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A CHARACTERIZATION OF THE SYMPLECTIC
GROUPS PSp(2m,q) AS RANK 3
PERMUTATION GROUPS

ARTHUR YANUSHKA

In this paper the following characterization of the sym-
plectic groups PSp(2m,q) for m > 2 as rank 3 permutation
groups is obtained:

THEOREM. Let G be a transitive rank 3 group of per-
mutations of a finite set X such that the orbit lengths for
G, the stabilizer of a point b in X are 1,q(¢"*—1)/(¢—1)
and ¢"~! for integers ¢ >1 and » > 4. Let b' denote the
union of b and the G, orbit of length ¢(¢"2—1)/(¢ —1). Let
R(bc) denote N{z‘:b,cecz'}. Assume R(bc) + {b, ¢}, for all
distinct pairs of points, b and ¢. Assume that the pointwise
stabilizer of b* is transitive on the points unequal to b of
R(bc) for c¢b*. Then r is even, q is a prime power and G =
H, a group of symplectic collineations of projective r —1
space over the finite field of ¢ elements and PSp(r,q) < H.

The rank of a transitive permutation group is the number of
orbits of the stabilizer of a point. The projective classical groups
of symplectic type PSp(2m, q) for m = 2 and for a prime power ¢
are transitive groups of rank 3 when considered as groups of per-
mutations of the absolute points of the corresponding projective space.
Indeed, the pointwise stabilizer of PSp(2m, q¢) has 8 orbits of lengths
1, 9(¢"* — 1)/(g — 1) and ¢

Let G be any rank 3 group of permutations of a set X such
that the pointwise stabilizer has orbit lengths of 1, ¢(¢"2 — 1)/(g — 1)
and ¢"' for any integers r =4 and ¢ = 2. The characterization
problem is to impose some restrictions on G and on X to force the
conclusion that X is a projective space and that G is a group of
symplectic collineations. Let b* denote the union of b and the G,-
orbit of length q(¢"* — 1)/(¢ — 1). There are several rank 3 charac-
terizations of the symplectic groups. Assume that ¢ is a prime power
and that » = 6. Kantor [5] proved that G can be regarded as an
automorphism group of a symplectic geometry, acting on the set of
singular points. Next assume that ¢ is any integer, that » = 4 and
that the pointwise stabilizer of b+ contains at least q elements. D. G.
Higman [4] proved that G can be regarded as a group of symplectic
collineations of projective 3-space over the finite field of ¢ elements
and that G contains PSp(4, q). Later Tsuzuku [6] extended Higman’s
theorem to » = 4 under the additional assumption that ¢ is a prime
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power. This paper essentially generalizes Higman’s theorem to all
higher dimensions, without the assumption that ¢ is a prime power.

A Dbrief outline of the proof follows. The assumption that the
pointwise stabilizer in G of b* is transitive on the points unequal to b
of the “hyperbolic line” R(bc) for ¢ ¢ b* yields that G,;, the stabilizer of
the points ¢ and b of X, is transitive on the points of a* N b* — R(ab).
This fact implies that G, is a rank 3 permutation group on {R(ab):
bea* — a}, and the set of “totally singular lines” carry ¢ + 1 points.
We then show that X together with its totally singular lines forms
a nondegenerate Shult space [1] of rank = 3. Next we use a theorem
of Buekenhout and Shult [1] to conclude that X is isomorphic to the
set of points of a classical geometry of symplectic type. Therefore
G is a group of symplectic collineations. Finally we show that the
nontrivial elements of the pointwise stabilizer of b* correspond to
symplectic elations with center b and that G contains PSp(r, g).

In §2 we collect the necessary facts about rank 3 groups from
the basic papers of D. G. Higman [3], [4]. We refer the reader to
a paper of Buekenhout and Shult [1] for the definition of Shult space
and a brief introduction to polar spaces. In §3 we prove the charaec-
terization theorem. Finally the author wishes to thank Donald Higman
for making him aware of the work of Buekenhout and Shult whose
theorem makes the proof of the characterization of PSp(2m, q) given
here considerably shorter than the original version.

2. Rank 3 permutation groups. In this section we collect the
necessary facts about rank 3 permutation groups which will be used
in the proof of the characterization theorem.

Let G be a finite transitive group of permutations of a finite set
X. Then the rank of G is the number of orbits of the stabilizer of
a point. Rank 3 means that for b< X the stabilizer of b, G, has
exactly 8 orbits on X, denoted b, D(b) and C(b). Choose the notation
in such a way that g(D(a)) = D(g(a)) and g(C(a)) = C(g(e)) for all
ae X, geG. Let |Y| denote the number of elements in a set Y. Set

[X|=mn,|D®)| =k and [CO)| =1
sothat n=1+k+ 1. Set

) for be D(a)

D@0 DON= 1, tor be o)

The parameters of G are the triple (», k, ).

LEMMA 2.1. Let G be a rank 3 permutation group. Then
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(i) pl=k(k—»—1).

(ii) G is primitive +ff 0 < p<k. If G is primitive, then
(0, k) > 1 where (I, k) denotes the greatest common divisor of and k.

(iii) IfG is imprimitive, then either (I + 1)|k or (k + 1)|l where
a|b denotes that a divides.

@(iv) If |G| is odd, k=1.

(v) If |G| is even, then DO\ — p) + 4(k + p) is a square.

(vi) If |G| is even, then a€ D(b) +ff be D(a).

Proof. See [3] and [4].

Assume |G| is even. Define the “lines” of X as follows: for a
b in X define

R(ab) = Nfz*: a, be z+}

where 2zt = zU D(2). Call R(ab) totally singular (resp. hyperbolic)
if acb* (resp. a¢bt).

LEMMA 2.2. Let G be a rank 3 group of even order. Then

(i) 9(R(ab)) = R(g(a)g()) for all a,be X, geG.

(ii) If zc R(ab) and z +# a, then R(ax) = R(ab) if be D(a) or
if be Cla) and p >\ + 1.

(iii) z€ R(ab) — {a} i a* N z* = a* N b*.

(iv) |R(abd)| — 1 divides k if be D(a).

Proof. See [4].

Let T(a) denote the pointwise stabilizer of a*. Then T(a) is a
normal subgroup of G,.

LEMMA 2.3. Let G be a primitive rank 3 group of even order
such that >N+ 1. Then

(i) T(a) fixes all lines through a.

(ii) T(a). =1 for ze C(a).

(iii) | T(a)| divides |R(ab)] — 1, if be C(a).

NoTATION. If Y C X, let Gy denote the global stabilizer of Y.
If Y, Z< X, then Gy , denotes Gy N G.

If YS X, let X —Y denote the set of elements of X which do
not belong to Y.

For a natural number », let v, denote (¢" — 1)/(g — 1).

3. The proof of the theorem. We now begin the proof of the
characterization theorem. Assume that G is a rank 3 permutation
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group of a set X which satisfies the hypotheses of the theorem.

LEemmA 3.1. (i) G is primitive of even order.
(ii) p=1x+2=w,,.
(iii) a* Nbd* = R(ab) for be D(a).

Proof. (i) Assume G is imprimitive. By Lemma 2.1 (iii) either
k + 1|l or (¢ + 1)|k. The first case does not occur because k + 1 =
Voo, L = ¢ and (v,_;, ¢"*) = 1. The second case does not occur
because [ +1 > k. So G is primitive. Since k #[, |G| is even by
Lemma 2.1 (iv).

(ii) By Lemma 2.1 (i), #q¢"* = qv,_(qv,_, — » — 1). By Lemma
2.1 (i), p# > 0. Since (¢"% v,_,) = 1, there is a natural number ¢
such that v, .t =¢. So A+ 1=¢qw,., —t¢"™®) and v,_, — t¢"* = 1.
If ¢t > 1, then

Vo —1=qv,_, =1q"° = 29"
which implies 2¢"* = ¢" 3 + 1, a contradiction becauseq = 2. Sot =
Ly=v_,and » —1=quv,_,.

(iii) Assume a* Nb* = R(ab) for be D(a). Let |R(ab)| = s + 1.
Son+2=s+1=p Since s|k = g by Lemma 2.2 (iv) and (g, p) =
1, there is a natural number ¢ such that st =¢q. Then g —1=
qv,_, = s implies tv,_, = 1 and r = 4, a contradiction. This completes
the proof of the lemma.

LemmA 3.2. (i) |a* N COB)| = q¢"* for be D(a).
(i) G,, is transitive on the points of a* N C(b) for be D(a).

Proof. (i) Since a* N C(d) = a* — (a' Nb*), by Proposition 3.1
(i) la*NCO) =k +1—(\+2) =q
(ii) Let be D(a) and let dea* N C(). Now

qV, 5+ | Gopt Gopal = |Gyt G|+ | Gopt Guil = |Gyt Gogl | Gigt Gopal
=q"7 | Gyat Gapal -

Let 2 = |Gu: Gapal- Since (v,_,, ¢"%) =1, it follows that ¢"*|@. But
2 < q"7? because

dfs = a* N CO) .

So x = ¢"7% and the proof is complete.

PROPOSITION 8.3. G, is transitive on the points of a* N b ;—
R(ab) for be D(a).

Proof. Let ¢ and e be distinct points of a* Nb* — R(ab). Since
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c¢ R(ab), by Lemma 2.2 (iii) ¢* 2 a* N b*. There is u€a* N b+ N C(c).
Since e¢ R(ab), there is vea*Nb*NC(e). There are 4 possible cases
to consider: (1) ue C(e), (2) veC(c), B8) u=e or v =c¢ and (4) ue
D(e) and v < D(c).

(1) uea*nNd-NC()nCe). Since |R(uc)| > 2, there is ye
R(uc) — {u, ¢}. By Proposition 3.1 (ii) and Lemma 2.2 (i) it follows
that R(yc) = R(uc) S a* Nb*. Because R(uc) is a hyperbolic line and
T(y) is transitive on the points unequal to y of R(yc), there exists ¢
in T(y) such that ¢(c) = u. Since a,bey*, it follows that tc G;.
Similarly there is z€ R(ue) — {u, ¢} and then R(ze) = R(ue) S a* Nb*.
Because R(ue) is a hyperbolic line and 7(z) is transitive on the points
unequal to of 2z R(ze), there exists s in T(z) < G,, such that s(u) = e.
Thus st(c) = ¢ and st € Gy,.

(2) wea*Nbd*NCk)N Cle). This case has a proof similar to
that of case (1).

(8) If w=-e or v =c, then R(ce) is a hyperbolic line in ¢* N b*.
Pick ze R(c, ¢) — {c, ¢}. There exists ¢t in T(z) = G,, such that t(c) = e.

(4) uea*nNbd-NC)n D) and vea* Nb- N D() N Cle). Since
| R(ce)| > 2, there is w € R(ce) — {¢, e}. Note that we C(u), for if we ut,
then ¢ e R(ce) = R(we) S u*, a contradiction. Now w e R(ce) Sat Nb*.
But w ¢ R(ab) because w € a* Nd* N C(w) N C(c). By case (1) there exists
g€ @G, such that g(c) = w. Note that we C(v) for if wev', then
¢€ R(ce) = R(we) € v, a contradiction. Now veat N bt N Cw)N Cle).
By case (1) there exists he G, such that h(w) = e. So hg(c) = ¢ and
hg e G,,. This completes the proof of the proposition.

PROPOSITION 3.4. The group G, s a rank 3 permutation group
on the set of totally singular lines through a.

Proof. Clearly G, is transitive on the set of totally singular
lines through a since D(a) is an orbit of G,. For be D(a) define the
sets D(E(ab)) and C(R(ab)) as follows:

D(R(ab)) = {R(ac): c€ a* N b+ — R(ad)}
C(R(ad)) = {R(ac):cca* N C()} .

We claim that these sets are well-defined, form a partition of
the set of totally singular lines through ¢ unequal to R(ab) and are
nontrivial orbits of G,z

These sets are well-defined. Indeed suppose R(ab) = R(ad) for
b, de D(a). By Lemma 2.2 (iii), a* N b* = a* Nd* and so a* N C(b) =
a* N C(d). Thus D((ad)) = D(R(ad)) and C(R(adb)) = C(R(ad)).

Let R(az) be a totally singular line. Either ze C(d) in which
case R(az)e C(R(ab)) or zeb*. If zeb*, then either z € R(ab) in which
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case R(az) = R(ab) or z¢ R(ab) in which case R(az) € D(R(ab)). Thus
R(ab) U D(R(ab)) U C(R(ab))

is a partition of the set of totally singular lines through a.

If R(ac) and R(ae) belong to D(R(adb)), then ¢ and ¢ are elements
of a*Nbt — R(ab). By Proposition 3.8 there is ge G, such that
g(c) = e. So g(R(adb)) = R(ab) and g(R(ac)) = R(ae). Thus D(R(ab))
is an orbit of G.zw-

If R(ac) and R(ae) belong to C(R(ab)), then ¢ and e are elements
of a*t N C(b). By Lemma 3.2 (ii) there is g€ G,, such that g(c) =e.
Thus C(R(ab)) is an orbit of G,z and G, is a rank 3 group on the
set of totally singular lines through a, as desired.

ProproSITION 3.5. Totally singular lines carry q + 1 points.

Proof. Let |R(ab)| =s + 1. We will show that s = ¢ by deter-
mining the rank 8 parameters of G, on the set of totally singular
lines through e¢. Let k, = |D(R(ab))| and I, = |C(R(ab))|. Then by
Lemma 3.1

b=+ 2~ (s+ 1))/s = (qu,_s/s) — 1
and
Lb=F+1—-ON+2)/s=q"%s.

So there is a natural number ¢ such that st = q. We claim that
t=1.

Now G, is a rank 3 group with k, = tv,_; — 1l and [, = t¢"°. We
claim that G, is primitive. If G, is imprimitive, then by Lemma
2.1 (iii) either %k, + 1 = tv,_, divides I, = tq"™%, a contradiction since
(0,5, @ %) =1 or I, + 1 divides k,, a contradiction since k, <1, + 1.
So G, is primitive. By Lemma 2.1 (ii), (k. 1) > 1. Let z = (k,, 1,).
We claim that 2 =q¢ + ¢t — 1.

Since 1 — q)v,_s + ¢"* =1, it follows that (1 —g)k. + 1, =¢q +
t — 1 and that there is a natural number » such that zu = ¢ + ¢t — 1.
By Lemma 2.1 (i) pl, = ku(k, — N, — 1). So there is a natural number
w such that wk,/z = ¢,. Then wl,/z =k, — X\, — 1 and

2+ 2=1t,, — tg"*w/z .

Now (z,t) = 1 for if the prime p|(z, t), then p|k, = tv,_; — 1 and p|¢,
a contradiction. So v,_; — ¢"*w/z is a natural number. From the
substitution of z = (¢ + ¢ — 1)/u into v,_, — ¢"*w/z = 1, it follows that

(ww—-1Dg*+1tv, = (@ — v,
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because t < ¢ —1 as s >1. Then 0= (uw — 2)¢g"* + 2 which forces
u=w=1. Soz=q+t—1, ¢, =ky/z and N\, + 2 = tt,.
Now |G,| is even. For if |G,] is odd, then k, = [, and tv, , — 1 =
tq,_,, which is impossible. By Lemma 2.1 (v)
D= (s —2— )+ 4=t — ) = @€ — 10+ 49 — D, + 4
= - . + b+ 2)

for some nonnegative integer b. If b =0, then t =¢q and s=1, a
contradiction. So b =1 and

4q — D, + 4 =20 — (b + 2) + (b + 2)
implies b = 2¢ for some natural number ¢. It follows that
((@—1) — ¢ -+ 1), =clc+2).

Assume ¢t > 1. Since (¢ — 1) — (¢ — 1)(¢c + 1) > 0, it follows that
g=@t—1c+t=c+2and ¢, < c¢lc+ 2) < ¢’ But

Ys = ki/z = (Qv,_s — 1)/2q .

If =7, then p, = (2v, — 1)/2¢ > ¢*, a contradiction.

If =5, then p, =¢ — (t — 1)*/(q¢ + ¢ — 1). Since ¢ > 1, there is
a natural number f such that (¢ + ¢ — 1)f = (¢ — 1)>. Since ¢ = st,
it follows that stf = (t —1)(¢t —1 — f) and that ¢/t —1—f), a
contradiction.

If r =6, then

o=@, — D@+t -1 =0t -1 g+t —-1)+q+1.

Note ¢ > 2 for ¢ = 2 implies ¢°/(¢ + 1) is a natural number. So g, =
2¢°/2¢ + ¢ + 1 =29 + 1. Since g, divides ¢(c + 2) and (¢c,c+2) =1
or 2, it follows that ¢, < 2(c + 2). But ¢ +2=<¢ and so ¢, <2q, a
contradiction. Therefore ¢t =1 and s = ¢q for all » = 5.

LEMMA 3.6. If be D(a), then X = U {¢*: c€ R(ab)}.
Proof. We know |R(ab)| = q + 1. Let R(adb) = {d,, d,, *++, d¢y:}.

Let R=U{di:1<i=<q+1}. Express R as a pairwise disjoint
union of ¢ + 1 subsets of X.

q+1 i—1
R=diU u(d,-i nn C(dj)> .
i=2 =1
We claim that

d n n C(d;) = di N C(dy) .
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This is true for ¢ = 2. Let ¢ > 2. Then
a1 c@) = (d 0 c@)n N C@))u(d: ne@)n (Ua)).

Suppose there is zed! N C(d,) N (Uizid;). Then wed- Nd; N Cd,)
for i+ j. So d, e R(d.d;) S ', a contradiction. So

@ nc@)n(Ud;) =2
and the claim holds for 2<71<¢ + 1. So
q+1
R = dll' U l:‘!. <dzJ f C(d1)>
and this union is pairwise disjoint. Now
IRl=k+1+qk+1—-ON+2)=wv =|X|.
Thus R = X and the proof of the lemma is complete.

PRrRoOPOSITION 3.7. X together with the totally singular lines of
X forms a nondegenerate Shult space of finite rank = 3 in which
lines carry q + 1 points.

Proof. It suffices to show that if x¢ R(ab) for be D(a), then z
is adjacent to either one point or all points of R(ab). By definition
two distinet points are adjacent if they determine a totally singular
line. By Lemma 3.6, there exists ¢ ¢ R(ab) such that zcc-. If zed*
for d e R(ab) — {c}, then R(ab) = R(cd) Sz’ and zce" for all ec R(ab).
Thus X is & nondegenerate Shult space in which lines carry ¢ + 1
points.

It remains to show that X has rank = 3. For be D(a), there is
ceaNb" — R(ab) by Lemma 3.1 (iii). Define the “plane” R(abc) by

R(abe) = N{z*:a, b, cez}.

We claim that R(abc) is a subspace of the Shult space X. If so,
then X has rank = 3 since

a < R(ab) < R(abc)

is a chain of subspaces of X. To prove that R(abc) is a subspace,
we need the following lemma.

LEMMA 3.8. we R(abe) iff w-2a*Nb Ne-.

Proof. Let we R(abc). If uea*Nb-Nec, then a,b, ccu* and
weu' since we R(abe). Sowcw' and a* Nb- Ne- Z w'. Conversely,
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assume ¢t Nb* Net & w!. Leta,b,cez'. Thenzea*Nb Nec- < wt
and wez'. By definition of “plane,”w e R(abc) and the lemma is
proved.

By definition R(abc) is a subspace if any two points of R(abc)
are adjacent and if any line meeting R(abc) in more than one point
is contained in R(abc). Let d, ec R(abc). Since a, b, ccaNb*Net,
it follows that R(abc) S a¢* Nb* Ne¢'. By Lemma 3.8.

de Rab) ST a*Nb*Ne- e .

So any two points of R(abc) are adjacent. Let the line R(xy) meet
R(abe) in {u, v}. Then R(xy) = R(uv) and 2* N y* = u* N v* by Lemma
2.2. If ze R(xy), then

zi;mlnyL:uJ_va;aLmbmeL

since u, v € R(abe). By Lemma 3.8, z€ R(abc). Thus R(zy) S R(abc)
and R(abc) is a subspace of the Shult space X, as desired.

PROPOSITION 3.9. (i) q is a prime power and r is even.

(ii) Either X s isomorphic to the polar space S associated
with an alternating form f defined on a projective space P of dimen-
sion r —1 over GF(q) or X 4s isomorphic to the polar space S
associated with a symmetric form f defined on a projective space
P of dimension r over GF(q) for q odd.

Proof. By Proposition 8.7 and Theorem 4 of Buekenhout and
Shult [1], X is a polar space of rank = 3 in which lines carry q +
1 =3 points. Since |X| = v, is finite, by Theorem 1 of Buekenhout
and Shult [1], X is isomorphic to the set of singular points of a
classical symplectic, unitary or orthogonal geometry. Because a line
of X carries ¢ + 1 points and corresponds to a totally singular line
of a classical geometry, it follows that ¢ is a prime power. Note
that |X| = v, equals the number of singular points of a classical
geometry. It follows that either the geometry is symplectic or orthog-
onal and that » = 2m for some m = 3 since X has rank > 3. Statement
(ii) now follows.

ProposITION 3.10. (1) G s isomorphic to a subgroup of PI'U(f),
the group of collineations of P which preserve the form f.

(ii) Forze X, o(z') = {we P: f(w, w) = 0, f(w, p(x)) = 0} where
@: X— S 1s a polar space isomorphism.

(iili) For z,ye X, @(R(z, y)) is the set of singular points of the
projective line determined by @(x) and P(y).
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(iv) X s isomorphic to a symplectic geometry.

Proof. (i) The group G is a subgroup of the group of automor-
phisms of the polar space X, which we denote by Aut(X). If
®: X— S is a polar space isomorphism, then define a map

s Aut (X) — Aut(S) by
¥(s) = psp™

for seAut(X). It follows that + is a group isomorphism. Now
Pr'u(f) = Aut (S) by a natural map defined by

Prv—— Aut (S)
# — the restriction of w to S.

See Dieudonné [2] pp. 82-84. So (G) is a subgroup of PI'U(f).
(ii) This statement claims that @(x U D(x)) is the hyperplane of
singular points of S which are perpendicular to @(x). Denote this
hyperplane by o(x)‘, where * is the polarity determined by the
form f.
Since 2+ = Y{R(xb): b € D(x)}, it follows that

P(@') = U{p(B(«d)): b e D(x)} < P(x)*

because @(R(xb)) is a totally singular line of P. So @(z') & P(x)*.

Conversely for ze @(x)*, there exists be X such that z = @(b)
and @(b)*®(x). Suppose b¢ x*. Then be C(x), an orbit of G,. For
ce C(x) there exists ge G, such that g(d) = ¢. Then +(g) <€ Aut (S)
and y(g) preserves the polarity +. Since @(b)‘o(x), it follows that
(¥ (9)(P®) (¥(9)(P(®)) and P(c) P(x). So P(c) e p(x)* for all ¢ € C().
Since @(x') < @(x)*, it follows that (X) = S < o(x)*, a contradiction.
Thus b€z, p(b) = z€ p(x') and P(x)* S P(x4).

(iii) Since R(xy) = N{u': x, y € y*}, it follows from (ii) that

P(R(xy)) = N{vt:veS and @(x), (y)ev'}.

So @(R(xy)) is the set of singular points of the projective line deter-
mined by @(x) and @(y).

(iv) Assume X is an orthogonal geometry. If ye C(x), then
@(R(xy)) is a hyperbolic line in an orthogonal geometry and so carries
just 2 singular points. But |[@(R(xy))| = |R(zy)| > 2, by hypothesis
of the theorem. This contradiction shows that X must be a symplectic
geometry. So the proposition is established.

ProposITION 8.11. (i) The nontrivial elements of T(x) correspond
to elations of P.
(i) V(@) contains PSp(2m, q) as a normal subgroup.
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Proof. (i) Because X is symplectic, all points of P are singular
and S = P. Because |R(ax)| > 2 by Lemma 2.1 (iii), there exists a
nontrivial element ¢ of T(x). Then ¢ fixes ' pointwise and ¢ fixes
no point outside z* by Lemma 2.3 (ii). It easily follows from Pro-
position 3.10 (ii) that «(¢) fixes the hyperplane ®(x)! pointwise and
(t) fixes no point outside this hyperplane. Thus ++t) is an elation
of P. Since |T(x)|||(|R(xzy)| — 1) for ye C(x), since hyperbolic lines
of S carry q + 1 points and since T(x) is transitive on R(xy) — {x},
it follows that | T(z)| = q.

(ii) 4(G) contains ¢ elations for each point v of P. Since these
elations generate PSp(2m, q), (ii) holds.
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