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RADON PARTITIONS IN REAL LINEAR SPACES

C. M. PETTY

An intimate connection is established between primitive
Radon partitions and generalized poonems of a set in a real
linear space &. It is shown that if K c £f is convex then
K is the convex hull of its extreme points if and only if the
intersection of poonems of K is a poonem of K. Among the
applications is a study of /^-neighborly sets. This yields a
considerable generalization of the theory of A>neighborly
polytopes.

1* Basic concepts* The notion of a primitive partition introduced
in Rd by Hare and Kenelly [3] may be formulated for a real linear
space J^. A pair of subsets (A, B) is called a Radon partition pro-
vided Af]B = 0 and conv A Π conv B Φ 0. A Radon partition {A, B)
is called primitive if (A', B') with A'cA, B'aB is a Radon partition
only in the case A! — A and B' = B.

If Pa^ then a subset S c P is called a poonem of P provided
(a) conv S = conv P f] aff S and (b) conv P ~ conv S is convex. If (a)
holds for some S c P, conv P ~ conv S = conv P ~ aff £ and if P is
a closed convex set in Rd and S c P is convex then this definition
reduces to the definition of poonem given in [2, p. 20]. However,
the admission of nonconvex poonems is essential for the results obtained
here.

Primitive partitions and poonems are basic in that other concepts
may be defined in terms of them.

DEFINITIONS 1.1. (a) A subset Pa ££* is called a simplex provided
there is no primitive partition (A, B) with A[j BdP. (b) If F is
a flat and PaF, then P is said to be in general position in F provided
for any subset S c P either S is a simplex or aff S = F. (c) A set
P c J^f is said to be /^-neighborly, where k is a cardinal number,
provided every subset S c P with card S S k is a poonem of P.

If K is a convex d-polytope in Rd and 1 ^ & ̂  d, then K is
^-neighborly in the usual sense [2, Chapter 7] if and only if P =
vert K is ^-neighborly as defined here.

2. The principal theorems* We first recall or prove some basic
results.

LEMMA 2.1. ( a ) // {A, B) is a Radon partition, then there
exists a primitive partition (A', B') with A ' c i and B1 aB. If (A, B)
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is primitive, then both A and B are finite simplices, conv A Π conv B
is a singleton and card (A (J B) = dim aff (Al) B) + 2.

(b) A nonempty set P is a simplex if and only if P is an
a finely independent set.

(c) If xea.fl P but x£ P, then there exists a simplex TaP
and a primitive partition (A, B) such that A U B = {x} U T.

Proof. (a) Suppose (A, B) is a Radon partition and p e conv A Π
conv B. Then p is a convex combination of a finite number of points
in A and p is also a convex combination of a finite number of points
in B. See [5, p. 15]. The existence of a primitive (A', B') now follows
easily. For a proof of the remaining statements in (a) see [1] and
[3].

(b) A finite set of (distinct) points x19 •••,&„ is affinely inde-
pendent if the conditions a^ + + anxn = 0 and a^Λ- + cc% = 0
are simultaneously satisfied only by aγ = • = an = 0. A nonempty
set P is affinely independent if every nonempty finite subset of P is
affinely independent. In the proof of (a) above, the difference of the
two convex combinations which represent p yields an affine dependency.
It is now easily shown that a nonempty set P is affinely dependent
if and only if there exists a primitive {A, B) with A U B a P.

( c ) If S = {xlf , xn}czP, then aff S = {a.x, + + anxn \ a, +
. . . + an = 1} and aff P = \J {aff SI S c P is finite}. It follows that
aff P= Uίaff T\ TaP is a finite simplex}. If xeaffP but x$P,
then there exists a minimal simplex TcP such that # e aff Γ but
x&T. Thus, {#} U T can be partitioned so that A{jB= {x}{J T and
(A, 5) is a Radon partition. But (A, B) must be primitive since,
otherwise, x would lie in the affine hull of a proper subset of T
contrary to the minimal property of T.

THEOREM 2.2. Let SczPcz^f. Then the following four state-
ments are equivalent:

(a ) S is a poonem of P.
(b) // (A, B) is primitive with A c aff S and B c conv P, then

B c conv S.
(c) If (A, B) is primitive with AaS and BcP, then j?c

conv S.
(d) conv (P - conv S) Π aff S = 0 .

Proof, (a) => (b). Let S be a poonem of P and suppose (A, B) is
primitive with i c a f f S and 5 c conv P. Let p e conv A Π conv 5
and let B= Bί\jBi where ^ c conv S and i?2 c conv P — conv S.
By definition of a poonem, conv B2 c conv P ~ conv S = conv P — aff S
and therefore conv 5 2 Π a f f S = 0 . Since p e conv i c a f f S , it follows
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that p $ conv B2 and therefore B1 Φ 0 . Suppose B2 Φ 0. If p e
conv B19 then (A, Bλ) would be a Radon partition contradicting (A, B)
being primitive. Thus, p e conv B = conv (conv Bx U conv B2) but #> £
convi?! Uconvί?2. By a basic result in real linear spaces [5, p. 16],
there exist pi e conv Bt such that p = tpι + (l — t)p2 where 0 < t < 1.
Since both p and ^ belong to aίf S, so also does p2. But conv I?2 Π
aff S = 0 . Hence j?2 = 0 which completes the proof.

(b) => (c) is trivial.
(c) => (d). Let Kx = conv £, Ώ — P~KX and iζ> = conv Zλ Suppose

there exists a point p € iζ> Π aίf S. lΐ pe Klf then (S, D) is a Radon
partition. By Lemma (2.1a), there exists a primitive (A\ B') with
i ' c S and £' c D. But (c) implies B' c ^ and therefore B'aDf)
K,= 0. Thus, p e aff S ~-Ki. By Lemma (2.1c), there exists a
simplex TczS and a primitive (A, B) such that 4 U 5 = Tl){p}.
We may assume that pe B and therefore i c Γ c S . Let C = B ~
{p} c T. Now (A, CUD) is a Radon partition since Af)(C{J D) = 0
and conv A Π conv (C U D) D conv A Π conv B Φ 0. By Lemma (2.1a),
there exists a primitive (A', B') with 4 ' c i c Γ c S and B' c C U
ΰ c P . Now (c) implies 5' c ^ Since 2 ) 0 ^ = 0 we have J5' c
C c Γ . But T is a simplex and therefore A' U B' ς£ T. Hence, iΓ2 Π
aff S - 0 which completes the proof.

(d) => (a). As above, let Kγ = conv 5», D~P~KX and iΓ2 = conv Z>.
If ZΊ = 0 , then S = 0 is a poonem of P and if K2 — 0 , then
conv S = conv P which, by definition, implies S is a poonem of P.
We may, therefore, assume that Kγ and iζ, are nonempty. Let
p e conv P Π aίf S. Since p e conv (i^ U K2), there exist ^ e Kt such
that p = tp1 + (1 - t)p2 where 0 ^ ί ^ 1. If ί < 1, then p2e aff S
which contradicts (d). Hence £ = 1 and p = pxe Kx. Thus Kt =
conv P Π aff iS which establishes part (a) of the definition of a poonem.
Now, suppose convP~ Kγ is not convex. Then, there exist rl9 r2e
conv P ~ Kγ such that for some a, 0 < a < 1, the point pQ = α:rL +
(1 — α)r2 G ZΊ. Since τt e conv P = conv (iΓi U î 2)> we have r£ =
(1 - ^ P ί + A?* where p, e K19 qt e K2 and 0 <; /S, ̂  1. However,
/9, > 0 since r€ g iΓL. Let λ = β.a/iβ.a + /32(1 - α)), 0 < λ < 1. Then,
Xqλ + (1 - λ)g2 = τopo + τ1g1 + r2p2 where r0 = (β,a + /32(1 - a))~\
zγ = — α(l — /30-Γo, and τ2 = — (1 — a)(l — β2)τ0. Since p0, plf p% belong
to Kx and r0 + τ1 + r2 = 1, the point λgx + (1 — λ)g2e aff S which
contradicts (d). Hence conv P ~ Kx is convex. This completes the
proof of Theorem 2.2.

COROLLARY 2.3. Let Q

( a ) If Q is a poonem of S and S is a poonem of P, then Q
is a poonem of P.

(b) If Q is a poonem of P, then Q is a poonem of S.
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( c ) P is a simplex if and only if every subset of P is a poonem
of P.

Proof. ( a ) Suppose (A, B) is primitive with AcQ and BaP.
We need only show that JScconv Q. Since S is a poonem of P and
Aa S, we have B c conv S. But Q is a poonem of S. Thus, J3 c
conv Q.

Proofs of (b) and (c) are easily obtained.

COROLLARY 2.4. Let Kcz^f be convex and let PC(K) be the set
of all convex poonems of K. If PC(K) is partially ordered by inclusion,
then PC(K) is a complete lattice where the greatest lower bound of a
family of convex poonems is their intersection.

Proof. The empty set 0 and K itself are convex poonems of
K. We need only show that the intersection H = f[Ka of a family
{Ka} of convex poonems of if is a poonem of K. Suppose (A, B) is
primitive with A c H and Bd K. Since Ka is a poonem of K and
A c Ka, we have BaKa. Thus BciH and therefore H is a poonem
of K which completes the proof.

Even for convex K, the intersection of poonems need not be a
poonem. In this direction, the following theorem with P — K yields
a new characterization of those convex sets K for which K = conv
(ext K).

THEOREM 2.5. Let Pa£f. Then conv P = conv (ext (conv P)) if
and only if the intersection of an arbitrary family of poonems of
P is a poonem of P.

Proof. Suppose conv P— conv (ext (conv P)). Let {Sa} be a family
of poonems of P and let S = Π Sa. Suppose {A, B) is primitive with
A c S a n d S c P . By Theorem 2.2, JScf |convS α . Let beB. If
b e ext (conv P), then b e ext (conv Sa) for each a and it follows that
be S. Now suppose b £ ext (conv P). Since be Pa conv P — conv
(ext (conv P)), there exists by Lemma 2.1a, a primitive ({6}, T) with
Γ c ext (conv P). For each a, conv (JB U Sa) = conv Sα and therefore,
by definition of a poonem, B \J Sa is also a poonem of P. Since
{b}c:B\J Sa, Theorem 2.2 implies Γ c conv (B U Sa) = conv Sβ. Hence,
for each a, TaSa and therefore Γ c S . The latter implies be
conv S. Thus, 5 c c o n v S and S is a poonem of P by Theorem 2.2.

Now suppose that the intersection of an arbitrary family of
poonems of P is a poonem of P. Let pe P. We will show that p e conv
(ext (conv P)). Let {Sa} be the family of all poonems of P which contain
the point p and let S — f}Sa. By hypothesis, S is the smallest poonem
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of P which contains the point p. Now S ~ {p} c ext (conv S). For
suppose qe S, q Φ p. If conv (S ~ {q}) — conv S, then S ~ {q} is a
poonem of P which contains the point p contrary to the definition of
S. Hence q e ext (conv S). By Corollary 2.3a, we have ext (conv S ) c
ext (conv P). Thus, if p g ext (conv S) then p e conv (S ~ {p}) and,
in either case, p e conv (ext (conv P)). Hence, it follows that conv P —
conv (ext (conv P)).

THEOREM 2.6. Let SaPa^f. If P = ext (conv P),
following three statements are equivalent:

( a ) S is a poonem of P.
(b) 1/ (A, 5) is primitive with A c S and BaP, then Ba S.
( c ) conv (P ~ S) Π aff S = 0 .

Proof. This follows directly from Theorem 2.2 with two ob-
servations. First, if i?cP(ΊconvS, then the hypothesis implies BaS.
Second, the hypothesis implies P ~ S = P ~ conv S.

The above theorem is a generalization of a result of M. Breen
[1, Theorem 4], who established the equivalence of (a) and (b) when
P in the vertex set of a convex polytope in Rd.

COROLLARY 2.7. Let Pcz^f satisfy P= ext (conv P).
( a ) If St and S2 are poonems of P with aff Si = aff S2, then

Sι = S,.
(b) If P is in general position in aff P, £λew every poonem

of P other than P itself is a simplex.

Proof. ( a ) This follows from the equivalence of (a) and (c) in
Theorem 2.6.

( b) Suppose S c P is not a simplex. By Definition 1.1b we have
aff S = aff P. If S is a poonem of P, then S = P by part (a).

3* Applications* Given S c P c ^ , we first consider the prob-
lem of the existence of a Radon partition (A, B) with A\J B = P and
ScA. This problem was solved by Hare and Kenelly [3] for finite
sets P in general position in Rd. The results here form a substantial
generalization.

THEOREM 3.1. Let SaPa^. Then there exists a Radon
partition (A, B) with A{JB'= P and SaA if and only if either
P ~ S is not a simplex or conv S Π aff (P ~ S) Φ 0.

Proof. Suppose there exists a Radon partition (A, B) with A U
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B — P and SczA. Then there exists a primitive (A', B') with A' c A
and B' czBczP ~ S. If A1 c P — S, then P - S is not a simplex by
Definition 1.1a. Therefore, we may assume that S n i ' ^ 0 .
Suppose conv S ΓΊ aff (P ~ S) = 0 . Then since conv (P — conv (P ~
S)) Π aff (P ~ S) c conv S n aff (P - S), by Theorem 2.2, P - S is a
poonem of P and since B' aP ~ S we have A' cconv (P ~ S)a
aff (P — S). Hence, A' Π conv S = 0 which contradicts S f l 4 ' ^ 0 .
Thus, conv S Π aff (P - S) Φ 0.

Now suppose P ~ S is not a simplex. Then there exists a primi-
tive (A', B') with A ' U δ ' c P - S . Let A - A' U S and B = P - A.
Then (A, 5) is a Radon partition with A[j B = P and SczA. Finally
suppose conv S Π aff (P ~ S) Φ 0 . If P ~ S is a poonem of P, then
conv (P ~ S) = conv P n aff (P - S) =) conv S n aff (P - S) ̂  0 , and
consequently (S, P ~ S) is a Radon partition. On the other hand, if
P ~ JS is not a poonem of P, then there exists a primitive (A', B')
with 4 ' c P - S a n d 5 ' c P . Let A - P - A', B - A'. Then (A, B)
is a Radon partition with A{J B = P and S c i .

COROLLARY 3.2. Let P be in general position in aff P and let
S be a nonempty subset of P. Then there exists a Radon partition
(A, B) with A U 2? = P αwd SczA if and only if conv S ί l a f f ( P -

Proof. This follows directly from Theorem 3.1 with the obser-
vation that if P ~ S is not a simplex then aff (P ~ S) — aff P and
therefore conv S ί l a f f ( P - S ) ^ 0 .

We now turn to the study of ^-neighborly sets. For P c y , we
define the cardinal number h(P) by

3.3. h(P) = sup {card (A U B) \ (A, £) is primitive and A U B c P}.
It is understood that A(P) = 0 if P is a simplex. From Lemma 2.1a
we have

3.4. h(P) ^ dim (aff P) + 2.

THEOREM 3.5. Let PaJzf and let k be a cardinal number.
Then the following three statement are equivalent:

( a) P is k-neighborly
(b) Each subset SdP with card S = h(P) is k-neighborly
( c ) There exists no primitive (A, B) with A U BczP such that

min (card A, card B) <L k.

Proof, (a) => (b). By Corollary 2.3b, if P is ^-neighborly then
every subset of P is Λ-neighborly.

(b) => (c). Suppose there exists a primitive (A, B) with A U 5 c P



RADON PARTITIONS IN REAL LINEAR SPACES 521

and card A ^ k (and therefore k ^ 1). Since card (A[J B) ̂  h(P) ^
cardP, there exists QaP with A[J BaQ and card Q = M^) By
hypothesis, Q is /^-neighborly and hence A is a poonem of Q. How-
ever, Theorem 2.6 applied to AczQ gives 5 c A which is a contra-
diction.

(c) ==> (a). Let S c P with card S ^ k. By hypothesis, there is
no primitive (A, B) with AaS and BaP. Hence, S is a poonem of
P by Theorem 2.2. This completes the proof.

THEOREM 3.6. Let P c ^ and let k be a cardinal number.
( a ) If k is finite, &<cardP, and every subset SaP with

card S = k is a poonem of P, then P is k-neighborly.
(b) If k is trans finite, k <; card P, and every subset SaP

with card S — k is a poonem of P, then P is a simplex.

Proof. ( a ) We may assume k ^ 2 for otherwise the proof is
trivial. We first show that convP = conv (ext (conv P)). Let pe P
and let SaP with c a r d S = k contain the point p. Since Sis finite,
p e conv (ext (conv S)) and since S is a poonem of P, ext (conv S) a
ext (conv P) by Corollary 2.3a. Thus, conv P = conv (ext (conv P)).
In the above argument, the intersection of all such SaP is {p} since
k < card P. By Theorem 2.5, {p} is a poonem of P and hence P =
ext (conv P).

Now suppose there exists a primitive (A, B) with 4 u 5 c P and
card A ^ k. Let S c P with A a S, card S = k and such that P~ S
contains a point of Z?. By hypothesis and Theorem 2.6 we have
BaS which is a contradiction. Hence, by Theorem 3.5, P is fc-
neighborly.

(b) We first show that P = ext (conv P). Suppose there exists
a primitive ({a}, B) where aeP and BaP. Let B = {6̂  , bn} where
n ^ 2. Then α = Σ?=i λ A, 0 < λ, < 1, and Σ?=i \ = 1. Let B1 =
β — {6J. Since {α} and conv B1 are disjoint convex sets, by a
separation theorem for real linear spaces [5, p. 20], there exist
complementary convex sets C and D such that ae C, BίaD and
CuD = ̂ f, CΠD=0. Either card (CΓιP)^k or card (Df]P)^ k.
Suppose card (C (1 P) ̂  k. By hypothesis, there exist a poonem S of
P with ae S, SaC and card S = k. By Theorem 2.2, we have 5 c
conv SaC which is a contradiction. Now suppose card (ΰ ίl P) ̂  k.
By hypothesis, there exists a poonem S of P with α e S , S ^ { α ) c i )
and cardS=fc. By Theorem 2.2, we have J5cconvS. Hence,
Ba conv ({a} U D). Therefore, for each bteB, there exists dteD
such that for some tif 0 < t{ ^ 1, bt = ί^ + (1 — ί*)α. It follows that
a = (Σ?=i ^Ά)"1 Σ?~i (λΆ)^ie -D which is a contradiction. Hence P =
ext (conv P).
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Now suppose there exists a primitive (A, B) with A u 5 c P .
By hypothesis, there exists a poonem S of P with Ac: S, B Γ) S = 0
and card S = k. By Theorem 2.6, we have B c S which is a contra-
diction. Hence P is a simplex.

THEOREM 3.7. Let PaJ^f be k-neighborly and let S c P .
( a ) If 2k + 1 ̂  fe(S), ίfeen S is a simplex.
(b) If 2k — 1^ dim(affS), £fce?ι S is a simplex.
( c ) // 2k = dim (aff S), then S is in general position in aff S.

Proof. ( a ) If S is not a simplex, then there exists a primitive
(A, B) with AuBdS. Since 2& + 1 ̂  /&(£) ̂  card A + card 5, either
card A ^ k or card B ^ k. But this contradicts Theorem 3.5.

(b) This follows from 3.4 and part (a).
( c) Suppose there exists Q c S which is not a simplex. Then

k must be finite and by part (a) we have h(Q) ^ 2k + 2. Using 3.4
we have dim (aff S) ̂  dim (aff Q) ̂  2& = dim (aff S). Thus dim (aff S) =
dim (aff Q) = 2ifc. Since & is finite and aff S =) aff ζ> we have aff S =
aff Q and, by Definition 1.1b, S is in general position in aff S.

THEOREM 3.8. Lei P c Jίf be an infinite set which is in general
position in aff P and let k be a cardinal number such that 2k g
dim aff P. Then there exists an infinite subset of P which is
k-neighborly.

Proof. If dim aff P~ 1, then any subset of the line affP is in
general position in the line but any such subset is also O-neighborly.
If dim aff P is infinite, then P must be a simplex. For if (A, B) is
primitive with AlJ BaP, then A{J B is not a simplex nor is
aff (A U B) = aff P. We may therefore assume that d = dim aff P is
a positive integer greater than 1 and we will show that there exists
an infinite subset of P which is [c?/2]-neighborly. Since P is in gener-
al position in affP, each subset S c P consisting of d + 2 points
determines a unique primitive (A, B) with A U B — S. Thus the set
all such subsets S c P may be partitioned into [d/2] + 1 mutually
exclusive classes Ct according to the value i — min (card A, card B).
By the infinite version of Ramsey's theorem [4, p. 82], P contains
an infinite subset Q such that every subset of Q consisting of d + 2
points belongs to the same C,. By use of Gale diagrams, M. A.
Perles has shown [2, p. 120] that if d + 3 points of Rd are in general
position then some d + 2 of them are the vertices of a [d/2]-neighborly
polytope. Hence, for the particular Ct referred to above, we have
i = [d/2] + 1. Consequently, by Theorem 3.5, Q is [d/2]-neighborly.
This completes the proof.
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We conclude with some example which are pertinent to the
general situation considered here.

EXAMPLES 3.9. ( a ) There exist nondenumerable sets P in Rd,
d ^ 1, which are [d/2]-neighborly. Let x(t) = (ί, t\ , td)e Rd and
let P = {x(t) I ί real}. Each subset of P with d + 2 points is [d/2]-
neighborly [2, p. 61]. Since Λ(P) = d + 2, P itself is [d/2]-neighborly
by Theorem 3.5.

(b) Let £f be the real linear space of all real-valued functions
defined on the set of positive integers. Let x(t) = (ί, ί2, ) e ^
and let P = {α(ί) 11 real}. Then P is a simplex. This follows from
Lemma 2.1b by showing that every nonempty finite subset of P is
an affinely independent set. The latter may be established by a proof
similar to that given in [2, p. 62] where the corresponding problem
for the moment curve is considered.

(c) Let £f be an infinite dimensional real linear space. For each
finite cardinal number k there exists Pka Sf with aίf Pk = Sf such
that Pk is Λ-neighborly but not (k + l)-neighborly. For k = 0, we
may take Po = =SP. Now let k ^ 1 and let Ha <£? be a Hamel basis
for Sfi Let {p19 , pk} and {ql9 , qk} be disjoint subsets of H
and let p0 = - Σ t i pi9 Qo - - Σ?-i ?i Define P, = {p0, q0} U iϊ. If
A = {po, Pi, , P*} and 5 = {g0, ?i, , ?fc}, then (A, B) is primitive,
the origin being the unique point in conv A Π conv B. Since aίf Pk

contains the origin, we have aίf Pk = £f. Moreover, (A, B) is the
only primitive, with A{j BaPk which may be verified by studying
the possible aίϊine dependencies in Pk. Thus, by Theorem 3.5, Pk is
^-neighborly but not (k + l)-neighborly.
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