and | | / * ( ί ) | | = l .

By (5), (6) and flr(0) = -g(2), if β, ί e [0, 2],

I </*(*), flr(β)> - 11 ^ || flr(β) - fir(ί) || = I β - ί I ,

and

( + II flr(2) - g(t) \\ = s + (2 - ί)

= (II g(s) - g{2) \\ + || gφ) - g{t) \\ = (2 - s) + t

From these inequalities we immediately derive

(7) </*(«), ff(s)> = 1 - I s - 11 for each pair s, t e [0, 2]

We let

(8) y((2i -

By (5), ||y((2ί - l)/2 ) || = 1. It follows from (8) that

( 9 ) y((2i -

+ -ίy((2(2i) - l)/2"+1) , for all y((2i - l)/2») .
2

By virtue of (7), we have

i - 1\\ _ ί -1 . if ί/2"-1 ^ k/2m ,
1\\ _

2" // 1 1 , if fc/2 ^ (ΐ -

for all y((2t - 1)/2M) and all f*(k/2m), with w = 1, 2, , k = 0, . , 2".
Since ||»((2ί - 1)/2»)|| = \\f*(k/2m)\\ = 1, it follows from (9) and (10)
that Y has the infinite supported tree property. It is clear that the
infinite supported tree property is isomorphically invariant. Therefore
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X also has this property.
Suppose, conversely, that X has the infinite supported tree pro-

perty, i.e., suppose that {x((2i - l)/2%): n = 1, 2, , i = 1, , 2n~1}
is a subset of the unit ball of X and that {&*(&/2m): m = 1,2, •••,
& = 0, , 2m) is a subset of the unit ball of the dual space JΓ* and
suppose that (2) and (4) are satisfied. We prove that X is isomorphic
to a flat Banach space.

By repeated application of (2), we note that whenever p ^ n,

(11) x((2i - l)/2 ) - (1/2*-)
/=iP—»i— 2P—κ+l

We define a new norm ||| | | | on X by

(12) HI x HI = max{|| x \\, sup {(1/δ) | <h*(k/2m), x) \: m = 1, 2, ,

Λ = 0, . . ,2 }},

where δ > 0 is given by (4). Clearly,

|| all £111 a HI £ ( lβ) 11*11. for all ^ 1 .

We assert that, with the new norm | | | | | |, X is flat. To prove this,
we first note that by (4),

I (h*^*-1), x((2i - l)/2 )> I = δ .

Moreover, by (4) and (11), (h*(k/2m), x((2i - l)/2")> ^ 8, for k/2m Φ
i/2"-1; thus, by || x((2i - l)/2 ) || ^ 1 and (12), we have

(13) HI x((2i - l)/2») HI = 1 , n = 1, 2, . . , ΐ = 1, , 2 - 1 .

We now define a function g: {i/2K: n = 1,2, . . , y = 0, , 2""1} -• X

by

(14) flr(i/2 ) = -

where, of course, one of the sums may be empty. By virtue of
(11), g is well defined, i.e., the value g(j/2n) is independent of the
representation of j/2n. Clearly g(0) = -g(2). By (13) and (14),
H l ί ( ί 7 2 " ) | | | ^ l . Moreover, by (4) and (14), (h*(j/2n+ί), g(j/2n)} = δ.
Hence, by (12), | | | g(j/2T) | | | ^ (1/δ) \ <λ*(i/2^+1), flr(i/2 )> | = 1. Combin-
ing the two inequalities, we have

HI 0072-) HI = 1 , » = 1, 2, . , j = 0, . , 2»+1 .

Using (13) and (14) we estimate for 0 <; k < j ^ 2M+1,
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III k+i I I

This shows that g is Lipschitz continuous with constant 1 on its
domain of definition {j/2n: n = 1, 2, , j — 0, , 2n+1}. Hence we
can extend g to the entire interval [0, 2] so that the extension, again
denoted by g, is also Lipschitz continuous with constant 1 and satis-
fies |||flr(ί)||| = l for each te[O, 2]. Since, moreover, g(0) = -g{2),
g: [0, 2] —»X is a girth curve for X in the norm ||| |||. Hence X, in
this norm, is flat. This finishes the proof of Theorem 1.

Proof of Corollary. It was shown in Karlovitz [10] that if X
is flat, then X* is also flat and not separable: The corollary follows
from this and Theorem 1.

Proof of Theorem 2. According to Theorem 4 of Harrell-Karlovitz
[4], a flat Banach space cannot be isomorphic to any subspace of
any separable dual space. By Theorem 1 it follows that X* is not
separable.

To prove the other half of the theorem, we consider the separa-
ble space Jo defined by James [7]. Since Jo is also the dual of another
space, it fails to have the infinite supported tree property, by virtue
of the first half of the theorem. Furthermore, in Lindenstrauss-
Stegall [12] it is shown that J?* ~ J0φZ2(2*°). From this it follows
that Jό** fails to have the infinite supported tree property. By the
Corollary it follows that Jό* also fails to have the infinite supported
tree property. Finally, (James, [7]) J* is not separable. This finishes
the proof of Theorem 2.

Proof of Theorem 3. Suppose first that X contains a subspace
isomorphic to lίm Then, by Hagler [2], X* contains a subspace isomor-
phic to Z/fO, 1]. As noted above, LL[0, 1] is flat. Hence, by Theorem
1, X* has the infinite supported tree property.

To prove the other half of the theorem, consider the linear space
of all real-valued step functions y(t), 0 ^ t ^ 2. Define a norm on
Γ b y

where the supremum is taken over all 0 <; tt ^ ^ t% S 2. Now
let X be the completion of Y. It is readily seen that X is isomorphic
to the space defined by Lindenstrauss and Zippin, which is discussed
in [12], and which is proved not to contain a subspace isomorphic
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to lt. Moreover, X is readily seen to be flat. To this end, define

h: [0, 1] — X by

- l / τ / 2 " , O ^ ί ^ s , s + 1 g ί ^ 2 ,

1/τ/ίf, 8<it£8 + l ,

and define g: [0, 2] - > X by g(s) = λ(s/2), 0 ^ s ^ 2. It is readily
observed that g satisfies (1), and hence X is flat. Therefore, by the
Corollary, X* has the infinite supported tree property. Since X does
not contain a subspace isomorphic to llf this finishes the proof of
Theorem 3.
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