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a*-CLOSURES OF COMPLETELY DISTRIBUTIVE
LATTICE-ORDERED GROUPS

A. M. W. Grass, W. CHARLES HOLLAND
AND STEPHEN H. McCLEARY

The a*-closure of a completely distributive lattice-ordered
group is located within a wreath product of primitive com-
ponents associated with certain transitive representation of
the group. For many primitive lattice ordered groups, the
a*-closures are described explicitly.

1. Introduction. An a-closure of a totally ordered group is
a maximal extension having the same convex subgroups. Every
totally ordered group has an a-closure, and in the abelian case, it
is unique. In [8], P. F. Conrad extended the notion to lattice-ordered
groups by requiring the extension to have the same convex l-subgroups.
Khuon [14] proved that every l-group has an a-closure. However,
a-closures, even of archimedean l-groups, are not necessarily unique.
Bleier and Conrad [2] generalized the totally ordered case in yet
another way, called an a*-extension, by requiring only that the
extension have the same closed convex [-subgroups. They showed
the existence of an a*-closure in the abelian case, and uniqueness in
the archimedean case. More recently, R. N. Ball [1] has shown that
every lattice ordered group has an a*-closure.

The purpose of this paper is to determine as much as possible
about the a*-extensions of completely distributive Il-groups, using
the techniques of representations as permutation groups. In §2, we
introduce the necessary background information and notation, while
in § 3, we show the existence of a*-closures by a cardinality argument.
The existence of a*-closures of completely distributive l-groups can
also be shown by the methods of Khuon [14] and Byrd [4]. In §4,
we study the problem of stabilizer extensions of permutation groups;
these are required to have the same stabilizer subgroups. In §5,
we show that for completely distributive l-groups, a*-extensions are
equivalent to stabilizer extensions. We use this equivalence to locate
the a*-closures for transitive permutation groups within a wreath
product associated with the o-primitive components. Let A(S) be
the l-group of all order-preserving permutations of a totally ordered
set S. For certain classes of transitive groups, including nice A(S),
we prove in § 6 that the a*-closure in unique. We also give some
limiting examples to show that in certain cases, the a*-closure is not
unique. The major advantage of this paper is that we are able to
locate, in a very concrete fashion, all a*-closures of completely
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distributive l-groups. However, we have been unable to make any
headway in the non-completely distributive case. Research along this
line would be very valuable as all that is available is Ball’s existence
proof.

In view of the great technicality of the statements and proofs
in §6, we have concluded that section with certain consequences of
our research which have both an intuitive and a concrete flavor for
all interested in a*-closures and not necessarily in the generalized
wreath product. We hope that this will prove valuable.

2. Notation and background information. The expression (G,S)
will be used to indicate that G is an l-subgroup of A(S), the lattice
ordered group (I-group) of all order-preserving permutations of the
totally ordered set S under the point-wise ordering. Therefore, (G, S)
will only be written if G is indeed faithful on S. Any such G has
a natural extension to (G, S), where S is the Dedekind completion
of S (without end points.) For any X< S, G, = {g¢e G:xg =« for
all xe X} is called a stabilizer subgroup of G. An o-block of (G, S)
is a nonempty convex subset C of S such that for each ge G, Cg = C
or CgnNC=¢g. If Cis an o-block of (G, S), then {gc G: Cg = C} =
G.upoy Where sup C is the supremum of C in S (provided C is not
cofinal in S).

Throughout the remainder of this section we assume that (G, S)
is transitive. We review some information from [12] and [17]. If
C is an o-block of (G, S), the partition comprising the translates of
C by elements of G gives rise to a convex congruence of (G, S), i.e.,
an equivalence relation on S which is respected by G and whose
equivalence classes are convex subsets of S. Every convex congruence
arises in this way. If <& and & are convex congruences, we set
B < & if and only if <& refines &. This gives a total order on the
set of convex congruences. Moreover, the set of o-blocks containing
any given s€ S is totally ordered by inclusion; and if two o-blocks
B and C containing s give rise to the congruences £ and %,
respectively, then <#< % if and only if BS C.

If &4 and % are convex congruences of (G S) such that
ZB < % and no convex congruence of (G, S) lies between <Z and %,
we say that (& &) is a convering pair of convexr congruences of
(G, S). The set of these convering pairs, with the inherited total
order, will be denoted by I'(G, S), and the 7™ convering pair by
(&, &).

A transitive group is said to be o-primitive provided its only
convex congruences are the two improper convex congruences. Each
covering pair (%4, .&°7) yields an o-primitive component (G,, S;) in
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the following way: Choose any se€ S and let S, = s.5°7/.%4, the &7
equivalence class of s modulo the &4 classes contained in s.$7. Let
G, denote the action of G, on S, where z = sups.5”’. Note that
this is not, in general, a faithful representation of G, on S,. The
component (G, S,) is o-primitive and independent (to within isomor-
phism) of the choice of s.

The set (G, S) and the o-primitive components of (G, S) will
play a central role in locating a*-extensions of completely distribu-
tive l-groups since they are the building blocks of every transitive
l-permutation group.

If (G, S) has a minimal o-primitive component (i.e., associated
with a minimal covering pair) (G, S.), then (G, S) is said to be
locally o-primitive and the .57* classes are called the primitive
segments.

If (G, S) is o-primitive, then, by [17] and [20], there are just
these four possibilities:

(i) (G, S) is regular and archimedean; G, = {e} for each s€ S,
G is isomorphic to S as an ordered set, and is o-isomorphic to a
subgroup of the real numbers [22] (¢ is the group identity).

(ii) (G, S) is periodic; there exists e < fe A(S) such that for
all gc G, fg = gf, and for each sc S, G, fixes only the points of the
coterminal subset {sf™: m =0, =1, +2, ...}, and G, is o-2-transitive
on the interval (s, sf). The permutation f is the period of G and
G S Z,5(f) N A(S), where Z,5,(f) denotes the centralizer of {f} in
A(S). Either there exists a positive integer » such that for se S,
sf"e S if and only if n divides m—in which case (G, S) is said to
have Config(n)—or sf™e S if and only if m =0, and (G, S) is said
to have Config (o).

(iii) (@, S) is o-2-transitive and contains a nonidentity element
of bounded support.

(iv) (G, S) is pathological; (G, S) is o-2-transitive and contains
no nonidentity element of bounded support.

In cases (i), (ii) and (iii), G is completely distributive and all
stabilizers Gy, X< S, are closed. In case (iv), G is not completely
distributive and if y€ S, G, is not closed. Finally, in all cases, each
G, (e S) is a maximal prime subgroup of G.

The wreath product of two l-permutation groups (G, S)Wr(H, T)
is the l-group of all order-preserving permutations of S (>—< T of the
form ({g,:t€ T}, h) where g,€ G, h € H, and (s, t)({g:}, k)=(sg,, th). This
can be generalized to the wreath product of infinitely many factors
indexed by a totally ordered set I°, written as Wr{(H,, T,):7e€ '}
(see [13])).

For other general background metrial, see [6] and [12].
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3. a*-extensions. In this section we show, by a cardinality argu-
ment, that every completely distributive l-group has an a*-closure.

We will adopt the same notation as used in [2]; the lattice of
all convex l-subgroups of the l-group G will be denoted by &(G)
and the lattice of all closed convex l-subgroups of G will be written
2%(G). Suppose G is an [-subgroup of an l-group H. Then H is
an a*-extension of G if and only if intersection with G provides an
isomorphism from .22 (H) onto .7 (G). Bleier and Conrad have shown
in [3] that H is an a*-extension of G provided that intersection with
G yields a one-to-one map of .22 (H) into &(G); moreover, the direct
limit of a tower of a*-extensions of an [-group G is still an a*-extension
of G. Consequently, to prove that an l-group G has an a*-closure
(an a*-extension having itself no proper a*-extensions), it is enough
to show that there exists a bound on the cardinalities of a*-
extensions of G. This we do fairly easily in the completely dis-
tributive case. More recently, R. N. Ball has proved the existence
of a cardinality bound on a*-extensions for any I-group G, but his
method is much deeper in the general case [1]. Further, observe
that if G is an l-subgroup of H and H is an [l-subgroup of the
l-group K, then K is an a*-extension of G if and only if K is an
a*-extension of H and H is an a*-extension of G [3]. Therefore,
any a*-closure of an l-group G is a maximal a*-extension of G and
conversely.

PRrROPOSITION 3.1. Let H be an a*-extension of G. Then H is
completely distributive if and only if G is completely distributive.

Proof. By [5, Corollary 3.8], an l-group G is completely distribu-
tive if and only if its distributive radical D(G) = {¢}, where D(G)
is the intersection of all closed prime subgroups of G. Since the
property of being “closed prime” is distinguishable in 22(G) [2,
Proposition 1.4], the result follows.

Conrad [7] showed that every totally ordered group has an
a*-closure (which must again be totally ordered). It is known [10]
that a*-closures need not be unique in general, even for totally
ordered groups. The following theorem generalizes Conrad’s result,
since every totally ordered group is completely distributive.

THEOREM 3.2. FEwvery completely distributive l-group has an
a*-closure.

First, we establish a lemma.

LEMMA 3.3. For any l-group G,|G/D(G)| < (2%), where £ is
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the cardinality of the set of closed regular subgroups of G.

Proof. Let G, be a closed regular subgroup of G and let G' be
its cover. Then G’ acts on the totally ordered set of right cosets
of G, in G" as an o-primitive group. Hence |G7/G,| < max {2%, Wk}
(for, with reference to the characterization of o-primitive groups, if
the action is regular, the set is isomorphic to a subgroup of the
reals, and if not, there are at most ¥, points having a given stabi-
lizer, and each point stabilizer is a conjugate of G, and so a closed
regular subgroup of G).

Next we construct a one-to-one map ¢: G/D(G) — I where I is
the set cartesion product /7{G"/G,: G, closed regular subgroup of G}.
For each G, and each coset G’z of G" in G, pick a fixed one-to-one
map ¢,, from the set of cosets of G, lying in G’z onto G'/G, (if
Gz = Gy, then ¢,, = ¢,,). Letting D = D(G), define ¢: G/D— II
by: (Dg)¢ = (---, (G,9)¢y4, --+). It can be easily verified that ¢ is
well-defined. If Dg, = Dg,, then g,97'¢ D. So there is a closed prime
G; such that g,97'¢ G;,. Thus there is a regular subgroup of G for
9:9;" containing G;. By [5, Lemma 3.3], this regular subgroup is
closed; call it G,. Now g,9;'€ G'\G,. Hence G'g, = G'g, but ¢,¢ G,g.
Consequently, (G;9.)¢;,,, = (G;9.)8;,,, # (G:9:)¢;.,4, and therefore (Dg,)¢ #
(Dg,)p. It follows that ¢ is one-to-one.

Now |G/D| < | IT] £ (max (2%, W«})" < (2™)*, proving the lemma.

Proof of Theorem 3.2. It is enough to obtain a bound on the
cardinalities of a*-extensions of G. Let H be any a*-extension of
G. Since the closed regular subgroups of G are distinguishable in
(@), those of H correspond to those of G; hence H and G have
the same k. By Proposition 3.1, H is completely distributive, so
that D(H) = {¢}. By Lemma 3.3, | H| = | H/D(H)| < (2%)".

Observe that a similar procedure, using the set of all (not
necessarily closed) regular subgroups of G and letting £ be its
cardinality, yields a bound of (2%) on the cardinalities of a-extensions
of an l-group G. That bound, which establishes that every l-group
has an a-closure, was obtained at the same time by S. H. McCleary
(using the above argument) and by D. Khuon using a different
argument (giving rise to a bound one cardinal number greater than
the above bound). In fact, using Hahn groups, one can show that
| G| attains the bound (2%)", so it is the best possible. We mention
that Khuon’s techniques can also be adapted to prove Lemma 3.3
(with the bound raised by one cardinal number).

It is abundantly clear that this section (as [1]) does not give us
any concrete idea of what the a*-closures of a given completely
distributive l-group may look like; it is purely an existence proof.
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The rest of this paper will be devoted to trying to locate the a-closures
of completely distributive I-groups and to obtaining positive and
negative results concerning uniqueness.

4. Stabilizer extensions. (G, S) is said to be a permutation
subgroup of (H, T), written (G, S)= (H, T) if S& T and there is
an “auxiliary” subgroup G’ of H such that SG’ = S and the faithful
restriction of G’ to S gives G. We say that (H, T) is a stabilizer
extension of (G, S), written (G, S)t(H, T), if (G, S) & (H, T), and

(1) whenever X, Y< T and G% = GY%, then H, = H; and

(2) SH=T.

(1) is equivalent to: whenever X, Y & T and G & G, then H; & H,.
(1) is also equivalent to: whenever X <& T, ye T and Gy S G), then
H, & H,.

Actually, we have the following proposition, showing that the
definition is independent of the choice of auxiliary subgroup and
justifying identifying G’ with G.

ProrosITION 4.1.  Suppose that (G, S)T(H, T) via some auxiliary
subgroup G'. Then if h, and h, agree on S (hy, h,€ H), h, = h,. In
particular, each element of G can be uniquely extended to an element
of H acting on T.

Proof. If h, and h, agree on S, then h,h;' is the identity on S.
But G% = {¢} = G;, so Hy = H, = {¢}. Hence h,h;'is the identity on
T; consequently, h, = h,.

From now on, we will suppress all mention of the auxiliary
subgroup. We say that (G, S) is f-closed if (G, S)1 (H, T) only
when (G, S) = (H, T). Without condition (2) above, no (G, S) would
be f-closed; for example, extra points could be added to S and left
fixed by G. Now suppose (G, S) & (H, T) satisfies (1). Then H acts
faithfully on SH (for if he H is the identity on SH2 S, then h =e
by Proposition 4.1). Hence (G, S) T (H, SH). Thus (2) serves to
eliminate any extraneous orbits of (H, T) which fail to meet S. In
particular, if (G, S) t (H, T) and (G, S) is transitive, then so is (H, T).
Moreover, we have the following lemma:

LEMMA 4.2. If (G,S)T(H, T), C is an o-block of (H, T) on
which H acts transitively, and CN S %= @, then CN S is coterminal
in C.

Proof. Suppose that C N S is not coinitial in C. Let me T be
the greatest lower bound of C if C is not coinitial in 7', and other-
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wise let m denote the empty set. Let me T be the greatest lower
bound of GNS. Clearly G, = G,. Hence H, = H,. Since m # n,
the transitivity of H on C implies the existence of he H,\H,, a
contradiction. Therefore C N S is coinitial in C. Similarly, CN S is
cofinal in C.

We now wish to find the connection between I'(G, S) and I'(H, T)
when (G, S)T(H, T) and also the relation between the o-primitive
components (recall § 2).

LEMMA 4.3. If (G, S)t(H, T) and C is an o-block of (H, T), then
C N S is an o-block of (G, S); if & is a convex congruence of (H, T),
then & N (S x S) is a convex congruence of (G, S).

THEOREM 4.4. Let (G, S)1(H, T) with (G, S) (and thus also
(H, T)) transitive. Then restriction to S provides an o-isomorphism
from the tower of comvex congruences of (H, T) onto the tower of
convex congruences of (G, S); and thus from I'(G, S) onto I'(H, T).

Proof. Lemma 4.3 establishes that restriction gives a function
+ from the tower of convex congruences of (G, S) into that of (H, T').

If &< 97 are convex congruences of (H, T), choose any seS.
Then s& & s.92. By Lemma 4.2, the points of S are coterminal in
s.%, and thus (s&@)NS & (s%7)) NS, proving that & and % are
still distinct when restricted to S. Hence v is an order-embedding.

Now suppose & is a nontrivial convex congruence of (G, S).
Let C be a @2class and C the convexification of C in T (written
C = Conv (C)). Clearly, C is an o-block of (G, T). Indeed, C is an
o-block of (H, T'). For let m = sup C and n =infC, m, ne T. Then
G, =G, so H,=H, Thus if e<heH Ch=Cand ChnC = 2,
it follows that n < nh < m < mh and so n < mh™ < m. Therefore,
Gu— < G,. Hence hH,h'=H,,~ < H, = hH,,b, so H,< H,, and
G, < G,,. This is a contradiction. Let Q be the partition of T
whose classes are the H-translates of C. Since H is transitive, this
is a partition of 7. Then & is a convex congruence of (H, T) whose
intersection with S x S is &, showing that ¢ is onto. Therefore
restriction to S maps I'(H, T) onto I'(G, S).

Since I'(G, S) and I'(H, T) are merely indexing sets for the set
of convering pairs of convex congruences, we will identify I'(G, S)
and I"(H, T)if the hypotheses of Theorem 4.4 prevail. More generally,
if (G S)= (H, T) with (G, S) and (H, T) transitive, if I'(H, T) and
I'(G, S) are identified via restriction to S, and if s 7, = Conv (s.%%)
and s 7 " = Conv (s.&°7) for each se€ S and ve I'(G, S) = I"'(H, T), we
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will write (G, S) < (H, T). Note that the relation < is transitive.
Also, if (G, S) is transitive and (G, S){ (H, T), then (G, S) < (H T)
(by Theorem 4.4).

CoROLLARY 4.5. Suppose (G, S)t(H, T) and that (G, S) 1is
transitive. Then (H, T) is o-primitive if and only if (G, S) is
o-primitive.

Now assume that (G, S) is transitive and (G, S) { (H, T). Let
(73, 9 e '(H, T) correspond to (&4, &) el'(G,S) and let seS.
Then 577 = Conv (s.%4) and for each res&" =s7 'NS,r7, =
Conv (r<4). We may, therefore, consider S, = .57/ as a totally
ordered subset of the totally ordered set T, = s.777/.7; (see §2).

THEOREM 4.6. Let (G, S)T (H, T) with (G, S) transitive. Then
for each pair of corresponding o-primitive components,
(Gn ST) T (Hh TT)'

Proof. Since (G, S)t(H, T), each g,€ G, has an extension to
T, which is induced by some ge G (i.e., the image of g agrees on
T, with the extension). We claim that the only such extension of
the identity of @G, is the identity map on T,. where T, =s9 /.7,
for some fixed seS. For let ue T\S,. Now u< T, so write
sup u for the supremum of w in T. Let v =inf{weS,:w >u}e T,
and ¥ = inf (ro;:reS, r7; < 597, and r.7; >vje T, these being
well defined by Lemma 4.2. Then G,,,, S G; s0 Hypu & H;. There-
fore (H,). < (H,),. Thus (H,). = (H,),, since (H,, T;) is o-primitive.
Hence H,,,, = H; and, consequently, G.,. = G;. If g, is the identity
on S,, then ge G; where ge G induces g,. It follows that g€ Gy,
and so g,¢(G,),. Hence the extension of g, to T, is indeed the
identity. It follows that each g,€ G, has a unique extension to T,
which is induced by some ge G, so that (G,, S,) < (H;, T)).

Now if (G,)x < (G,), for some X S T, and ye T, then Gz & G;
(where X = {#:2¢ X)), so Hy € Hy, and (H,)yx S (H,),. Therefore
(GT, ST) T (-HTr TT)'

We must now, therefore, consider stabilizer extensions of o-primi-
tive l-permutation groups.

THEOREM 4.7. Let (G, S) be o-primitive. If G is nonpathological,
then (G, S) has unique T-closure (to within isomorphism over (G, S)),
viz.:
(i) (R, R) is (G, S) is regular and archimedean.
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(ii) (Z, 8Z) if (G, S) is periodic with period f and Z = Z,5(f).

(iii) (A(S), SAS)) if (G, 8S) is (nonpathologically) o-2-transi-
tive. If (G, S) is pathological, then every t-extension of (G, S) s a
pathological permutation l-subgroup of (A(S), SA(S)) and (G, S) has
a t-closure.

Proof. Let (H, T) be a t-extension of (G, S). By Corollary 4.5,
(H, T) is o-primitive.

If (G, S) is regular and archimedean, and thus is the regular
representation of some subgroup of R, then G, = {e} for all seS.
Hence H, = {e¢} for all s€ S; so H cannot be o0-2-transitive or periodic.
It follows that H must, therefore, be regular and archimedean.
Thus H is o-isomorphic over G to a subgroup of R. But it is obvious
that (G, S) T (R, R), and (i) follows.

If (G, S) is not regular, we first show that S must be dense in
T, so that, to within isomorphism over (G, S), T< S. Let D be an
interval of T maximal with respect to containig no points of S, and
le¢ m =inf D. Then for every teD G & G,, so H,& H,, and
thus H, = H, since (H, T) is o-primitive. (H, T') is not regular
because (@G, S) is not. Thus D cannot contain more than one point
since in the periodic and o-2-transitive cases, each H, moves points
arbitrarily close to ¢. Similarly, no point in T\S can cover or be
covered by a point in S. Hence S is dense in T.

If (G, S) is periodic with period f e A(S), then for each se S,
G, = G, if and only if re {sf™: » an integer}. Hence, for each se S,
H, = H, if and only if re{sf"}. Thus (H, T) must be periodic with
period k, say. But then H, = H, if and only if re¢ {sk"}, which
shows that for each se S, {sf"} = {sk"}. Therefore k = f, and so
(H, T) = (2, S).

We now show that (G,S)1(Z, SZ). Let X8, yeS and
Gy & G, Then y must lie in the topological closure of the set
X =U{Xfn =0, £1, =2, ...}. Otherwise, there exist s, s,€S
with s, <y < s, < s,f and no point of X’ lying between s, and s,.
By [20, Lemma 5], there exists g€ G such that yg + v and

(support g) N (sy, 85, ) & (84 82) -

It follows that (support g) & U {(s, s:)f™: % =0, =1, =2, ...}, and as
U {sy, so)frim =0, 1, £2, ... )N X = @, g€ G£\G,, a contradiction.
Since Z also has period f, Z, & Z,. Hence (Z, SZ) is the unique
t-closure of (G, S).

We remark in passing that a f-closed periodic group must have
Config (1)—since (G, S) 1 (Z, SZ) then (G, S) = (Z, SZ); and since the
period f belongs to Z, te SZ implies tf € SZ.
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If (G, S) is o-2-transitive and contains an element of bounded
support, and Gy & G, for some X & S,yeS, then y is in the
topological closure of X, as one sees by considerations similar to
those in the previous case. Hence even A(S):< A(S),, so
(G, S) T (A(S), SA(S)), and (A(S), SA(S)) is the unique f-closure of
(G, S).

Finally, if (G, S) is pathological, then (H, T) can be neither regular
nor periodic, and so must be o-2-transitive. Choose any s, s,€ S and
let X ={xeT:s,<xor £<3s,). Then Gy & Gzns = {6}, s0 Hy = {¢}
and H must be pathological. A Zorn’s lemma argument shows that
there must exists a maximal f-extension of (G, S) within (A(S), S),
which must be a f-closure of (G, S).

Beyond this we have been able to decide little about t-extensions
of a pathological group. We do not know whether f-closures of
pathological groups must be unique.

ExAMPLES 4.8(a). Let R be the real line and

P = {g e A(R): (3 positive integer n)(Vxec R)((x + n)g = g9 + n)} .

4.8(b). (McCleary [19]).

M = {g e A(R): (Vx € R)(3 positive integer n)(V integer m)
((x + mn)g = xg + mn)}.

4.8(c).

B = {g € A(R): (Ve > 0)(Vz € R)(3 positive integer n)
(V integer m)(| (x + mn)g — xg — mn| < ¢ &
[ (x + mn)g™ — xg™' — mn| < é)}.

P, M and B are pathological o-2-transitive and (P, R) T (M, R) t (B, R).
P, S P, or My & M, or By & B, holds precisely when the following
is true: there exists a subgroup S of the additive group of integers
such that for every subgroup S’ of S, the distance of X from
y + S’ is 0. Actually, (B, R) is the unique f-closure of both (P, R)
and (M, R).

The reader may wish to consider finding the f-closures of the
more complicated pathological o-2-transitive examples given in [9].
Since the pathological groups are the o-primitive groups which are
not completely distributive, they are at the heart of understanding
what is true in the general case.

Let (G, S) be a transitive [-permutation group. We embed (G, S)
in the wreath product (W,, R) = Wr{(G,, S,): Ye I'} of its o-primitive
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components using, say, an immediate embedding of the sort in [13].
For each veI', let (H,, T)) 2 (G,, S;) with (H,, T,) o-primitive. Let
(W, R)= Wr{(H,, T,): 7€ I'}. Then R, S R, and we embed W, in W
by taking each (w,)),, to be the identity if xZ"N R, = @. In this
way we may assume (G, S) < (W, R).

THEOREM 4.9. Let (G, S) be transitive. For each o-primitive
component (G,, S,), let (H,, T,) be the l-permutation group given by
Theorem 4.7 (where (H,, T,) = (A(S,), S;A(S,)) if (G,, S;) is pathologi-
cal). Let (W, R) = Wr{(H,, T,):veI'}. Then every t-extension of
(G, S) is isomorphic over (G, S) to some (K, U) such that (G, S) =
(K, U) = (W, R).

Proof. We consider (G, S) to be contained in (W, R) as indicated
above. Let (L, V) be a t-extension of (G, S). Then (L, V) is transi-
tive and I'(L, V) = I'(G, S) by Theorem 4.4. Then, by the techniques
of [16, Lemma 16], (L, V) can be immediately embedded in (W, R,) =
Wr{(L,, V;): Y€ '} so that the embedding of V in R, is the identity
on S (this follows from the fact that if ¢ is a map having domain
s F(se S), which is induced by some ge G, then some ke L
induces an extension of ¢ to (s7°7/ 77). Now, in view of Theorem 4,7,
we may consider (W,, R,) < (W, R), and the theorem follows.

Observe that although we take the embedding of G to be the
identity on S (so that gy =g on S), it cannot, in general, be
arranged that gy e K and ge GS W agree on U in the statement
of Theorem 4.9.

COROLLARY 4.10. Any wreath product of t-closed o-primitive
groups is T-closed.

Proof. With f-closed o-primitive components, we may take
(H;, T;) to be (G,, S;) in the pathological case. The corollary now
follows.

Even if (G, S) is f-closed, it need not be the case that each of
its o-primitive components is f-closed, as can be seen in the following
example.

ExampLE 4.11. Let R be the totally ordered set of real numbers,
and G = {({g,}, 9) € (A(R), R)Wr(A(R), R): support (g) is bounded, and
for all large 7,9, = g}. Then G is an l-subgroup of A(R)WrA(R)
with o-primitive components G, and G,, where G, = A(R) and G, =
those members of A(R) with bounded support. Let S =R SR be
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the set which G permutes. Let X< S and ye S. It is easily seen
that Gy < G, if and only if

(1) yetopological closure of X, or

(2) y=z, or zy, where z, = inf (R % {#}) and z,, = sup R < {z})
and the topological closure of R < {z} meets the topological clousure
of X, or

(3) y==z,o0r z, and Ye >0, Vre R, 3(z, )€ XN S such that
r<Zand |z—2z|<e.

Observe that if Gt H and HZ A(R) WrA(R) and if h = ({h,}, h) € H,
then the support of % is bounded above. For we may assume e¢ < &
and choose §e A(R), of bounded support, such that Ok < Op; for
each re R, let g, =g. Then g =({g9,},3}e G and gh™*Veec H. If
m = inf (R X {0)e S, then m(gh™*\V e) = m(gh™*) > m. If h where
to have support unbounded above, there would be a cofinal subset
F Z R of the support of h, but missing the support of g. Hence
for X =R % F, gh™ \Vec Hy. But it is clear that G, < G,, contra-
dicting the fact that Gt H. Hence the “upper” component of H is
not A(R), and therefore, by Theorem 4.7, is not f-closed.

Now let H < A(R)WrA(R) consist of those ({,}, h) such that
support (k) is bounded above and Vxe R, Ve > 0, 30 > 0, 3r€ R such
that if |y —«| < 6 and s > r, then |yh, —xh | < ¢ and | yh;* — ah™ | <e.
Then H is an l-subgroup of A(R)WrA(R), as can be determined by
a little computation, and (G, S) T (H, S) because Hy & H, if and only
if (1), (2), or (3), as before. Using the conditions (1), (2), and (3), it
can be shown that (H, S) is the unique (to within isomorphism over
(G, S)) t-closure of (G, S).

ExampLE 4.12. Even if each o-primitive component of G is
t-closed, G need not be. Let G < A(R)WrA(R) be the “small” wreath
product consisting of those ({g,}, §) such that g, = ¢ for all but finitely
many r<€ R. Then each o-primitive component of G is A(R), which
is f-closed by Theorem 4.7, but Gt A(R) WrA(R).

5. The relation between a*-extensions and f-extensions. We
now make explicit the relationship between a*-extensions and
t-extensions. We shall exploit the close connection between closed
convex [-subgroups and stabilizer subgroups given in [18]. If (G, S)
is an [-permutation group, then every closed convex l-subgroup is a
stabilizer Gy, for some X = S. If every point stabilizer G, (sc S)
is closed, then all stabilizers G, (X < S) are closed. Hence there is
no ambiguity regarding the kind of stabilizer in the statement “(G, S)
has closed stabilizers.” Indeed, if (G, S) has closed stabilizers the
closed convex l-subgroups of G are precisely the stabilizers Gy (X< S).
If (G, S) is transitive, the point stabilizers are all conjugate; so if
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one is closed, they all are. G has a representation (G, S) with closed
point stabilizers if and only if G is completely distributive. More-
over, if G is completely distributive and has a transitive representation,
it has a transitive representation with closed stabilizers.

The main result that we wish to prove in this section is the
following:

THEOREM 5.1. If (G, S)T(H, T), then H is an a*-extension of
G. Conversely, if (G, S)<S (H, T), (G, S) has closed stabilizers, and
H is an a*-extension of G, then (G, S) T (H, SH).

Note that in the statement of Theorem 5.1, H should actually
be an a*-extension of an auxiliary subgroup G’; but since G is
uniquely determined, we have identified it with G.

Once we have established this theorem, we will be able to make
use of the results in the previous section.

To prove Theorem 5.1, we need a lemma.

ProrosiTION 5.2. Let (G, S) 1 (H, T). If (G, S) has closed stabi-
lizers, then so does (H, T).

Proof. We first consider s€ S. Let 53 be the closure in H of
the convexification in H of G,. Since (G, S){ (H, T),

Y={yeT-HCH})={yeT:G<G)={wyeT:G,ZG,}.

If K is a convex [-subgroup of an l-permutation group (H, T), then
K2{he H: y_h =y whenever y¢ T and y is fixed by K} [17, Theorem
9]. Hence G,2{hec H:yh = y for all ye Y} 2 H, since H, fixes
each ye Y. Thus G, H <@, so G,=H, Since G, is closed,
G, =G,NG=HnG by [2, Lemma 2.1].

By [17, Theorem 8], H, = H,,,; for some o-block B of H such
that sH..,, is coterminal in B. If B is not a single point, then
H,,,; moves s; since (G, S) T (H, T), Gepz moves s; ie., H,NG = G,
moves s. This is clearly impossible. Hence B = {s} and so H, = H,.
Consequently, H, is closed.

Now let te T. Since (G, S)T(H, T), sh =t for some se S, he H.
Thus H, is conjugate to H, and so is closed in H. This completes the
proof that (H, T) has closed stabilizers.

We now prove Theorem 5.1:

Suppose that (G, S)T(H, T). Let C and K be closed convex
I-subgroups of H such that CNG = KN G. There exist X, Y& T
such that C = Hy, and K= H,. Hence Gy =H,NG=CNG=
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KNG=H,NG=Gy. Therefore C = H, = H, =K, and H is an
a*-extension of G.

Conversely, suppose that H is an a*-extension of G, (G, S)S (H, T)
and (G, S) has closed stabilizers. Let G be any auxiliary subgroup.
Assume Gy = G, for some X, Y< T. By Proposition 5.2., H, and
H, are closed convex [-subgroups of H. Thus H; NG = Gy = G, =
H, N @, so that Hy, = H,. Hence (G, S) & (H, T) satisfies condition
(1) in the definition of -extension, and, consequently, (G, S) ¥ (H, SH).
Moreover, G’ is unique by Proposition 4.1.

COROLLARY 5.3. Let (G, S)t (H, T). If (G, S) has closed stabi-
lizers, then so does (G, T).

Proof. By Theorem 5.1, H is an a*-extension of G, and by
Proposition 5.2, (H, T) has closed stabilizers. Hence G, = H, N G is
closed in G.

COROLLARY 5.4. Let (G, S)t(H, T) and (H, T)1(K, U). If (G, S)
has closed stabilizers, then (G, S) T (K, U).

Proof. K is an a*-extension of H and H is an a*-extension of
G (by Theorem 5.1), so K is an a*-extension of G. Moreover,
(G,S)S (H, T) and (H, T) < (K, U). Let G’ and H' be the auxiliary
subgroups. We obtain an auxiliary subgroups G of G in K by taking
each g€ G and (uniquely) extending it to T to obtain an element of
G’ < H and (uniquely) extending the resulting permutation of T to
U obtaining an element of H'. The image of G’ & K is an auxiliary
subgroup and so (G, S) & (K, U). By Theorem 5.1, (G, S) T (K, U).

A direct proof using only Proposition 5.2 and Corollary 5.3 is
also possible. We do not know (even for transitive groups) whether
the closed stabilizer hypothesis is essential.

For transitive groups, we can improve on Theorem 5.1.

THEOREM 5.5. Let (G, S) be a transitive l-permutation group
with closed stabilizers, and let H be an a*-extension of G. Then
H has a faithful transitive representation ¢ such that (Hg, T) has
closed stabilizers, (G, S) T (Hg, T), and for each g € G, g¢ is the unique
extension of g in Hg. Roughly speaking, (G, S) T (H, T) with each
g€ G identified with its unique extension in H.

Proof. Let s,e€S. Then G, is a closed prime subgroup of G.
Let H(s,) be the unique closed convex [-subgroup of H such that
H(s)) N G = G,. By [2, Proposition 1.4], H(s,) is prime. Moreover,
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(QH h“H(so)h) nGec ( n g-1H<so)g) NG =) g7(Hs)n Gy
= era g—lGaog = g‘;‘a Gsoﬂ =Gy = {6} .

But Nyecx A H(s))h is a closed convex [-subgroup of H and H is an
a*-extension of G. Hence MNi.x h'H(s))h = {e}. By [11], we may
faithfully represent H on the totally ordered set T of right cosets
of H(s,). The totally ordered set S may be embedded in T in the
following way: Let s€S. Then there exists g € G such that s,g = s.
st H(s,)g is a well-defined one-to-one map since H(s,) N G = G,,. It
is straightforward to check that the map preserves both the order
of S and the action of G, so henceforth we identify S with its
image; thus S T. Then (Hg),, = H(s,) is closed, so that (Hg, T)
has closed stabilizers. Now (G, S) & (Hg, T) so the theorem follows
from Theorem 5.1.

The technique used in the above proof is essentially that of [12]
and [23].

COROLLARY 5.6. Let (G, S) & (H, T), where (G, S) and (H, T)
are transitive with closed stabilizers. Then (H, T) is a t-extension
(f-closure) of (G, S) if and only if H is an a*-extension (a*-closure)
of G.

THEOREM 5.7. Let (G, S) be o-primitive and mnot pathological.
Then G has a umique (to which l-isomorphism over G) a*-closure,
which s

(i) The real numbers if (G, S) is regular and archimedean,

(il) Zuw(f) if (G, S) has period f,
or

(i) AS) if (G, S) is o-2-transitive.

Proof. This is immediate from Theorems 4.7 and 5.5 and Co-
rollary 5.6.

Observe that even if (G, S) has closed stabilizers, it may have
an o-primitive component which is pathological. This can be seen
from the following example:

ExAMPLE 5.8. Let (G, S)) = (Z, Z) be the l-group of integers,
permuting itself regularly. Let (G, S,) = (P, R) be the pathological
group of Example 4.8, and (G, S) = (G,, S)Wr(G,, S;). Then (G, S)
has closed stabilizers, but has its “upper” o-primitive component
l-isomorphic to (P, R).
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We do not know if it is possible for (G, S) to be a locally
pathological transitive [-permutation group with closed stabilizers.
Any reasonable added condition prevents it from happening.

THEOREM 5.9. Let (G, S) be a transitive l-permutation group
with closed stabilizers. For each o-primitive component (G,, S,), let
(H,, T,) be the l-permutation group given by Theorem 5.7 (with
(H,, T,) = (A(S,), S,A(S,) if (G, S,) is pathological). Let (W, R) =
Wr{(H,, T,):ve '} and H be an a*-extension of G. Then H has a
faithful representation ¢ on a subchain T of R such that

(a) (G,9)1(Hg, T) = (W, R),

(b) For each gc G, g6 and g agree on S,
and

(c) (Hp, T) ts transitive and has closed stabilizers.

The transitive groups (G, S) and (H, S) of Example 4.11 have
closed stabilizers. Hence H is the unique (to within l-isomorphism
over () a*-closure of G. Moreover, even though H is a*-closed its
upper component is not. On the other hand, the l-group G of Example
4.12 is not a*-closed even though its components are.

6. a*-closures. Our aim in this last section will be to find the
unique a*-closure of certain classes of [-permutation groups. We
shall show that our results are sharp by constructing (G, S) with more
than one a*-closure. We will make repeated use of the wreath
product and the results contained in earlier portions of this paper,
especially Theorem 4.9. Thus we consider (G, S) < (W, R), and letting
(K, U) be a f-extension of (G, S), we have (G, S) = (K, U) = (W, R)
to within isomorphism over (G, S) (see Theorem 4.9 for notation).

We need to determine how new points are added when S is
enlarged to U. Let I' =I'(G,S)=I'(K, U)y=I(W,R) and 5¢8S.
If 5§ determines a proper Dedekind cut in some 5.577/.%4, we say that
5 is a hole in s.9°7/.%4. Also, let S, (respectively, Sz) be the set of
all 5¢ S\S such that the tower .7~ of .S%-classes whose completions
contain § has empty intersection and such that .7~ contains (respec-
tively, does not contain) S4-classes for arbitrary small ve I".

Observe that if I" has a minimal element, then S, = @. Also
note that if (G, S) is the wreath product of o-primitive groups, then
R, =S; = @, [13, page 713].

, The main theorems we wish to establish here are Theorems 6.1
and 6.2.

THEOREM 6.1. Let (G, S) = Wr{(G,, S,): Y € I'} be a wreath product
of mom-pathological o-primitive groups. Suppose, further, that for
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Y nonminimal

(i) If (G, S,) is regular, then the divisible closure of G, is R,
and

(ii) If (Gy, S;) is periodic with period f,, then it does mot have
Config (o).
Then (G, S) has a unique (to within isomorphism over (G, S)) f-closure
(H, T) and H is the unique (to within [-isomorphism over G) a*-closure
of G. Movreover, (H, T) = Wr{(L,, V;): re I'}, where if ¥ is minimal,
(L, V;) is the t-closure of (Gy, S;) (cf. Theorem 4.7), and if 7 is
not minimal, V., =S, and L, is G, if (G,, S;) ts regular, Z,usr,(f,)
if (G, S;) has period f,, and A(S,) if (G,, S;) 1s o0-2-transitive.

No o-primitive component of A(S) can be pathological or periodic,
which simplifies the hypotheses of the next theorem. We could,
without much difficulty, permit nonminimal regular components
(G,, S;) = (A(S,), S;) for which the divisible closure of G, is R, but
it seems doubtful that such components can actually occur (S, would
have to be one of the “uniquely transitive” totally ordered sets (not
the integers) described by Ohkuma in [22]).

THEOREM 6.2. Let A(S) be transitive and have no monminimal
regular o-primitive component. Then (G, S) = (A(S), S) has a unique
(to within isomorphism over (A(S), S)) t-closure (H, T) and H is the
unique (to within l-isomorphism over (A(S)) a*-closure of A(S). If
(A(S), S) has a smallest component (A(S,), S.), then T is S with each
t-class enlarged to R if (A(S.), S.) is regular, and to S.A(S,)
otherwise; if (A(S), S) has no smallest component, T =SNS,. H
conststs of those h € A(T) such that h preserves the convex congruences
of (G, S). Imaddition, if A(S) has a minimal component (A(S,), S,)
which s regular, then each h,., is a permutation induced by G
followed by a translation of R.

COROLLARY 6.3. Let A(S) be transitive and have no regular
components. Suppose, also, that A(S) is locally o-primitive and that
the minimal component is a*-closed. Then A(S) is a*-closed.

Since these results are extremely technical, we will close the
paper with some direct consequences of them.

Our goal now is to prove Theorems 6.1 and 6.2. Before embarking
on this, some comments on the theorems are in order.

The descriptions given of a*-closures in the two theorems are very
similar. However, it is convenient to use the language of wreath
products in the first and to partially suppress it in the second. If
(G, S) is locally o-primitive, the enlargement of S to T simply adds
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points at certain cuts in the primitive segments (unless these segments
are o-isomorphic to the integers, in which case they are enlarged to
the reals, still with regular action). If (G, S) is not locally
o-primitive, Theorem 6.2 adds single points at cuts in S,; and in
Theorem 6.1, T'=S. Thus in each case S is dense in T (unless
(G, S) has primitive segments o-isomorphic to the integers), so that
each g € G has a unique extension lying in H. Hence (G, S) S (H, T)
with no ambiguity about the auxiliary subgroup G'. Also, there is
no ambiguity in the notation (G, S;) in Theorem 6.1 since, in a wreath
product Wr{(G,, S;):7Ye€ '} of o-primitive groups, the o-primitive
components are precisely {(G,, S,): e '}.

In order to establish that the a*-closures are as claimed, we
shall borrow from [21] a permutation group property common to the
two situations. This property will (since the groups in question are
not locally pathological) force many stabilizers G; to be minimal
closed primes, and ultimately will force every f-extension of (G, S)
to lie within the desired (H, T). Then we shall show that, under
the hypotheses of the two theorems, H is an a*-extension of G.

(G, S) is said to have the strong support property if for all
ve I'(G, S), there exist ge G and se S such that support(g) S s.&7
and (s.54)g # s.&4. Equivalently, whenever te S lies in the interior
of an o-block B of (G, S), there exists g € G such that support(g) & B
and tg # ¢ (see [21]).

Any transitive (A(S), S) has the strong support property, as
does any wreath product of o-primitive factors. So do the groups
in Examples 4.11 and 4.12. For this reason, we shall first prove the
following theorem:

THEOREM 6.4. Let (G, S) be transitive and have the strong
support property. Suppose that no o-primitive component of (G, S)
18 pathological and for ¥ momminimal,

(i) if (G, S,) is regular, then the divisible closure of G, is R,
and

(i) f (G, S;) is periodic with period f,, then it does not have

Config (co).
Let (H, T) be the group described in Theorem 6.1. Let T' be T with
the points used to fill cuts in Sy deleted, and let H' be the restric-
tion to T" of {he H: T'h = T'}. Then every t-extension of (G, S) is
isomorphic over (G, S) to a permutation subgroup of (H', T') and
every a*-extension of G is l-isomorphic over G to an l-subgroup of
H'.

In order to prove Theorem 6.4, we will need some technical
lemmas. Recall, in general, (G, S) < (W, R), and letting (K, U) be a
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t-extension of (G, S), we have (G, S) < (K, U) < (W, R) (see Theorem
4.9).

LemmA 6.5. Let (G, S) be transitive. Suppose (G, S)7T (K, U)
and (K, U) < (W, R). Let ue U\S, let M(u) be the largest segment
of U which contains w and fails to meet S and let S=XUY,
X<u<Y. Then one of the following is true:

(1) For some s€8S and veI', X and Y each meet s&7, X is
a union of F-classes and so is Y, there is mo largest 5-class in
X and no smallest H-class in Y, and M(u) = wZ,.

(2) For some s€8S and YeI', X and Y each meet s&7, X is
a unton of A-classes and so is Y, s.5°7/.S4 s o-isomorphic to the
integers, and M(u) is @ unton of Z/,-classes.

(8) The cut in S determined by (X, Y) belongs to S, and
M(w) = {u}.

(4) The cut in S determined by (X, Y) belongs to Sy and M(u)
1s a nonsingleton o-block of (K, U).

Proof. Recall that (G, S) < (W, R) < (W, R) where (W, R, =
{Wr{(G,S,):ve I'(G, S)}. We first consider the case in which no
element of R, lies between X and Y. Then some u(Y)e T,\S,. There
must be a largest such 7, which we call 6, for if 7, r,€ R, then
{aeI': r(a) # ry(a)} is inversely well-ordered. If S, is not o-isomorphic
to the integers, then T, = S,. Since 4%, NS = @, and any segment
of U which contains % and extends outside ©%Z/; would have to meet
R, and thus also S, M(u) = wZ/;. A similar argument establishes (2)
when S; is o-isomorphic to the integers.

Next suppose some 7, € R, lies between X and Y. By [13, page
713], the cut in S determined by (X, Y) belongs to S, or S;. More-
over, M(u) is the intersection of a tower of o-blocks of (K, U) and
so is itself an o-block. But the o-blocks in that tower are precisely
the o-blocks of (K, U) which contain M(u). Now (3) and (4) follow.

LEMMA 6.6. Suppose that, in Lemma 6.5, (G, S) has closed
stabilizers and that G, is o minimal closed prime of G. Then
M(u) = {u} unless (G, S) is locally the integers and S is a cut in a
primitive segment.

Proof. By Corollary 5.3, (G, U) has closed stabilizers. Now if
ve M(u) and z =sup M(u)e T, then G, = G, = G;. Since G, is a
closed prime subgroup of G, G, = G; = G, by the minimality of G;.
Hence K, = K,. If M(u) contains an o-block B which contains u,
then since any point of B belongs to M(u), we see that K.,z =
K, = K, for all be B. Since K is transitive, B = {u} (if be B and



62 A. M. W. GLASS, W. C. HOLLAND AND S. H. McCLEARY

b # u, there exists ke K such that uk =b. Now (sup B)k = sup B,
so ke K, 5\K,, a contradiction). The lemma now follows from a
consideration of the various cases arising in Lemma 6.5.

We now make our first use of the strong support property to find
out when the hypotheses of Lemma 6.6 can occur.

If (H, T) is an l-permutation group and z, ye T, we shall say
that « and y are tied if H, = H,. Observe that if x and y are tied,
then so are xh and yh (he H).

The following proposition is contained in [21].

PROPOSITION 6.7. Let (G, S) have the strong support property
and not be locally pathological. Then the closed primes of G (other
than G) are precisely the stabilizers G, (yeS). Moreover G, is a
minimal closed prime if

(i) yeS,US;c8,

(ii) vy s a hole in some sS°7].S4, where (G, S,) is 0-2-transitive,
or

(iii) y %s @ hole in some 3.7/ S4, where (G,, S,) is pertodic and
y is not tied to any point of s

COROLLARY 6.8. Any wreath product of a*-closed o-primitive
groups which is not locally pathological is a*-closed.

Proof. By Theorem 5.1, the factors are f-closed and so, by
Corollary 4.10, the wreath product is f-closed. Since the wreath
product has closed stabilizers (Proposition 6.7), it is a*-closed by
Corollary 5.6.

We now prove Theorem 6.4.

Proof. First we consider f-extensions. Let (K, U) be a f-ex-
tension of (G, S). We may suppose that (G, S)T (K, U)=(W, R) as
in Lemma 6.5. By Proposition 6.7, (G, S) has closed stabilizers. Also,
by Proposition 6.7, if §€S; then G; is a minimal closed prime
subgroup of G. Then (4) of Lemma 6.5 is impossible by Lemma 6.6
(no element of S; can be a cut in a primitive segment!). If 7 is
not minimal in I" = I'(G, S), then (2) of Lemma 6.5 cannot occur
since 8,977/~ is not o-isomorphic to the integers by hypothesis (i) of
the theorem. In addition, if 7 is not minimal in [, then (1) of
Lemma 6.5 cannot occur unless (G,, S,) is regular or periodic with
Config (n), for some positive integer n (by Proposition 6.7 and Lemma
6.6).

Assume that we U\S fits case (1) of Lemma 6.5 with 7 non-
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minimal. Since G, is closed in G (Corollary 5.3), Proposition 6.7
guarantees that G, = G, for some yeS. Thus G, =G, S G: = G,
where § is the cut in S determined by % and z = supu%,. Since
5 is a hole in s.5°7/.%4, the strong support property yields a contra-
diction unless y lies in the completion of s&?7. Moreover, as 7 is
not minimal, u%/, is not a singleton. Hence K, # K,. Thus K, =
K, < K,. In o-primitive groups, every stabilizer of a point or hole
is a maximal prime. Hence y must lie in the interior of some
#,-class yZ/;.

In short, we have shown that K, = K,, where the cut y lies in
the interior of a Z/-class. Since (G, S) enjoys the strong support
property, this Z,-class in uniquely determined.

Let t = supy%, and w = supuz’’. Then K, and K, are maximal
prime subgroups of K, which contain the prime subgroup K, = K,.
Hence K, = K, = K, say. The map uk yk and the ldentlty on K
ylelds a well-defined isomorphism from the palr (K uK) (K actmg
on uK—not necessarily faithfully) to (K yK ) (K acting on yK also
not necessarily faithfully). This isomorphism preserves both the action
of K and the orders. If v belongs to the completion of %, then
v is tied to z = inf {yk: k€ R & uk = v} € completion of yZ;.

Now choose he K so that (yZ;)h = uZ,. Then each cut in
(wZ/;)h is tied to some cut in (yZ,)h = uZ/;, which, in turn, is tied
to some cut in ¥%,. By induction, each cut in (uZ,)h™ is tied to
some cut in ¥y%5, m any positive integer. If (uzZ,)h"N S+ @ for
some positive integer m, we have a contradiction to the strong support
property. But either (G, S;) is regular and the divisible closure of
G, is R, or (G, S,) is periodic with Config (»), as previously noted.
In the former case, (K,, U,) is also regular and so contained in the
regular representation of the reals.

By assumption, some power p» > 1 of the permutation of yZ'7'/Z
induced by & is back in G,; it must map yZ/, onto another class also
containing points of S. Then (uZ,)h**NS = &, a contradiction.
In the latter case, the hole uZ/ in S, would be tied in G, to y.5%;
80 uZ, = (y4)fr for some integer p. Then m = |p|n would yield
a contradiction. Consequently, case (1) of Lemma 6.5 cannot occur
if 7 is nonminimal.

We have now shown that under the hypotheses of Theorem 6.4,
any u € U\S must have been added at a cut lying in S, or in a
primitive segment of (G, S). Since also (K, U) < (W, R), we have
(K, U) < (H', T"). As Sis (almost) dense in T, there is no ambiguity
about auxiliary subgroups; so the original embedding of K in W must
have been over G. This completes the proof of Theorem 6.4 for
t-extensions; for a*-extensions, apply Theorem 5.5.
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Example 4.11 shows that the hypotheses of Theorem 6.4 do not
force (G, S) T (H', T'); the unique f-closure determined there is not
(#H', T).

We claim that the group (H’, T') of Theorem 6.4 is transitive.
This is clear if (G, S) is locally o-primitive, so assume that I" =
I'(G, S) has no least element. Let s€ S and let ¢ be the single point
used to fill in some cut of S belonging to S,. Since s and ¢ lie in
the wreath product set T, {Y € I": s(7) # &(7)} is inversely well-ordered.
Define h € H by choosing #,,, so that s(Y)h, , = &(7) whenever s(7) # t(7)
and taking all other A,,’s to be the identity. It can be shown that
he H,, and, by construction, sh = t. Therefore, (H’, T') is transitive.

We now show, under the hypotheses of Theorems 6.1 and 6.2,
that (G, S) T (H', T').

Assume G, & G,, X< T,yc T. Recall that S is (almost) dense
in T, so we may assume that X = S and ye S. Since (G, S) has the
strong support property, X must meet the completion of every o-block
which contains y. Let Y be the intersection of the tower of such
o-blocks. If y is an endpoint of Y or if ¥ = ¢, then the tower
must have contained no smallest o-block. Hence the topological closure
of X must meet Y or include one of the endpoints of Y. This forces

Y & H,, as required. If y lies in the interior of Y, then Y covers
some o-block (otherwise Y would be the union of a tower of smaller
o-blocks and y would lie in one of these o-blocks). Thus Y = s &7
for some s€S. By the minimality of Y,y does not lie in any
S4-class. Consequently, ¥ is an endpoint of such a class or a hole
in 57/ =8,. In effect, yeS,. Let X comprise the .S%-classes
in S, whose completions (including endpoints) meet X and the holes
in S, which lie in X. Then (G,); < (Gy),. For let z =supss”’. If
the action of some ge G, on s.5°7/.54 fixes each element of X but
moves y, then ge G;\G,, where § agrees with g on those .%-classes
in 8577 which are moved by g, and g is the identity on the rest of
S. Clearly ge G because G = A(S) or G is a wreath product of
o-primitive groups. But (G,, S,) T (H], T?), so (H)y S (H}),. Thus
Hj; & H, and, consequently, (G, S) T (&', TV).

Now if (K, U) is any f-closure of (G, S), so that (G, S) T (K, U) =
(H', T"), then there is no ambiguity about auxiliary subgroups (S is
(almost) dense in T"). Hence (K, U)t(H', T"), so that (K, U)=(H', T").
Therefore (H, T') of Theorems 6.1 and 6.2 is the unique (to within
isomorphism over (G, S)) t-closure of (G, S). Thus H is the unique
(to within l-isomorphism over G) a*-closure of G. This completes
the proofs of Theorems 6.1 and 6.2.

(G, S) is said to be depressible if whenever sg # s, there exists
9. € G such that g, agrees with g on the interval of support of ¢
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containing s, and is the identity on the rest of S. The preceding
argument yields a generalization of Theorem 6.2 to depressible groups.
Nonminimal regular components (G,, S;) are permitted provided the
divisible closure of G, is R, and then h, , is required to be induced
by G.

We now show that we cannot relax the conditions on nonminimal
components in Theorem 6.1. We shall give two examples in which
there is more than one a*-closure of a given (G, S). In the first,
we have an “upper” component that is regular but whose divisible
clusure is not R; in the second, we use an “upper” component that
has Config ().

EXAMPLE 6.9. Let (G, S)= A(R)Wr(Z, Z) = A(RX Z), where R is
the reals and Z is the integers. Let C be a complementary group in R
of the rationals, Q (R=Q&@ C). Let (H,U)=ARWrZPDHC,ZPC)
and let K ={hec H:(Vrne Z)(Vx, y€ C)(hpy, = h,.,)}. In (K, U), each
ue U\S is tied to a unique s€ S. Hence (G, S) T (K, U).

The arguments used to prove Theorem 6.4 show that (K, U) is
a maximal f-extension of (G, S) so, by Corollary 5.4, (K, U) is a
t-closure of (G, S). Therefore K is an a*-closure of G.

Let K, and K, be formed in this way from two different comple-
ments C, and C, of the rationals. Then K, and K, are not l-isomorphic
over G. For if they were, pick any s€ S and represent K, on the
chain of right cosets of Gy(¢ =1,2). Then (K, U, and (K, U, are
isomorphic over (G, S) forcing Z@P C, and Z C, to be isomorphic
over Z. This is impossible. Indeed, it is possible to choose C, and
C, so that K, and K, are not l-isomorphic at all.

Actually, we can show that (G, S) has 2 nonisomorphic a*-
closures.

ExaMpPLE 6.10. Let (G,, S,) be a periodic o-primitive group having
period f and Config (e0). Let (G, S) = (R, RY\Wr(G,, S,) and F be the
cyclic subgroup of A(S,) generated by f. Let

(H, U) = (B, RYWr(Zsi5,0(S), S:F).

Let K, ={he H:(Vs,e S;)(Ym e Z)(h,yn = h,))}. Then K, is an a*-
closure of G. Let 7:2+ 2x, so 7€ A(R). Let

K = {he H:(V8,€ S)(Ym € Z)(hyyym = T 'hyypm—7)} .

Thus if h,,s»- is translation by 7, ks is translation by 2r. K, is
also an a*-closure of G and it can be shown that K, and K, are not
l-isomorphic at all, much less l-isomorphic over G.
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We conclude with some concrete consequences of our theorems.

COROLLARY 6.11. Let A(S) be tramsitive and have no nonminimal
regular component. Then A(S) has a wunique a*-closure. If, in
addition, A(S) s locally o-primitive and the minimal component is
a*-closed, then A(S) is a*-closed.

COROLLARY 6.12. Suppose that A(S) 1is o-g'rimitive and not
regular. Then the unique a*-closure of A(S) is A(S). In particular,
A(R) is a*-closed and is the unique a*-closure of A(Q).

COROLLARY 6.13. Let (P, R) be a periodic group with period f.
Then the unique a*-closure of P is Z,n(f), the unique a*-closure of
A@Q)WrP is A(RYWrZ,.x(f), and the unique a*-closure of PWrA(Q)
18 Zam(F)WrA(Q).

COROLLARY 6.14. The wunique a*-closure of AQ)WrA(Q) is
AR)YWrA(Q) = A(RX Q).

COROLLARY 6.15. The unique a*-closure of B(Q) is A(R) where
B(Q) ts the set of all elements of A(Q) of bounded support.

PROPOSITION 6.16. Let P and B be as given in Erample 4.8.
Then A(R)WrB is the unique a*-closure of A(Q)WrP.

This proposition is not a special case of any of the theorems. It
can be proved by applying Proposition 6.7, Theorem 5.5, Lemma 6.5,
Theorem 4.6, and the fact that (B, R) is the unique f-closure of
(P, R).

In conclusion, we note that the methods of this paper cannot be
very useful in the investigation of a*-extensions of l-groups which
are not completely distributive. Therefore, two central problems
remain, namely:

1. Does every pathological o-2-transitive l-group have a unique
a*-closure, and is every a*-extension of a pathological o-2-transitive
l-group also pathological?

2. Find necessary and sufficient conditions for uniqueness of a*-
closures even in the completely distributive case. The main difficulty
seems to be lack of knowledge about subgroups of a wreath product.
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