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α*-CLOSURES OF COMPLETELY DISTRIBUTIVE
LATTICE-ORDERED GROUPS

A. M. W. GLASS, W. CHARLES HOLLAND

AND STEPHEN H. MCCLEARY

The α*-closure of a completely distributive lattice-ordered
group is located within a wreath product of primitive com-
ponents associated with certain transitive representation of
the group. For many primitive lattice ordered groups, the
enclosures are described explicitly.

1* Introduction* An α-closure of a totally ordered group is
a maximal extension having the same convex subgroups. Every
totally ordered group has an α-closure, and in the abelian case, it
is unique. In [8], P. F. Conrad extended the notion to lattice-ordered
groups by requiring the extension to have the same convex ϊ-subgroups.
Khuon [14] proved that every i-group has an α-closure. However,
α-closures, even of archimedean i-groups, are not necessarily unique.
Bleier and Conrad [2] generalized the totally ordered case in yet
another way, called an α*-extension, by requiring only that the
extension have the same closed convex ϊ-subgroups. They showed
the existence of an α*-closure in the abelian case, and uniqueness in
the archimedean case. More recently, R. N. Ball [1] has shown that
every lattice ordered group has an α*-closure.

The purpose of this paper is to determine as much as possible
about the α*-extensions of completely distributive ί-groups, using
the techniques of representations as permutation groups. In § 2, we
introduce the necessary background information and notation, while
in § 3, we show the existence of α*-closures by a cardinality argument.
The existence of α*-closures of completely distributive Z-groups can
also be shown by the methods of Khuon [14] and Byrd [4]. In §4,
we study the problem of stabilizer extensions of permutation groups;
these are required to have the same stabilizer subgroups. In § 5,
we show that for completely distributive ί-groups, α*-extensions are
equivalent to stabilizer extensions. We use this equivalence to locate
the α*-closures for transitive permutation groups within a wreath
product associated with the o-primitive components. Let A(S) be
the Z-group of all order-preserving permutations of a totally ordered
set S. For certain classes of transitive groups, including nice A(S)f

we prove in § 6 that the α*-closure in unique. We also give some
limiting examples to show that in certain cases, the α*-closure is not
unique. The major advantage of this paper is that we are able to
locate, in a very concrete fashion, all α*-closures of completely
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distributive Z-groups. However, we have been unable to make any
headway in the non-completely distributive case. Research along this
line would be very valuable as all that is available is Ball's existence
proof.

In view of the great technicality of the statements and proofs
in § 6, we have concluded that section with certain consequences of
our research which have both an intuitive and a concrete flavor for
all interested in α*-closures and not necessarily in the generalized
wreath product. We hope that this will prove valuable.

2* Notation and background information* The expression (G, S)
will be used to indicate that G is an ^-subgroup of A(S), the lattice
ordered group (ϊ-group) of all order-preserving permutations of the
totally ordered set S under the point-wise ordering. Therefore, (G, S)
will only be written if G is indeed faithful on S. Any such G has
a natural extension to (G, S), where S is the Dedekind completion
of S (without end points.) For any X Q S, Gx = {g e G: xg = x for
all xe X) is called a stabilizer subgroup of G. An o-block of (G, S)
is a nonempty convex subset C of S such that for each g e G, Cg = C
or Cg Π C = 0 . If C is an o-block of (G, S), then {g e G: Cg = C} =
GsupC, where sup C is the supremum of C in S (provided C is not
cofinal in S).

Throughout the remainder of this section we assume that (G, S)
is transitive. We review some information from [12] and [17]. If
C is an o-block of (G, S), the partition comprising the translates of
C by elements of G gives rise to a convex congruence of (G, S), i.e.,
an equivalence relation on S which is respected by G and whose
equivalence classes are convex subsets of S. Every convex congruence
arises in this way. Iΐ & and ^ are convex congruences, we set
^^ <& if and only if & refines ^ . This gives a total order on the
set of convex congruences. Moreover, the set of o-blocks containing
any given s e S is totally ordered by inclusion; and if two o-blocks
B and C containing s give rise to the congruences & and ^
respectively, then ^ ^ ^ if and only if B S C.

If & and ^ are convex congruences of (G, S) such that
& < <& and no convex congruence of (G, S) lies between & and <g*,
we say that {0, <g*) is a convering pair of convex congruences of
(G, S). The set of these convering pairs, with the inherited total
order, will be denoted by Γ(G, S), and the 7th convering pair by

A transitive group is said to be o-primitive provided its only
convex congruences are the two improper convex congruences. Each
covering pair (S^, S^r) yields an o-primitive component (Gr, Sr) in
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the following way: Choose any se S and let Sr = sS^r/S*r, the S^r

equivalence class of s modulo the £f7 classes contained in sS^r. Let
Gγ denote the action of Gx on Sr where x = sup sS^r. Note that
this is not, in general, a faithful representation of Gx on Sr. The
component (Gr, Sr) is o-primitive and independent (to within isomor-
phism) of the choice of s.

The set Γ(G, S) and the o-primitive components of (G, S) will
play a central role in locating α*-extensions of completely distribu-
tive i-groups since they are the building blocks of every transitive
i-permutation group.

If (G, S) has a minimal o-primitive component (i.e., associated
with a minimal covering pair) (Gμ, Sμ)9 then (G, S) is said to be
locally o-primitive and the S^μ classes are called the 'primitive
segments.

If (G, S) is o-primitive, then, by [17] and [20], there are just
these four possibilities:

( i ) (G, S) is regular and archimedean; Gs = {e} for each se S,
G is isomorphic to S as an ordered set, and is o-isomorphic to a
subgroup of the real numbers [22] (e is the group identity).

(ii) (G, S) is periodic; there exists e<feA(S) such that for
all ge G, fg = gf, and for each s e S, G8 fixes only the points of the
coterminal subset {sfm: m = 0, ± 1 , ±2, •••}, and Gs is o-2-transitive
on the interval (s, sf). The permutation / is the period of G and
G S ZA(s){f) Π -A(S), where ZAls)(f) denotes the centralizer of {/} in
A(S). Either there exists a positive integer n such that for s e S,
sfm G S if and only if w divides m—in which case (G, S) is said to
have Config(n)—or sfm e S if and only if m = 0, and (G, S) is said
to have Con fig (oo).

(iii) (G, S) is o-2-transitive and contains a nonidentity element
of bounded support.

(iv) (G, S) is pathological; (G, S) is o-2-transitive and contains
no nonidentity element of bounded support.

In cases (i), (ii) and (iii), G is completely distributive and all
stabilizers Gx, I S S, are closed. In case (iv), G is not completely
distributive and if yeS, Gy is not closed. Finally, in all cases, each
Gy (y e S) is a maximal prime subgroup of G.

The wreath product of two ϊ-permutation groups (G, S)Wr(H, T)
is the ί-group of all order-preserving permutations of S x T of the
form ({gt: t e T}, h) where gteG,he H, and (s, *)({£*}> h) = (sgt, th). This
can be generalized to the wreath product of infinitely many factors
indexed by a totally ordered set Γ, written as Wr{(H7, Tr):ΎeΓ}
(see [13])).

For other general background metrial, see [6] and [12].
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3* α*-extensions* In this section we show, by a cardinality argu-
ment, that every completely distributive i-group has an α*-closure.

We will adopt the same notation as used in [2]; the lattice of
all convex Z-subgroups of the Z-group G will be denoted by ^(G)
and the lattice of all closed convex Z-subgroups of G will be written
3ίΓ(G). Suppose G is an Z-subgroup of an i-group H. Then H is
an a*-extension of G if and only if intersection with G provides an
isomorphism from JsΓ(H) onto J%"(G). Bleier and Conrad have shown
in [3] that H is an α*-extension of G provided that intersection with
G yields a one-to-one map of <5?~(H) into ^(G); moreover, the direct
limit of a tower of α*-extensions of an Z-group G is still an α*-extension
of G. Consequently, to prove that an Z-group G has an α*-closure
(an α*-extension having itself no proper α*-extensions), it is enough
to show that there exists a bound on the cardinalities of α*-
extensions of G. This we do fairly easily in the completely dis-
tributive case. More recently, R. N. Ball has proved the existence
of a cardinality bound on α*-extensions for any ί-group G, but his
method is much deeper in the general case [1], Further, observe
that if G is an ϊ-subgroup of H and H is an i-subgroup of the
ϊ-group K, then K is an α*-extension of G if and only if K is an
α*-extension of H and H is an α*-extension of G [3]. Therefore,
any α*-closure of an ί-group G is a maximal α*-extension of G and
conversely.

PROPOSITION 3.1. Let H be an a*'-extension of G. Then H is
completely distributive if and only if G is completely distributive.

Proof. By [5, Corollary 3.8], an ϊ-group G is completely distribu-
tive if and only if its distributive radical D(G) = {e}, where D(G)
is the intersection of all closed prime subgroups of G. Since the
property of being "closed prime" is distinguishable in J%ί{G) [2,
Proposition 1.4], the result follows.

Conrad [7] showed that every totally ordered group has an
α*-closure (which must again be totally ordered). It is known [10]
that α*-closures need not be unique in general, even for totally
ordered groups. The following theorem generalizes Conrad's result,
since every totally ordered group is completely distributive.

THEOREM 3.2. Every completely distributive l-group has an
a*-closure.

First, we establish a lemma.

LEMMA 3.3. For any l-group G, \ G/D(G) \ £ (2*°)% where K is
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the cardinality of the set of closed regular subgroups of G.

Proof. Let Gr be a closed regular subgroup of G and let Gr be
its cover. Then Gr acts on the totally ordered set of right cosets
of Gγ in Gr as an o-primitive group. Hence \Gr/Gr\ S max{2*\ ̂ 0/r}
(for, with reference to the characterization of o-primitive groups, if
the action is regular, the set is isomorphic to a subgroup of the
reals, and if not, there are at most fc$0 points having a given stabi-
lizer, and each point stabilizer is a conjugate of Gr and so a closed
regular subgroup of G).

Next we construct a one-to-one map φ: G/D(G) —* Π where Π is
the set cartesion product Π{Gr/Gr: Gr closed regular subgroup of G}.
For each Gr and each coset Grx of Gr in G, pick a fixed one-to-one
map φTtX from the set of cosets of Gr lying in Grx onto Gr/Gr (if
Grx = Gry, then φΐyX = φΐ>y). Letting D = D{G), define ψ:G/D~+Π
by: (Dg)φ = ( ••, (Grg)φγ,g, •••)• It can be easily verified that φ is
well-defined. If Dgt Φ Dg2, then gxg2

ι g Zλ So there is a closed prime
(rδ such that gxgτ1^ Gδ. Thus there is a regular subgroup of G for
010Γ1 containing G> By [5, Lemma 3.3], this regular subgroup is
closed; call it Gr. Now gxgjle Gr\Gr. Hence Gygγ — Grg2 but g^ Grg2.
Consequently, (Grg^rt9l = {Gγg^φγ>g2 Φ (Grg2)φr>92 and therefore (Dgjφ Φ
(Dg2)φ. It follows that φ is one-to-one.

Now I G/D\ ̂ \Π\£ (max (2*°, tfoκ})κ ^ (2*°)*, proving the lemma.

Proof of Theorem 3.2. It is enough to obtain a bound on the
cardinalities of α*-extensions of G. Let H be any α*-extension of
(?. Since the closed regular subgroups of G are distinguishable in
3ίΓ(G), those of H correspond to those of G; hence H and G have
the same tc. By Proposition 3.1, H is completely distributive, so
that D{H) = {β}. By Lemma 3.3, | JSΓ| = | H/D(H) | ^ (2*°)*.

Observe that a similar procedure, using the set of all (not
necessarily closed) regular subgroups of G and letting tc be its
cardinality, yields a bound of (2*°)K on the cardinalities of α-extensions
of an i-group G. That bound, which establishes that every Z-group
has an enclosure, was obtained at the same time by S. H. McCleary
(using the above argument) and by D. Khuon using a different
argument (giving rise to a bound one cardinal number greater than
the above bound). In fact, using Hahn groups, one can show that
I G\ attains the bound (2**°)*, so it is the best possible. We mention
that Khuon's techniques can also be adapted to prove Lemma 3.3
(with the bound raised by one cardinal number).

It is abundantly clear that this section (as [1]) does not give us
any concrete idea of what the α*-elosures of a given completely
distributive ί-group may look like; it is purely an existence proof.
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The rest of this paper will be devoted to trying to locate the α-closures
of completely distributive ί-groups and to obtaining positive and
negative results concerning uniqueness.

4* Stabilizer extensions* (G, S) is said to be a permutation
subgroup of (H, T), written (G, S) £ (H, Γ) if S g Γ and there is
an "auxiliary" subgroup G' of H such that SG' = S and the faithful
restriction of G' to S gives G. We say that (H, T) is a stabilizer
extension of (G, S), written (G, S) t (H, T), if (G, S) £ (H, T), and

(1) whenever X, F g f and G'x = G'F, then i ϊ x = iίF and

(2) SH=T.
(1) is equivalent to: whenever I , 7 g Tand Gx £ GF, then i ί x £ .ffF.
(1) is also equivalent to: whenever I g T, y e T and G'x ̂  G'y, then

Actually, we have the following proposition, showing that the
definition is independent of the choice of auxiliary subgroup and
justifying identifying G' with G.

PROPOSITION 4.1. Suppose that (G, S) t {H, T) via some auxiliary
subgroup G'. Then if h1 and h2 agree on S (hlf h2 6 H), h± — h2. In
particular, each element of G can be uniquely extended to an element
of H acting on T.

Proof. If hi_ and h2 agree on S, then hfa1 is the identity on S.
But G's = {e} = G'τ, SO HS = Hτ = {e}. Hence hjiς1 is the identity on
T; consequently, hx = h2.

From now on, we will suppress all mention of the auxiliary
subgroup. We say that (G, S) is "{-closed if (G, S) t (H, T) only
when (G, S) = (iϊ, T). Without condition (2) above, no (G, S) would
be f-closed; for example, extra points could be added to S and left
fixed by G. Now suppose (G, S) £ (iί, T) satisfies (1). Then H acts
faithfully on SH (for if h e H is the identity on SH 3 S, then λ = β
by Proposition 4.1). Hence (G, S) t (fl, SΐΓ). Thus (2) serves to
eliminate any extraneous orbits of (if, T) which fail to meet S. In
particular, if (G, S) ? {H, T) and (G, S) is transitive, then so is {H, T).
Moreover, we have the following lemma:

LEMMA 4.2. If (G, S) t (JET, Γ), C is α^ o-block of {H, T) on
which H acts transitively, and C Π S Φ 0, then C Π S is coterminal
in C.

Proof. Suppose that C Π S is not coinitial in C. Let m e f be
the greatest lower bound of C if C is not coinitial in T, and other-
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wise let m denote the empty set. Let ne T be the greatest lower
bound of Gf)S. Clearly Gm = Gn. Hence Hm = Hn. Since mΦn9

the transitivity of i ϊ on C implies the existence of heHm\Hn, a
contradiction. Therefore C Π S is coinitial in C. Similarly, C Π S is
cofinal in C.

We now wish to find the connection between Γ(G, S) and Γ(H, T)
when (G, S) f (if, Γ) and also the relation between the o-primitive
components (recall § 2).

LEMMA 4.3. // (G, S) t {H, T) and C is an o-block of (H, T), then
C f] S is an o-block of (G, S); if ^ is a convex congruence of (£Γ, T),
then ^Π(SxS) is a convex congruence of (G, S).

THEOREM 4.4. Let (G, S) f (H, T) with (G, S) (and thus also
(H, T)) transitive. Then restriction to S provides an o-isomorphίsm
from the tower of convex congruences of (H, T) onto the tower of
convex congruences of (G, S); and thus from Γ(G, S) onto Γ(H, T).

Proof. Lemma 4.3 establishes that restriction gives a function
ψ from the tower of convex congruences of (G, S) into that of (H, T).

If ^^3^ are convex congruences of (iϊ, T), choose any seS.
Then s^£= s^Γ. By Lemma 4.2, the points of S are coterminal in
s3T, and thus ( s ^ n S ξ (s^Π) ΓΊ S, proving that i f and J T are
still distinct when restricted to S. Hence ψ is an order-embedding.

Now suppose ^ is a nontrivial convex congruence of (G, S).
Let C be a ^-class and C the convexification of C in Γ (written
C = Conv (C)). Clearly, C is an o-block of (G, 2 \ Indeed,_C is an
o-block of (iϊ, Γ). For let m = sup C and n = inf C, m, w € f. Then
Gw = Gn, so iίm = Hn. Thus if β < he H, Ch Φ C and ChnC Φ 0 ,
it follows that n < nh < m < mh and so n < mfc"1 < m. Therefore,
Gmk~i C G%. Hence fciϊ^-1 - Hmh-i QHn = hHnhh~\ so Hm Q Hnh and
Gm C GnΛ. This is a contradiction. Let ^ be the partition of T
whose classes are the iϊ-translates of C. Since H is transitive, this
is a partition of T. Then & is a convex congruence of (JEZ, T) whose
intersection with S x S is &, showing that ψ is onto. Therefore
restriction to S maps Γ(H, T) onto Γ(G, S).

Since Γ(G, S) and Γ(H, T) are merely indexing sets for the set
of convering pairs of convex congruences, we will identify Γ(G, S)
and Γ(Hf T) if the hypotheses of Theorem 4.4 prevail. More generally,
if (G S) S (H, T) with (G, S) and {H, T) transitive, if Γ(H, T) and
Γ(G, S) are identified via restriction to S, and if s^~r = Conv (sS^)
and s^7"'' = Conv (aS?7) for each s G S and 7 e Γ(G, S) = Γ(H, Γ), we
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will write (G, S) <: (H, T). Note that the relation <; is transitive.
Also, if (G, S) is transitive and (G, S) t (H, T), then (G, S) ̂  (IT T)
(by Theorem 4.4).

COROLLARY 4.5. Suppose (G, 5>) t (#, 21) and that (G, S) is
transitive. Then (H, T) is o-primitive if and only if (G, S) is
o-primitive.

Now assume that (G, S) is transitive and (G, S) T (H, T). Let
(J^7, ^ " 0 e Γ(H, T) correspond to ( f̂, S^r) e Γ(G, S) and let seS.
Then s j ^ = cOnv (sS^) and for each r e s ^ r = s^r Π S, r ^ =
Conv (τ\Pf). We may, therefore, consider £ r = sS^y\^ as a totally
ordered subset of the totally ordered set Tr = sj^r/^~r (see § 2).

THEOREM 4.6. Let (G, S) t (H, T) with (G, S) transitive. Then
for each pair of corresponding o-primitive components,
(Gr,Sr)UHr, Tr).

Proof. Since (G, S) t {H, T), each gr e Gr has an extension to
Tγ which is induced by some geG (i.e., the image of g agrees on
Ty with the extension). We claim that the only such extension of
the identity of Gr is the identity map on Tr. where Tr = s^~rlJ7~γ

for some fixed se S. For let u e Tr\Sr. Now uQ T, so write
sup u for the supremum of u in T. Let v = inf {w e Sr: w > u}e Tr,
and v = inf {r^~r: reS, r^~r Q sj^, and r^~y > v}e T, these being
well defined by Lemma 4.2. Then G s u p u Q G? so JEΓ8UP« £ -ί̂ Γ There-
fore (Hr)u Q (Hr)v. Thus (Hr)u = (Hr)v, since (Hΐf Tr) is o-primitive.
Hence HSVίvu = H~ and, consequently, Gsιipu = G^. If gr is the identity
on jSr, then g e G7 where gre G induces gr. It follows that ^ G G s u p t t

and so ^ r G {Gr)u. Hence the extension of gr to Tr is indeed the
identity. It follows that each gr e Gr has a unique extension to Tr

which is induced by some g e G, so that (Gr, Sr) £ (ίί r, Γ r).
Now if (G7)z £ (Gr)y for some X £ fr and 1/ e fr, then Gj S G-

(where X = {x:xe X}), so iΪ£ £ H;> and ( ί ί r ) x £ (if,),. Therefore
(Gr,Sr)UHr, Tr).

We must now, therefore, consider stabilizer extensions of o-primi-
tive ϊ-permutation groups.

THEOREM 4.7. Let (G, S) be o-primitive. If G is nonpathological,
then (G, S) has unique ^-closure (to within isomorphism over (G, S)),
viz.:

( i ) (R, R) is (G, S) is regular and archimedean.
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(ii) {Z, SZ) if (G, S) is periodic with period f and Z = ZA(s){f).
(iii) (A(S), SA(S)) if (G, S) is (nonpathologically) o-2-transi-

tive. If (G, S) is pathological, then every ^-extension of (G, S) is a
pathological permutation l-subgroup of (A(S), SA(S)) and (G, S) has
a ̂ -closure.

Proof. Let (H, T) be a t-extension of (G, S). By Corollary 4.5,
(£Γ, T) is o-primitive.

If (G, S) is regular and archimedean, and thus is the regular
representation of some subgroup of R, then Gs = {e} for all se S.
Hence H8 — {e} for all se S; so Hcannot be o-2-transitive or periodic.
It follows that H must, therefore, be regular and archimedean.
Thus H is o-isomorphic over G to a subgroup of R. But it is obvious
that (G, S) t (R, R), and (i) follows.

If (G, S) is not regular, we first show that S must be dense in
T, SO that, to within isomorphism over (G, S), T S S. Let D be an
interval of T maximal with respect to containig no points of S, and
let m = inf D. Then for every teD, Gt S Gm, so Ht S Hm, and
thus Ht = Hm since (H, T) is o-primitive. (H, T) is not regular
because (G, S) is not. Thus D cannot contain more than one point
since in the periodic and o-2-transitive cases, each Ht moves points
arbitrarily close to t. Similarly, no point in T\S can cover or be
covered by a point in S. Hence S is dense in T.

If (G, S) is periodic with period / e A(S), then for each se S,
G8 = Gr if and only if r e {sfn: n an integer}. Hence, for each se S,
Hs = Hr if and only if re{sfn}. Thus (H, T) must be periodic with
period k, say. But then Hs = Hr if and only if re{skn), which
shows that for each se S, {sfn} = {skn}. Therefore k — /, and so
(H, T) S (^, S).

We now show that (G, S) f (Z, SZ). Let XS-S,yeS and
Gx S Gy. Then y must lie in the topological closure of the set
X' = U {-X/Λ: n = 0, ± 1 , ±2, ...}. Otherwise, there exist sx, s2e S
with sx < y < s2 < Si/ and no point of Xf lying between s1 and s2.
By [20, Lemma 5], there exists ge G such that yg Φ y and

(support g) Π (β l f 8χ, / ) S (si, s2) .

It follows that (support g) £ \J {(slt s2)fn: n = 0, ± 1 , ±2, . •}, and as
(U {̂ i, s2XΓ: n = 0, ± 1 , ±2, ...}) n X = 0, βr e Gx\Gy, a contradiction.
Since Z also has period /, Zx £ Zy. Hence {Z, SZ) is the unique
t-closure of (G, S).

We remark in passing that a t-closed periodic group must have
Conίig(l)-since (G, S) t (^, SZ) then (G, S) = (Z, SZ); and since the
period / belongs to Zf te SZ implies tf e SZ.
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If (G, S) is o-2-transitive and contains an element of bounded
support, and Gx £ Gy for some XSS,yeS, then y is in the
topological closure of X, as one sees by considerations similar to
those in the previous case. Hence even A(S)XS A(S)y, so
(G, S) t (A(S), SA(S)), and (A(S), SA(S)) is the unique t-elosure of
«?, S).

Finally, if (G, S) is pathological, then (H, T) can be neither regular
nor periodic, and so must be o-2-transitive. Choose any slf s2e S and
let X = {x e T: sί < x or x < s2). Then Gx S GXC]S = {e}, so Hx = {e}
and H must be pathological. A Zorn's lemma argument shows that
there must exists a maximal t-extension of (G, S) within (A(S), S),
which must be a t-closure of (G, S).

Beyond this we have been able to decide little about ΐ-extensions
of a pathological group. We do not know whether t-elosures of
pathological groups must be unique.

EXAMPLES 4.8(a). Let R be the real line and

P = {ge A(R): (3 positive integer n)(Vx e R)((x + n)g = xg + n)} .

4.8(b). (McCleary [19]).

M — {ge A(R): (Vxe R)(l positive integer n)(V integer m)

((x + mn)g = xg + mn)} .

4.8(c).

B = {g G A(J8): (Vε > 0)(V« G Λ)(3 positive integer ^)

(V integer m)(| (x + mn)g — xg — mw | < ε &

I (# + mn)g~γ — a ίΓ1 — mn \ < ε)} .

P, Λf and J5 are pathological o-2-transitive and (P, i?) t (M, R) f (B, R).
Px S Py or Mx g Λfy or B z S By holds precisely when the following
is true: there exists a subgroup S of the additive group of integers
such that for every subgroup S' of S, the distance of X from
y + S' is 0. Actually, (2?, i2) is the unique f-closure of both (P, R)
and (AT, R).

The reader may wish to consider finding the t-closures of the
more complicated pathological o-2-transitive examples given in [9].
Since the pathological groups are the o-primitive groups which are
not completely distributive, they are at the heart of understanding
what is true in the general case.

Let (G, S) be a transitive ϊ-permutation group. We embed (G, S)
in the wreath product (Wu RJ = Wr{(Gr, Sr):ΎeΓ} of its o-primitive
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components using, say, an immediate embedding of the sort in [13].
For each 7 e Γ, let (Hr, Tγ) 2 (G7, Sr) with (Hr, Tγ) o-primitive. Let
(W,R) = Wr{(Hr, Tγ): 7 6 Γ). Then Rt £ R, and we embed W, in W
by taking each (wθr, t o be the identity if α ^ r Πfii = 0 . In this
way we may assume ((?, S) <* (W, R).

THEOREM 4.9. Let (G, S) be transitive. For each o-primitive
component (Grt Sr), let (Hr, T7) be the l-permutation group given by
Theorem 4.7 (where (Hr, T7) = (A(S7), S7A(S7)) if (G7, S7) is pathologi-
cal). Let (W, i2) = Wr{{Hγy Tr):ΎeΓ}. Then every ^extension of
(G, S) is isomorphic over (G, S) to some {K, U) such that (G, S) <£
(KU)(WR)

Proof. We consider (G, S) to be contained in (W, R) as indicated
above. Let (L, V) be a t-extension of (G, S). Then (L, V) is transi-
tive and Γ(L, V) = Γ(G, S) by Theorem 4.4. Then, by the techniques
of [16, Lemma 16], (L, V) can be immediately embedded in (W2, B2) =
Wr{{Lry Vr):ΎeΓ} so that the embedding of V in R2 is the identity
on S (this follows from the fact that if φ is a map having domain
s<9*r/S^(s 6 S), which is induced by some ge G, then some ke L
induces an extension of φ to (sT*7/ yty. Now, in view of Theorem 4,7,
we may consider (W2, R2) ̂  (TΓ, i2), and the theorem follows.

Observe that although we take the embedding of G to be the
identity on S (so that gψ = g on S), it cannot, in general, be
arranged that gψe K and g e G £ TΓ agree on U in the statement
of Theorem 4.9.

COROLLARY 4.10. Any wreath product of ^-closed o-primitive
groups is ^-closed.

Proof. With t-closed o-primitive components, we may take
(Hr, Tγ) to be (G7f Sr) in the pathological case. The corollary now
follows.

Even if {G, S) is f-closed, it need not be the case that each of
its o-primitive components is t-closed, as can be seen in the following
example.

EXAMPLE 4.11. Let R be the totally ordered set of real numbers,
and G = {({gr}, g) e (A(R), R)Wr{A{R), R): support (g) is bounded, and
for all large r, gr — g). Then G is an Z-subgroup of A(R)WrA(R)
with o-primitive components Gx and G29 where Gι = A(R) and G2 —
those members of A(R) with bounded support. Let S = R x R be
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the set which G permutes. Let X £ S and yeS. It is easily seen
that Gx £ Gy if and only if

(1) y e topological closure of X, or
(2 ) y = zm or zM, where zm = inf (R x {z}) and zM = sup JB X {Z})

and the topological closure of R x {2} meets the topological clousure
of X, or

(3) 2/ = zm or s*. and Vε > 0, Vre R, l(x, x)eXf]S such that
r < x and | z — x | < ε.

Observe that if GΐH and jEΓ£A(Λ)ϊFril(jβ) and if λ = {{K}, h) e H,
then the support of h is bounded above. For we may assume e < h
and choose geA(R), of bounded support, such that Oh < Og; for
each reR, let # r = <?. Then g = ({ r̂}, #} e G and tf/Γ1 V β € H. If
m = inf (R x {0}) e S, then m{ghrγ V e) = m{gh"1) > m. If h where
to have support unbounded above, there would be a coίinal subset
F £ R of the support of h, but missing the support of g. Hence
for X = R*x F, gh~ι V e e Hx. But it is clear that Gx £ Gm, contra-
dicting the fact that G f H. Hence the "upper" component of H is
not A(R), and therefore, by Theorem 4.7, is not f-closed.

Now Jet HQA(R)WrA(R) consist of those ({hr}, h) such that
support (h) is bounded above and Vx e R, Vε > 0, 3<5 > 0, 3r e_Λ such
that if I y — x \ < δ and s > r, then | yhs — xh \ < ε and | ί/̂ 71 — %h~ι I < ε.
Then H is an ί-subgroup of A(R)WrA(R), as can be determined by
a little computation, and (G, S) t (iϊ, S) because Hx £ jffy if and only
if (1), (2), or (3), as before. Using the conditions (1), (2), and (3), it
can be shown that (H, S) is the unique (to within isomorphism over
(G, S)) ί-closure of ((?, S).

EXAMPLE 4.12. Even if each o-primitive component of G is
T-closed, G need not be. Let G £ A(R)WrA(R) be the "small" wreath
product consisting of those ({gr}, g) such that gr = e for all but finitely
many reR. Then each o-primitive component of G is A(R), which
is t-closed by Theorem 4.7, but Gt A(R)WrA(R).

5* The relation between α*-extensions and t " e χ t e n s i ° n s *
now make explicit the relationship between α*-extensions and
t-extensions. We shall exploit the close connection between closed
convex ί-subgroups and stabilizer subgroups given in [18]. If (G, S)
is an Z-permutation group, then every closed convex i-subgroup is a
stabilizer Gz, for some X £ S . If every point stabilizer G$ (seS)
is closed, then all stabilizers Gx (X £ S) are closed. Hence there is
no ambiguity regarding the kind of stabilizer in the statement "(G, S)
has closed stabilizers." Indeed, if (G, S) has closed stabilizers the
closed convex i-subgroups of G are precisely the stabilizers Gx (XQS).
If (G, S) is transitive, the point stabilizers are all conjugate; so if
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one is closed, they all are. G has a representation (G, S) with closed
point stabilizers if and only if G is completely distributive. More-
over, if G is completely distributive and has a transitive representation,
it has a transitive representation with closed stabilizers.

The main result that we wish to prove in this section is the
following:

THEOREM 5.1. If (G, S) t (H, T), then H is an a*-extension of
G. Conversely, if (G, S) £ (H, T), (G, S) has closed stabilizers, and
H is an a*-extension of G, then (G, S) t (H, SH).

Note that in the statement of Theorem 5.1, H should actually
be an α*-extension of an auxiliary subgroup G'; but since G' is
uniquely determined, we have identified it with G.

Once we have established this theorem, we will be able to make
use of the results in the previous section.

To prove Theorem 5.1, we need a lemma.

PROPOSITION 5.2. Let (G, S) t (H, T). If (G, S) has closed stabi-
lizers, then so does (H, T).

Proof. We first consider s e S. Let G8 be the closure in H of
the convexification in H of Gs. Since (G, S) t (H, T),

Y={yeT:HsQ Hy} = {y e T: G8 £ Gy} = {ye f: Gs £ Gy} .

If K is a convex ϊ-subgroup of an ϊ-permutation group (H, T), then

UΓ 2 {he H:yh = y whenever yef and y is fixed by K) [17, Theorem

9]. Hence Q8^ {he H: yh = y for all yeY}^H8 since Hs fixes

each yeY. Thus Gs £ ίfs £ &s, so &8 = Hs. Since G8 is closed,

Gs = <5S Π G = H8 Π G by [2, Lemma 2.1].
By [17, Theorem 8], H8 = ί ί s u p £ for some o-block B of H such

that sHSXLVB is coterminal in 5. If j? is not a single point, then
£Γsupΰ moves s; since (G, S) t (H, T), G s u p 5 moves s; i.e., Hs n_G = Gβ

moves s. This is clearly impossible. Hence B = {s} and so Jϊ8 = ΐfs.
Consequently, Hs is closed.

Now let t e T. Since (G, S) t (iϊ, Γ), sh = t for some seS,heH.
Thus if* is conjugate to iJ8 and so is closed in H. This completes the
proof that (H, T) has closed stabilizers.

We now prove Theorem 5.1:
Suppose that (G, S) t (H, T). Let C and iΓ be closed convex

ί-subgroups of H such that C Π G = K f] G. There exist I , 7 g f
such that C = Hx and iΓ = i ί r . Hence Gx = Hxf]G
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K n G = Hγ n G = Gγ. Therefore C = Hx = Hγ = K, and H is an
α*-extension of G.

Conversely, suppose that H is an α*-extension of G, (G, S) Q (H, T)
and (G, S) has closed stabilizers. Let G' be any auxiliary subgroup.
Assume G'x = G'γ for some X, 7 g f . By Proposition 5.2., iJ x and
iϊF are closed convex ^-subgroups of H. Thus Hx Π G' = G'x = G'F =
jffF Π G', so that £Tr = iϊF. Hence (G, S) S (-H, Γ) satisfies condition
(1) in the definition of ΐ-extension, and, consequently, (G, S) t (iϊ, Siϊ).
Moreover, G' is unique by Proposition 4.1.

COROLLARY 5.3. Let (G, S) f (iί, Γ). // (G, S) Λαs closed
lizers, then so does (G, T).

Proof. By Theorem 5.1, H is an α*-extension of G, and by
Proposition 5.2, (iϊ, Γ) has closed stabilizers. Hence Gt = Ht Π G is
closed in G.

COROLLARY 5.4. Lei (G, S)T(#, T) and (H, T)ΐ(K, U). If(G, S)
has closed stabilizers, then (G, S) t (K, U).

Proof. K is an α*-extension of H and H is an α*-extension of
G (by Theorem 5.1), so K is an α*-extension of G. Moreover,
(G, S) £ (#, T) and (iJ, Γ) £ (K, U). Let G' and Hf be the auxiliary
subgroups. We obtain an auxiliary subgroups G" oί Gin Kby taking
each g e G and (uniquely) extending it to T to obtain an element of
G' £ H and (uniquely) extending the resulting permutation of T to
U obtaining an element of H\ The image of G" S K is an auxiliary
subgroup and so (G, S) £ (iζ Z7). By Theorem 5.1, (G, S) t (K, U).

A direct proof using only Proposition 5.2 and Corollary 5.3 is
also possible. We do not know (even for transitive groups) whether
the closed stabilizer hypothesis is essential.

For transitive groups, we can improve on Theorem 5.1.

THEOREM 5.5. Let (G, S) be a transitive l-permutation group
with closed stabilizers, and let H be an a*'-extension of G. Then
H has a faithful transitive representation φ such that (Hφ, T) has
closed stabilizers, (G, S) t (Hφ, T), and for each g e G, gφ is the unique
extension of g in Hφ. Roughly speaking, (G, S) f (H, T) with each
g e G identified with its unique extension in H.

Proof. Let s0 e S. Then G8Q is a closed prime subgroup of G.
Let H(s0) be the unique closed convex Z-subgroup of H such that
H(s0) ί l G = GSo. By [2, Proposition 1.4], H(s0) is prime. Moreover,
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Π hΓιH('o)h) ί l G i ί f l 9-Ή(so)g) n G = Π flΓW*.) Π
ejϊ / \geG / gsG

fl
geG

= ng-0 Γi
geG geG

But C\hsHh~lH{sQ)h is a closed convex Z-subgroup of H and £Γ is an
α*-extension of G. Hence f\heH h~~Ή(so)h = {e}. By [11], we may
faithfully represent i ϊ on the totally ordered set T of right cosets
of H(s0). The totally ordered set S may be embedded in T in the
following way: Let se S. Then there exists geG such that sQg = s.
s H-> H(so)g is a well-defined one-to-one map since H(s0) Π f f = G.o. It
is straightforward to check that the map preserves both the order
of S and the action of (?, so henceforth we identify S with its
image; thus S £ T. Then (Hψ)8Q = JEΓ(β0) is closed, so that (JEfy, T)
has closed stabilizers. Now (G, S) S (J3^, ϊ7) so the theorem follows
from Theorem 5.1.

The technique used in the above proof is essentially that of [12]
and [23].

COROLLARY 5.6. Let (G, S) £ (H, Γ), where (G, S) and (H, T)
are transitive with closed stabilizers. Then (H, T) is a ̂ -extension
(t-closure) of (G, S) if and only if H is an a*-extension (α*-closure)
of G.

THEOREM 5.7. Let (G, S) be o-primitive and not pathological.
Then G has a unique (to which ϊ-isomorphism over G) a*-closure,
which is

( i ) The real numbers if (G, S) is regular and archimedean9

(ii) ZAΓs)(f) if (G, S) has period f,
or

(iii) A(S) if ((?, S) is o-2-transitive.

Proof. This is immediate from Theorems 4.7 and 5.5 and Co-
rollary 5.6.

Observe that even if (Or, S) has closed stabilizers, it may have
an o-primitive component which is pathological. This can be seen
from the following example:

EXAMPLE 5.8. Let (Glf SJ = (Z, Z) be the ί-group of integers,
permuting itself regularly. Let (G2, S2) = (P, R) be the pathological
group of Example 4.8, and (G, S) = (Glf S,)Wr{G29 S2). Then (G, S)
has closed stabilizers, but has its "upper" o-primitive component
Z-isomorphic to (P, R).
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We do not know if it is possible for (G, S) to be a locally
pathological transitive i-permutation group with closed stabilizers.
Any reasonable added condition prevents it from happening.

THEOREM 5.9. Let (G, S) be a transitive l-permutation group
with closed stabilizers. For each o-primitive component (Gr, Sr), let
(Hr, Tr) be the l-permutation group given by Theorem 5.7 (with
(Hr, Tr) = (A(Sr), SrA(Sr)) if (Gr, Sr) is pathological). Let (W, R) =
Wr{(Hr, T7): Ύ e Γ} and H be an a*-extension of G. Then H has a

faithful representation φ on a subchain T of R such that
( a ) (G,S)t(Hφ, T)£(W,R),
(b) For each g e G, gφ and g agree on S,

and
( c ) (Hφ, T) is transitive and has closed stabilizers.

The transitive groups (G, S) and (H, S) of Example 4.11 have
closed stabilizers. Hence H is the unique (to within ^-isomorphism
over G) α*-closure of G. Moreover, even though H is α*-closed its
upper component is not. On the other hand, the Z-group G of Example
4.12 is not α*-closed even though its components are.

6* α*-closures* Our aim in this last section will be to find the
unique α*-closure of certain classes of Z-permutation groups. We
shall show that our results are sharp by constructing (G, S) with more
than one α*-closure. We will make repeated use of the wreath
product and the results contained in earlier portions of this paper,
especially Theorem 4.9. Thus we consider (G, S) ^ (W, R), and letting
(K, U) be a t-extension of (G, S), we have (G, S) ^ (K, U)^(W, R)
to within isomorphism over (G, S) (see Theorem 4.9 for notation).

We need to determine how new points are added when S is
enlarged to U. Let Γ = Γ(G, S) = Γ(K, U) = Γ(W, R) and seS.
If s determines a proper Dedekind cut in some 8S^rjS^9 we say that
8 is a hole in sS^r/S^. Also, let SA (respectively, SB) be the set of
all s e S\S such that the tower ^~ of ^-classes whose completions
contain s has empty intersection and such that ^~ contains (respec-
tively, does not contain) ^-classes for arbitrary small 7 6 Γ.

Observe that if Γ has a minimal element, then SA = 0 . Also
note that if (G, S) is the wreath product of o-primitive groups, then
RA = SB = 0 , [13, page 713].

The main theorems we wish to establish here are Theorems 6.1
and 6.2.

THEOREM 6.1. Let (G, S) = Wr{{Gγ, Sr): ΎeΓjbea wreath product
of non-pathological o-primitive groups. Suppose, further, that for
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7 nonminimal
( i ) If (Gr, Sr) is regular, then the divisible closure of Gr is R,

and
(ii) If (Gr, Sr) is periodic with period fr, then it does not have

Config(oo).
Then {G, S) has a unique (to within isomorphism over (G, S)) ^-closure
(H, T) and H is the unique (to within ^-isomorphism over (?) a*-closure
of G. Moreover, (H, T) = Wr{{Lr, Vr): reΓ}, where ifΎ is minimal,
(Lr, Vγ) is the ^-closure of (Gr, Sr) (cf. Theorem 4.7), and if 7 is
not minimal, Vr = Sr and Lr is Gr if (Gr, Sr) is regular, ZMS ){fr)
if (Gr, Sr) has period fr, and A(Sr) if (Gr, Sr) is o-2-transitive.

No o-primitive component of A(S) can be pathological or periodic,
which simplifies the hypotheses of the next theorem. We could,
without much difficulty, permit nonminimal regular components
(Gr, Sγ) = (A(Sr), Sγ) for which the divisible closure of Gr is R, but
it seems doubtful that such components can actually occur (Sr would
have to be one of the "uniquely transitive" totally ordered sets (not
the integers) described by Ohkuma in [22]).

THEOREM 6.2. Let A(S) be transitive and have no nonminimal
regular o-primitive component. Then (G, S) — (A(S), S) has a unique
(to within isomorphism over (A(S), S)) "^-closure (H, T) and H is the
unique (to within ^-isomorphism over (A(S)) a*-closure of A(S). If
(A(S), S) has a smallest component (A(Sμ), Sμ), then T is S with each
S^μ-class enlarged to R if (A(Sμ), Sμ) is regular, and to SμA(Sμ)
otherwise; if (A(S), S) has no smallest component, T — S Π SA. H
consists of those he A(T) such that h preserves the convex congruences
of (G, S). In addition, if A(S) has a minimal component (A(Sμ), Sμ)
which is regular, then each hμ>x is a permutation induced by G
followed by a translation of R.

COROLLARY 6.3. Let A(S) be transitive and have no regular
components. Suppose, also, that A(S) is locally o-primitive and that
the minimal component is a*-closed. Then A(S) is a*-closed.

Since these results are extremely technical, we will close the
paper with some direct consequences of them.

Our goal now is to prove Theorems 6.1 and 6.2. Before embarking
on this, some comments on the theorems are in order.

The descriptions given of α*-closures in the two theorems are very
similar. However, it is convenient to use the language of wreath
products in the first and to partially suppress it in the second. If
(G, S) is locally o-primitive, the enlargement of S to T simply adds
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points at certain cuts in the primitive segments (unless these segments
are o-isomorphic to the integers, in which case they are enlarged to
the reals, still with regular action). If (G, S) is not locally
o-primitive, Theorem 6.2 adds single points at cuts in SA; and in
Theorem 6.1, T — S. Thus in each case S is dense in T (unless
(G, S) has primitive segments o-isomorphic to the integers), so that
each geG has a unique extension lying in H. Hence (G, S) C (H, T)
with no ambiguity about the auxiliary subgroup G'. Also, there is
no ambiguity in the notation (Gr, Sr) in Theorem 6.1 since, in a wreath
product Wr{{Gr, Sr): 7 e Γ) of o-primitive groups, the o-primitive
components are precisely {(Gr, Sr):Ύ e Γ}.

In order to establish that the enclosures are as claimed, we
shall borrow from [21] a permutation group property common to the
two situations. This property will (since the groups in question are
not locally pathological) force many stabilizers G-8 to be minimal
closed primes, and ultimately will force every f-extension of (G, S)
to lie within the desired (H, T). Then we shall show that, under
the hypotheses of the two theorems, H is an α*-extension of G.

(G, S) is said to have the strong support property if for all
7G Γ(G, S), there exist geG and se S such that support(#) £ sS^r

and {sS^r)g Φ s&*r. Equivalently, whenever teS lies in the interior
of an o-block B of (G, S), there exists geG such that support(g) Q B
and tg Φ t (see [21]).

Any transitive (A(S)9 S) has the strong support property, as
does any wreath product of o-primitive factors. So do the groups
in Examples 4.11 and 4.12. For this reason, we shall first prove the
following theorem:

THEOREM 6.4. Let (G, S) be transitive and have the strong
support property. Suppose that no o-primitive component of (G, S)
is pathological and for 7 nonminimal,

( i ) if (Gr, Sr) is regular, then the divisible closure of Gr is R,
and

(ii) if (Gr, Sr) is periodic with period fr, then it does not have
Config (oo).
Let (H, T) be the group described in Theorem 6.1. Let T be T with
the points used to fill cuts in SB deleted, and let Hr be the restric-
tion to T of {h e H: T'h = T'}. Then every ^-extension of (G, S) is
isomorphic over (G, S) to a permutation subgroup of (if, T') and
every a*-extension of G is l-isomorphic over G to an l-subgroup of
H'.

In order to prove Theorem 6.4, we will need some technical
lemmas. Recall, in general, (G, S) <̂  (W, R), and letting (K, U) be a
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t-extension of (G, S), we have (G, S) ̂  (K, U) S (W, R) (see Theorem
4.9).

LEMMA 6.5. Let (G, S) be transitive. Suppose (G, S) t (K, U)
and (K, U) <̂  (W, R). Let ue U\S, let M(u) be the largest segment
of U which contains u and fails to meet S and let S = X U Y,
X < u < Y. Then one of the following is true:

(1) For some se S and 7e Γ, X and Y each meet s6^r, X is
a union of ^-classes and so is Y, there is no largest S^-class in
X and no smallest S^-class in Y, and M(u) = u^γ.

(2) For some se S and 7e Γ, X and Y each meet sS^\ X is
a union of j^-classes and so is Y, sS^y\6^y is o-isomorphic to the
integers, and M(u) is a union of ^/r-classes.

(3) The cut in S determined by {X, Y) belongs to SA and
M(u) = {u}.

(4) The cut in S determined by (X, Y) belongs to SB and M{u)
is a nonsingleton o-block of (K, U).

Proof. Recall that (G, S) ̂  (Wu R,) ̂  (W, R) where (Wu Rd =
{Wr{(GrSr): 7e Γ(G, S)}. We first consider the case in which no
element of Rx lies between X and Y. Then some u{7) e Tr\Sr. There
must be a largest such 7, which we call δ, for if rlfr2eR, then
{ae Γ: r^a) Φ r2(a)} is inversely well-ordered. If Sδ is not o-isomorphic
to the integers, then Tδ £ Sδ. Since u^δ Π S = 0 , and any segment
of U which contains u and extends outside u%Sδ would have to meet
R2 and thus also S, M(u) = u^δ. A similar argument establishes (2)
when Sδ is o-isomorphic to the integers.

Next suppose some ^ 6 ^ lies between X and Y. By [13, page
713], the cut in S determined by (X, Y) belongs to SA or SB. More-
over, M(u) is the intersection of a tower of o-blocks of (K9 U) and
so is itself an o-block. But the o-blocks in that tower are precisely
the o-blocks of (K, U) which contain M(u). Now (3) and (4) follow.

LEMMA 6.6. Suppose that, in Lemma 6.5, (G, S) has closed
stabilizers and that Gs- is a minimal closed prime of G. Then
M(u) = {u} unless (G, S) is locally the integers and s is a cut in a
primitive segment.

Proof. By Corollary 5.3, (G, U) has closed stabilizers. Now if
v e M(u) and z = sup M(u) e T, then Gv S Gz = G?. Since Gυ is a
closed prime subgroup of G, Gv — G-s = Gz by the minimality of G-s.
Hence Kv = Kz. If M(u) contains an o-block B which contains u,
then since any point of B belongs to M(u), we see that KsnpB =
Kz = Kb for all b e B. Since K is transitive, B = {u} (if b e B and
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b Φ u, there exists k e K such that uk — b. Now (sup B)k = sup B,
so ke KsuvB\Ku, a contradiction). The lemma now follows from a
consideration of the various cases arising in Lemma 6.5.

We now make our first use of the strong support property to find
out when the hypotheses of Lemma 6.6 can occur.

If (H, T) is an Z-permutation group and z, yeT, we shall say
that x and y are tied if Hx — Hy. Observe that if x and y are tied,
then so are xh and yh (he H).

The following proposition is contained in [21].

PROPOSITION 6.7. Let (G, S) have the strong support property
and not be locally pathological. Then the closed primes of G (other
than G) are precisely the stabilizers Gy (yeS). Moreover Gy is a
minimal closed prime if

( i ) yeSA\jSBaS,
(ii) y is a hole in some s6^Ί\S^y where (Gr, Sr) is o-2-transitive,

or
(iii) y is a hole in some sS^r/S^, where (G7, Sr) is periodic and

y is not tied to any point of

COROLLARY 6.8. Any wreath product of a*-closed o-primitive
groups which is not locally pathological is a*-closed.

Proof. By Theorem 5.1, the factors are t-closed and so, by
Corollary 4.10, the wreath product is f-closed. Since the wreath
product has closed stabilizers (Proposition 6.7), it is α*-closed by
Corollary 5.6.

We now prove Theorem 6.4.

Proof. First we consider t-extensions. Let (K, U) be a "\-ex-
tension of (G, S). We may suppose that (G, S)ϊ(K, U)£(W, R) as
in Lemma 6.5. By Proposition 6.7, (G, S) has closed stabilizers. Also,
by Proposition 6.7, if seSB, then G? is a minimal closed prime
subgroup of G. Then (4) of Lemma 6.5 is impossible by Lemma 6.6
(no element of SB can be a cut in a primitive segment!). If 7 is
not minimal in Γ = Γ(G, S), then (2) of Lemma 6.5 cannot occur
since s6^rl6^ is not o-isomorphic to the integers by hypothesis (i) of
the theorem. In addition, if 7 is not minimal in Γ, then (1) of
Lemma 6.5 cannot occur unless (Gr, Sr) is regular or periodic with
Config (n), for some positive integer n (by Proposition 6.7 and Lemma
6.6).

Assume that ue U\S fits case (1) of Lemma 6.5 with 7 non-
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minimal. Since Gu is closed in G (Corollary 5.3), Proposition 6.7
guarantees that Gu = Gy for some y e S. Thus Gy = Gu Q Gτ — Gx,
where s is the cut in S determined by u and x — sup u^r. Since
s is a hole in sS^rl^r, the strong support property yields a contra-
diction unless y lies in the completion of sS^r. Moreover, as 7 is
not minimal, u^7 is not a singleton. Hence KUΦ Kx. Thus Ky —
Ku £Ξ Kx In o-primitive groups, every stabilizer of a point or hole
is a maximal prime. Hence y must lie in the interior of some

In short, we have shown that Ku — Ky, where the cut y lies in
the interior of a ^r-class. Since {G, S) enjoys the strong support
property, this ^-class in uniquely determined.

Let t = sup y^r and w = sup w ^ r . Then iΓ̂  and Kt are maximal
prime subgroups of Kw which contain the prime subgroup Ku = iΓy.
Hence Kx = Kt = if, say. The map w& h-> ?/& and the identity on K
yields a well-defined isomorphism from the pair (if, uK) (K acting
on uK— not necessarily faithfully) to (K, yK) (K acting on yK, also
not necessarily faithfully). This isomorphism preserves both the action
of K and the orders. If v belongs to the completion of u%rr, then
v is tied to z = inf {yk: ke K & uk^ v}e completion of y%fr.

Now choose he K so that (y%Sr)h = u%<r. Then each cut in
(u^r)h is tied to some cut in (y^r)h = u^r9 which, in turn, is tied
to some cut in y^r. By induction, each cut in (w%fr)hm is tied to
some cut in y^T9 m any positive integer. If (w%Sr)hm f] S Φ 0 for
some positive integer m, we have a contradiction to the strong support
property. But either (Gr, Sr) is regular and the divisible closure of
Gr is JB, or (G, Sr) is periodic with Gonfig (n), as previously noted.
In the former case, (Kr, Ur) is also regular and so contained in the
regular representation of the reals.

By assumption, some power p > 1 of the permutation of y^7/^r

induced by h is back in Gr; it must map y^/r onto another class also
containing points of S. Then {u^r)hp~ι Π S — 0 , a contradiction.
In the latter case, the hole u^y in Sr would be tied in Gr to yS^;
so u%Sr = (yS'r)ff for some integer p. Then m = | p \ n would yield
a contradiction. Consequently, case (1) of Lemma 6.5 cannot occur
if T is nonminimal.

We have now shown that under the hypotheses of Theorem 6.4,
any ue U\S must have been added at a cut lying in SA or in a
primitive segment of (G, S). Since also (K, U) ^ (W, R), we have
(K, U) S {Hr, Tr). As S is (almost) dense in T, there is no ambiguity
about auxiliary subgroups; so the original embedding of K in TΓmust
have been over G. This completes the proof of Theorem 6.4 for
t-extensions; for α*-extensions, apply Theorem 5.5.
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Example 4.11 shows that the hypotheses of Theorem 6.4 do not
force (G, S) f (Hf, T'); the unique t-closure determined there is not
(H\ T).

We claim that the group (JET, Tr) of Theorem 6.4 is transitive.
This is clear if (G, S) is locally o-primitive, so assume that Γ =
Γ(G, S) has no least element. Let s e S and let t be the single point
used to fill in some cut of S belonging to SΛ. Since s and t lie in
the wreath product set Γ, {7 e Γ: s(Ύ) Φ t(Ύ)} is inversely well-ordered.
Define h e H by choosing hr,8 so that s{Ί)hr>8 = t(7) whenever s(Ύ) Φ t(Ύ)
and taking all other hδ)X's to be the identity. It can be shown that
h e Hu and, by construction, sh = t. Therefore, (JET, T) is transitive.

We now show, under the hypotheses of Theorems 6.1 and 6.2,
that (G, S) t (H\ T).

Assume G i S ( ? y , l S T, y e T. Recall that S is (almost) dense
in T, so we may assume that X S S and yeS. Since ((?, S) has the
strong support property, X must meet the completion of every o-block
which contains y. Let Y be the intersection of the tower of such
o-blocks. If y is an endpoint of 7 or if 7 = 0 , then the tower
must have contained no smallest o-block. Hence the topological closure
of X must meet Y or include one of the endpoints of Y. This forces
Hrχ fi Hy, as required. If y lies in the interior of Y, then Y covers
some o-block (otherwise Y would be the union of a tower of smaller
o-blocks and y would lie in one of these o-blocks). Thus Y = sS^r

for some se S. By the minimality of Y, y does not lie in any
^f-class. Consequently, y is an endpoint of such a class or a hole
in sS^r/S^ = Sr. In effect, y e Sr. Let X comprise the ^f-classes
in Sγ whose completions (including endpoints) meet X and the holes
in Sr which lie in X. Then (G>)* S (Gr)y. For let z = sup s ^ . If
the action of some g e Gz on sS^rl^r fixes each element of X but
moves y, then g e Gz\Gy, where g agrees with g on those <5f-classes
in sS^r which are moved by g, and g is the identity on the rest of
S. Clearly g e G because G = A(S) or G is a wreath product of
o-primitive groups. But (Gr, Sr) t (H'r, T'r), so (H'r)ϊ S {H'r)y. Thus
H'x S H'y and, consequently, (<?, S) t (# ' , ϊ7 ').

Now if {K, U) is any t-closure of (G, S), so that (G, S) ΐ (ϋΓ, 17) ^
(ίί', Γ')» then there is no ambiguity about auxiliary subgroups (S is
(almost) dense in T). Hence {K9 U) t (if, T'), so that (K, U) = (H'f T).
Therefore (H, T) of Theorems 6.1 and 6.2 is the unique (to within
isomorphism over (G, S)) f-closure of (G, S). Thus H is the unique
(to within ^-isomorphism over (?) α*-closure of G. This completes
the proofs of Theorems 6.1 and 6.2.

((?, S) is said to be depressible if whenever sg Φ s, there exists
such that gx agrees with g on the interval of support of g
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containing s, and is the identity on the rest of S. The preceding
argument yields a generalization of Theorem 6.2 to depressible groups.
Nonminimal regular components (Gr, Sr) are permitted provided the
divisible closure of Gr is R, and then hTtΛ is required to be induced
by G.

We now show that we cannot relax the conditions on nonminimal
components in Theorem 6.1. We shall give two examples in which
there is more than one α*-closure of a given (G, S). In the first,
we have an "upper" component that is regular but whose divisible
clusure is not J?; in the second, we use an "upper" component that
has Config(co).

EXAMPLE 6.9. Let (G, S) = A(R)Wr(Z, Z) = A(RxZ), where R is
the reals and Z is the integers. Let C be a complementary group in JB
of the rationals, Q (R = Q 0 C). Let (H, U) = A(R) Wr(Z@C,Z@C)
and let K = {heH: (Vn e Z)(Vx, y e C)(hn+X = hn+y)}. In (K, U), each
u 6 U\S is tied to a unique seS. Hence (G, S) t (K, U).

The arguments used to prove Theorem 6.4 show that (iΓ, U) is
a maximal t-extension of (G, S) so, by Corollary 5.4, (K, U) is a
f-closure of (G, S). Therefore K is an α*-closure of G.

Let jKi and K2 be formed in this way from two different comple-
ments Ci and C2 of the rationals. Then Kx and K2 are not i-isomorphic
over G. For if they were, pick any s e S and represent Kt on the

chain of right cosets of G8(i — 1, 2). Then {Ku ϋi) and (ίΓ2, ί72) are
isomorphic over (G, S) forcing Z 0 C x and 2Γ0 C2 to be isomorphic
over Z. This is impossible. Indeed, it is possible to choose Cx and
C2 so that Kx and UL2 are not Wsomorphic at all.

Actually, we can show that (G, S) has 22Ko nonisomorphic α*-
closures.

EXAMPLE 6.10. Let (G2, S2) be a periodic o-primitive group having
period / and Config (oo .̂ Let (G, S) = (i2, JS) T7r(G2, £2) and F be the
cyclic subgroup of A(S2) generated by /. Let

(H, U) = {R, R)Wr{ZMS2F){f), StF).

Let Kγ = {heH:(Vs2eS2)(VmeZ)(h82fm = fc.2)}. Then Zi is an en-
closure of G. Let τ: x h-> 2a?, so r e A(Λ). Let

K = {heH: (Vs2 e S2)(Vm e Z)(hHfm, = r-^/m-ir)} .

Thus if hS2fm~ι is translation by r, ha2fm is translation by 2r. K2 is
also an α*-closure of G and it can be shown that Kx and K2 are not
i-isomorphic at all, much less i-isomorphic over G.
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We conclude with some concrete consequences of our theorems.

COROLLARY 6.11. Let A(S) be transitive and have no nonminimal
regular component. Then A(S) has a unique a*-closure. If, in
addition, A(S) is locally o-primitive and the minimal component is
a*-closed, then A(S) is a*-closed.

COROLLARY 6.12. Suppose that A(S) is o-primitive and not
regular. Then the unique a*-closure of A(S) is A(S). In particular,
A(R) is a*-closed and is the unique a*-closure of A(Q).

COROLLARY 6.13. Let (P, R) be a periodic group with period f.
Then the unique a*-closure of P is ZMR)(f), the unique a*-closure of
A(Q)WrP is A{R)WrZMR){f), and the unique a*-closure of PWrA(Q)
is ZMR){f)WrA{Q).

COROLLARY 6.14. The unique a*-closure of A(Q)WrA(Q) is
A(R)WrA(Q) =A(RxQ).

COROLLARY 6.15. The unique a*-closure of B{Q) is A{R) where
B(Q) is the set of all elements of A(Q) of bounded support.

PROPOSITION 6.16. Let P and B be as given in Example 4.8.
Then A{R)WrB is the unique a*-closure of A(Q)WrP.

This proposition is not a special case of any of the theorems. It
can be proved by applying Proposition 6.7, Theorem 5.5, Lemma 6.5,
Theorem 4.6, and the fact that (B, R) is the unique t-closure of
(P, R).

In conclusion, we note that the methods of this paper cannot be
very useful in the investigation of α*-extensions of i-groups which
are not completely distributive. Therefore, two central problems
remain, namely:

1. Does every pathological o-2-transitive ϊ-group have a unique
α*-closure, and is every α*-extension of a pathological o-2-transitive
Z-group also pathological?

2. Find necessary and sufficient conditions for uniqueness of en-
closures even in the completely distributive case. The main difficulty
seems to be lack of knowledge about subgroups of a wreath product.
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