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THE CHARACTERISTIC POLYNOMIAL
OF THE MONODROMY

ALAN H. DURFEE

This paper contains miscellaneous results about the mono-
dromy of a singularity of an algebraic curve f(zOt zj9 par-
ticularly its characteristic polynomial, and its relation to
branched cyclic covers of the link of the singularity.

Let f(z0, , zn) for n ^ 0 be a complex polynomial vanishing at
the origin, and suppose that / has at most an isolated critical point
there. The link of this singularity is the manifold K = f~%ϋ) Π
S2n+1 c S2n+1, where S2n+1 is a sufficiently small sphere centered at the
origin. K is an (n — 2)-connected (2n — l)-manifold. For δ Φ 0,
f~ι(d) intersected with the corresponding small ball is a smooth 2n-
manifold F whose boundary is diffeomorphic to K. Letting d travel
once about the origin in the positive direction induces a monodromy
automorphism h: Hn{F) —• Hn{F). The homology group β^K) of
the link is isomorphic to the cokernel of I — h [11, Theorem 8.5].
We will be particularly interested in the characteristic polynomial
Δ(t) — άet(It — h) of the monodromy. For these topics, see [11].

For fixed /, we let KkaS**+* be the link of the polynomial
/(2o, •••,«») + sί+i. Kk is thus an (n — reconnected (2n + l)-manifold.
It is well-known that Kk is the &-fold cyclic cover of S2n+1 branched
along K [6J.

In the first section we relate the rank and 2-torsion of H^K^) to
the number of branches of f(z09 £i) at the singular point. As an
example, we compute H^K^ of the singularity (z0 + z\){zl + z*) used
to foliate odd dimensional spheres [4], thus avoiding resolution of
singularities. Section two reproves an old result of Zariski [18] on
computing the rank of Hx{Kk) in terms of A{t) (which is closely
related to the Alexander polynomial of the link). The rest of the
section is a digression on the roots ± 1 of Δ(t). Section three com-
bines the results of the previous sections to give a simple criterion
for the monodromy of f(zOf zx) to be of infinite order, namely, that
— 1 be a root of Δ{t) of multiplicity greater than or equal to the
number of branches of / at the singular point. In particular,
(Zo + z\){z\ + zl) satisfies this criterion. The first example of mono-
dromy of infinite order was found by A'Campo [1]. Shortly there-
after the author found a mistake in a preliminary version of [4];
this mistake generalized to the present paper. The results here
have been expanded by Woods [19]. For an analytic approach to
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monodromy of infinite order, see [5].

1* The two-fold branched cyclic cover* Let f(zQ, •••,£*) be a
complex polynomial as above, with link KczS2n+1. Let K2 be the
2-fold cyclic cover of S2n+1 branched along K. We claim that the
rank plus the number of 2-torsion coefficients of H^K) is equal to
the rank plus the number of 2-torsion coefficients of Hn(K2): First
consider the polynomial f'(zn+1) — zl+ι in one variable. The monodromy
hr of / ' on HQ(F) ~ Z may be calculated directly, and turns out to
be multiplication by —1. (See for example [11, §9].) Let h" be the
monodromy of the polynomial / + / ' . By [16], h" is equivalent to
A <g) A' = -h. Since H^K) ~ cok (I - h) and Hn(Kk) ~ cok (I - h")y

we have Hn^(K) ® Z2 ~ Hn(K2) ® Z2, which proves the italicized
assertion.

Next specialize to the case n = 1. Let r be the number of
branches of f(zOf zj at the origin, so that KaSB has r components*
We have proved the following result.

PROPOSITION 1. When n = 1, the rank plus the number of 2-
torsion coefficients of i?i(lQ is r — 1.

The italicized assertion above is true for any simple knot K c S2n+1

and K2aS2n+3 its suspension, a knot with the same Seifert matrix
Sf up to sign as K [2]. The homology groups of K and K2 are
determined by Jΐf±Jί?\ and the same proof works. When n = 1,
the proposition generalizes to H^Ky.) <* (k — l)(r — 1), for arbitrary
links KczS* of r components, and Kk the branched fc-fold cyclic
cover, for k prime [17, Corollary 5].

For example, consider the singularity f(z0, zλ) = (z0 + zl)(zl + z[).
To foliate odd-dimensional spheres as in [4], the key point is that
H^Kz) ~ Z) here we find this group without resolving the singularity
f(Zof Si) + zl The polynomial / has two branches at the origin, and
its link K(zS3 is a torus knot of type (2, 5) together with an un-
knotted circle twice linking its core (see for example [14, § 2.3]):

As remarked above, K2 is the 2-fold cyclic cover of S3 branched
along this link. The torsion subgroup of H^K) is isomorphic to the
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cokernel of its quadratic form [8]. This quadratic form is computed
by coloring alternate regions black and white; by row and column
operations its cokernel is seen to have no torsion. In particular,

has no 2-torsion, so by the proposition, its rank is one. Thus

Do all the possibilities of the proposition occur? If f(z0, zd =
z\ + z\9 HX{K2) ~ Za. Thus if r = 2, both possibilities occur. If r = 3
there are three possibilities, all of which do occur: If f(zOf #0 =
zl + zl, then H^K,) ~ Z2 0 Z%, if f(z0, z,) = (zQ + zl)(z0 - zl)(z2

Q + z[),
then Hx(Kύ ^Z®Z*, and if f(z0, zx) = zl + zl then HX{K2) ~Z@Z.
(Also see [5, § 1].)

2* The characteristic polynomial of the monodromy* Again
fix a complex polynomial f(z0, •••, zn) as above, with link KaS2n+1,
monodromy h, and characteristic polynomial A{t) = det (Jί — Λ). Orlik
[13, p. 264-5] has noticed that if the monodromy is of finite order,
then the rank of Hn^{K) is the multiplicity of 1 as a root of Δ(t).

Proof. Let AJj), , An{t) be the elementary divisors of It — h
over Q[t]. These have the usual properties: (1) A^t) | Δt(t) | | Ar(t);
(2) Ar(t) is the minimum polynomial of h; (3) A(t) = Δλ{ϊ)Δ%(t) Λ(ί);
and (4) cok (/t — h) = cok D(ί) as Q[£]-modules, where 2?(ί) has a
diagonal matrix with entries 1, •••, 1, At(t), •••, Ar(t). Since /t is of
finite order, there is an N such that hN = I. Thus by (2), J r(ί) | {tN - 1).
Hence the factorization in Q[t] of Ar[t] has no repeated factors; by
(1), this is true for Δ1(t)9 , Δr_γ{t) as well. In particular, the factor
(t — 1) can occur at most once. Recall that Hn^{K) ~ cok(/— h).
Setting t = 1 in (4), we obtain the Q-module isomorphism Hn^(K) =
cokD(l). By (3) and the above, the rank of cokZ)(l) is equal to the
multiplicity of (t — 1) in the factorization of Δ(t).)

We apply this observation to the &-fold branched cyclic cover Kk.

PROPOSITION 2. Suppose that the monodromy of f(z0, •••, zn) is

of finite order. Then the rank of Hn(Kk) is equal to the number

(counted with multiplicities) of roots a Φ 1 of Δ(t) with ah — 1.

When n = 1 and f(z0, Si) has one branch at the origin, Δ(t) is
then the Alexander polynomial of the knot KczS3 [11, Lemma 10.1],
and Zariski [18] showed that Hx(Kh) could be computed in this fashion.
Since Lέ [9] has shown that such / have monodromy of finite order,
our result implies Zariski's. Also see [17].

Proof. First consider the polynomial f\zn+1) = zi+ί in one variable.
The monodromy h' of-/' may be calculated directly, and its charac-
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teristic polynomial Δ\t) turns out to be t10'1 + hi + 1 = Πi=ί (* — *}*)$
where η is a primitive kth root of unity. (See for example [11, §9].)

Let h" be the monodromy associated to the polynomial / + /',
and let Δ"(t) be its characteristic polynomial. By [16], h" is equivalent
to h (x) h'. Suppose Δ(t) factors over the complex numbers as
IL (ί - at). Then Δ"{t) = ΐlu (t - atη*). Hence 1 is a root of Δ"{t)
precisely when there is a j , 1 <; j ^ k — 1, and an at such that a,??* = 1;
this will occur if and only if at is a kth root of unity different from
1. This proves the proposition.

The rest of this section is a diversion about the roots ± 1 of
Δ(t) when n = 1. Let r be the number of branches of f(z0, Zi) at the
origin (the number of components of its link

PROPOSITION 3. ( i ) The multiplicity of 1 as a root of Δ(t) is
r - 1.

(ii) The multiplicity of —1 as a root of Δ(t) is even.

Part (i) says that Orlik's assertion at the beginning of this
section is true when n — 1, even if the monodromy is of infinite
order. When n = 2, the singularity (z0 + zl)(z* + z\) + z\ is a counter-
example to (i) (with r — 1 replaced by rank H^K)) and (ii). (See
§§1 and 3.) Both parts are true for arbitrary knots KczS3 when
r = 1.

Proof. If r = 1, J(ί) is (up to a factor of ±ti) the Alexander
polynomial of the link of f(z0, Zi) [11, Lemma 10.1], and it is well
known that the value of this polynomial at 1 is ± 1 . Hence the
proposition is true if r = 1. If r ^ 2, then again according to the
above reference, ±tiΔ(t) = (t — l)Δ(t, , t), where Δ(tu , tr) is the
Alexander polynomial of the link. Let F(t) = (ί - l)2~rΔ(t, , t) be
the polynomial defined by Hosokawa [7]. It is shown that ±F(1) is
the (r — l)-minor determinant of an r x r matrix of rank (r — 1)
whose ijth entry is the linking number li5 of the ith and j t h compo-
nents of the link, i Φ j , and whose ith diagonal entry is — Σisisίr.w hj-
We claim that F(l) Φ 0. In fact, lijf i Φ j , is also the intersection
number of the ith and j t h branch, which is positive [14]. Thus the
upper left-hand (r — l)-minor satisfies conditions (a), (b), (c) and (d)
of [12, p. 6] and hence is negative definite as a quadratic form.
Hence its determinant, which is ±F(1), is nonzero. Since Δ(t) =
±ti(t - l)r-ψ{t), 1 is a root of Δ(t) of multiplicity r - 1. This proves
part (i).

When r = 1, V{t) is defined to be the Alexander polynomial.
Hence for all r ^ 1, Δ{t) = ±t\t - ΐ)r'Ψ(t)f so it suffices to show
that —1 is a root of F(t) of even multiplicity. In [7] it is proved
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that V{t) is symmetric, that is, V{t) = tΨ(t~ι) where d is the degree
of F(t)f and that d is even. Now 0 is not a root of V{t). The
symmetry implies that if c is a root, then so is c~~\ Thus in the
factorization of V(t) over the complex numbers, the factor (ί — c) may
be paired with the factor (t — c'1), except possibly when c — ± 1 .
Since c Φ 1 by part (i), and there are an even number of factors,
the factor (t + 1) must occur an even number of times. This proves
part (ii).

3* Monodromy of infinite order• Let f(z0, zλ) be a polynomial
as above with r branches at the origin (so that its link KaS* has
r components), and let A{t) be the characteristic polynomial of its
monodromy.

PROPOSITION 4. The monodromy of f(z0, zλ) is of infinite order
if —1 is a root of A(t) of multiplicity ;> r.

Proof. If the monodromy were of finite order, then by Proposi-
tion 2 this multiplicity would be the rank of HX{K^, which by Pro-
position 1 is <̂  r — 1.

The Alexander polynomials of all compound torus links with two
components have been computed by Burau [3]. (Burau actually com-
putes the Reidemeister-Schumann polynomial, the determinant of a
presentation matrix of iϊi(X), where X is the universal abelian cover
of S3 — K. Levine [10, § 8] shows that this is the same as the usual
Alexander polynomial. Alternatively, R. H. Fox (private correspon-
dence) applies the free differential calculus to Reidemeister and
Schumann's presentation of π^S3 — K) and shows that the (d + l) s t

elementary ideal of the resulting matrix is the same as the dth ele-
mentary ideal of the presentation matrix (7) in [15, p. 258] of H^X)
derived from this. Hence the Alexander polynomial is the same as
the determinant of this matrix. He continues, "The calculations in
the two Burau papers are almost too painful to contemplate, but I
am sure that the results are correct- •".)

For example, f(z0, zλ) = (zQ + zt)(z2

0 + z[) has monodromy of infinite
order: The curve / — 0 has two branches at the origin, and accord-
ing to Burau its Alexander polynomial is

(1 - sY)(l - xψ°)
Φ, V)= (1 - χy*)(l - sV)

The characteristic polynomial of the monodromy is then A(t) =
±(t - 1)(1 + f)(l + t7) by [11, Lemma 10.1], so - 1 is a root of Δ(t)
of multiplicity 2.
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