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if-SPACES, THEIR ANTISPACES AND
RELATED MAPPINGS

NORMAN LIDEN

The purpose of this paper is to investigate various proper-
ties of a mapping between spaces X and Y by relating them
to properties of the corresponding mapping between the
antispace of X and that of Y. The particular properties
discussed include "closed", "proper", "perfect", "compact"
"reflexive compact" and "compact trace". In general the
context is that of /ospaces.

Throughout the paper X and Y are topological spaces in which
each compact set closed, f:X—*Y is a (not necessarily continuous)
surjection between the spaces X and Y and /*:X*—»Y* is the cor-
responding surjection between the antispace of X and the antispace
of Y.

1. Antispaces* All of the results in this section are due to J.
deGroot and appear, in essence, in [5].

Suppose X is a topological space. The collection of all compact
sets in X is closed under the formation of finite unions and arbitrary
intersections. Consequently this collection together with the set X
itself can be taken as the closed sets for a new (weaker) 2\ topology
on X, denoted X*, and called the antispace of X. Furthermore each
closed subset of X is compact in X* and, provided X is a k-space
(a T2 space in which a set is closed if and only if it has compact
intersection with each compact set), each compact subset of X* is in
turn closed in X. The relation between the closed and the compact
sets in X and in X* is indicated in the following diagram.

X — X*
Closed ^ if ^ is aj^sgace c o m p a c t

Compact ^ j f a proper subset

If X is compact, X and its antispace X* coincide. If X is non-
compact, X* is a compact, connected, locally connected, Tίf non-T2

space in which each nonempty open set is both dense and connected.
The concept of an antispace was first introduced by J. deGroot

in [5]. For papers in related topics see [6], [7] and [8].
The concept of a Λ -space was first introduced by R. Arens in
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[1] The category of ^-spaces includes all first countable T2 spaces,
spaces complete in the sense of Cech (Gδ subsets of compact T2 spaces)
and all quotient spaces of locally compact T2 spaces. In fact Cohen
[4] has shown that the latter category is all ^-spaces. For further
discussion the reader is referred to [2, 3, 11, 12, 13, 14, 15 and 17].

2, Mappings* / : X —>Y is proper if f"\K) is compact in X
whenever K is compact in Y. It is easy to show that a 1-1, closed
(open) mapping is proper as is a continuous mapping from a compact
space onto a T2 space. On the other hand, a proper mapping from
a T2 space onto a compact space in continuous. / is perfect if it
is continuous, closed and has compact point inverses. / is quotient
if a set C in Y is closed if and only if f~\C) is closed in X. A
continuous closed (open) mapping is quotient. Finally / is compact
if f(K) is compact in Y whenever K is compact in X. Clearly, a
continuous mapping is compact.

THEOREM 1. Let f:X-+Y he surjective and /* : X* —>Γ* the
corresponding map of the antispaces.

1. If f is proper then / * is continuous.
2. Let Y be T2. If f* is continuous and nonconstant then f

is proper.
3. Let Y be a k-space. If f is continuous then f* in proper.
4. Let X be a k-space. If / * is proper then f is continuous.
5. Let X be a k-space. If f is closed then / * is compact.
6. Let Y be a k-space. If f* is compact then f is closed.
7. If f is compact then / * is closed.
8. If f* is closed then for each compact CaX, f(C) is either

compact or equal to Y.

Proof. All parts (except possibly 2) are straightforward applica-
tions of the results of §1. For a proof of 2 suppose / * is continuous
and nonconstant and C is a compact set in 7. If C Φ Y then C is
closed in Y*f f~\C) is a proper closed subset of X* and hence f~\C)
is compact in X. If C— Y{Y is compact and hence Y— Y") then
X = f~\Y) is also compact by the following argument: Let y1 and
y2 be distinct elements of Y = Y*. Since Y is T2 there exists dis-
joint open sets U and V such that yγ^U and y2e V. Then / * - 1 ( F )
and f*~\U) are nonempty open sets in X* and hence from §1 X is
compact.

Parts 1 and 6 of Theorem 1 yield the following result of Arhangelski
in [2].
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THEOREM 2. Let Y be a k-space. If f: X—+Y is proper then f

is closed.

If in Theorem 2 the condition "closed" is augmented by assuming
the function to have compact point inverses as well, then the fe-space
condition on Y can be dropped to yield the following converse.

THEOREM 3 If f: X-+Y is closed and has compact point inverses
then f is proper.

Proof. Let A be a compact set in Y, let B = /"'(A) and suppose
{CaΓ) B} is a collection of sets having the finite intersection property
where each Ca is closed in X. Let {Da} be the collection of all finite
intersections of Cα's. Clearly the collection {Da Π B) has the finite
intersection property, as does the collection {f(Da) Π A}. Moreover
each f(Da) is closed in Y. Since A is compact, there exists a point
V € Π« (f(Da) Π A). Now f~\y) is compact and the collection {f'\y) Π
Ca} has the finite intersection property. Finally, since f~1(y)dB9

the collection {f~ι{y) f]Caf]B} = {f'\y) Π Ca] and since f~ι(y) is com-
pact, the collection {f~\y) ΓΊ Ca Γ) B} has nonempty intersection. There-
fore {Ca Π B} has nonempty intersection. Hence f~ι{A) is compact.

COROLLARY. Let Y be a k-space. f:X-+Y is proper if and
only if f is closed and has compact point inverses.

Proof. The proof is an immediate consequence of Theorems 2
and 3.

Notice that Theorem 3 implies the well-known fact that a perfect
mapping is proper. Conversely, the corollary shows that a continuous,
proper mapping onto a Λ-space is perfect. In this latter result the
"continuity" condition cannot be weakened to "compact" for if X is
a T2 space which is not a fc-space then the identity map from X onto
k(XY is compact and proper (X and k(X) have the same compact
sets) but it is not continuous (and hence not perfect).

THEOREM 4. Let X be a k-space. f:X—+Yis continuous if
and only if f is compact and has closed point inverses.

Proof. The corresponding function /* is closed and has compact
1 If X is a Γ2 space, the ̂ -extension of X, denoted k{X), is the set X with the

following topology: a set in k(X) is closed if it has closed intersection in X with each
compact set in X. k(X) is a fc-space whose topology is stronger than that of X
Moreover, k(X) and X have the same compact sets, and k(X) — X if and only if X
is a /c-space.
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point inverses. Thus it is proper. Since X is a A -space the original
function is continuous (part 4, Theorem 1).

It is an easy consequence of Theorem 4 that a function from a
A -space is perfect if and only if it is compact, closed and has compact
point inverses.

THEOREM 5. Let X and Y be k-spaces. A compact f:X—+Y is
perfect if and only if f is proper.

Proof. Suppose / is compact and proper. By Theorem 2 / is
closed and by Theorem 4 / is continuous. Hence / is perfect.

In Theorem 5 the A -space condition on Y cannot be weakened
to T2 for if Y is a T2 space which is not a A -space, the identity
mapping from k( Y) onto Y is compact and proper but it is not closed
(and hence not perfect).

COROLLARY 1. Suppose X is T2 and Y is compact. f:X—+Y
is perfect if and only if f is closed and has compact point inverses.

Proof. If / is closed and has compact point inverses then since
X is T2 so also is Y ([10] p. 235). Hence Y is a A -space. Since / is proper
(corollary to Theorem 3), X is compact T2 and hence also a A -space.
Finally, since / is compact the result follows from Theorem 5.

COROLLARY 2. Let X be a k-space and let Y be T2. If f:X~»
Y is one-to-one, compact and proper, then X is homeomorphic to
k(X).

Proof. The composition of / followed by the identity mapping
from Y onto k(Y) is a 1-1, compact, proper mapping from X onto
k(Y) and (since X and k(Y) are A -spaces) hence by Theorem 5 a
1-1, perfect mapping (hence a homeomorphism).

Clearly if X is a T2 space then X is a 1-1, compact, proper
image of k{X). The above corollary says, in fact, that each T7,
space is a 1-1 compact, proper image of one and only one A -space.
An immediate consequence is that a T2 space is a A -space if and
only if it is not a 1-1, compact proper image of another A -space.

The collection of all T2 spaces can be partitioned into mutually
disjoint classes such that each class contains a unique A -space. Morever,
each A -space is maximal among the spaces of the class in the sense
that each is a 1-1, compact, proper image of it.

2
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There are numerous references in the literature to two properties
of functions closely related to those considered thus far in this section.
For the sake of completeness these are discussed in the next few
theorems.

A function f:X—*Y has compact trace if for each compact set
K in Y there exists a compact set L in X such that f(L) = K. Clearly
every proper mapping has compact trace. A function / is reflexive
compact if whenever K is compact in Y, then f~\f(K)) is compact
in X. Reflexive compactness of a mapping together with its having
compact trace implies "proper": Suppose if is a compact set in Y.
By the compact trace property there exists a compact set L in X
such that f{L) = K. By reflexive compactness f~ι{K) = f~ι{f{L)) is
compact. The converse is true provided the mapping is compact;
that is, a compact proper mapping is both reflexive compact and
has compact trace. These observations together with Theorem 5 yield.

THEOREM 6. Suppose X and Y are k-spaces. f: X-+Y is perfect
if and only if it is compact, reflexive compact and has compact
trace.

In [9] Duda shows that a reflexive compact, quotient mapping
from a &-space onto a T2 space is proper. In view of Theorems 4, 5
and 11 this can be strengthened to the statement

THEOREM 7. Suppose X is a k-space and Y is T2. f:X—+Y is
perfect if and only if it is reflexive compact and quotient.

Duda shows also that for a function on a locally compact T2

space having compact and connected point inverses implies reflexive
compactness. This yields the following corollary to the above theorem.

COROLLARY. Let X be locally compact and T2, and let Y be T2.
If f: X—+Y is a quotient mapping having compact and connected
point inverses then f is perfect.

THEOREM 8. Let Y be a k-space. If f:X—+Y is a continuous
mapping having compact trace then f is quotient.

Proof. Suppose f~\C) is closed. In order to show that C is
closed in Y it suffices to show that C Π K is compact for an arbitrary
compact set K. Now there exists a compact set L in X such that
f(L) = K. f~ι{C) Π L is compact in X and hence so is f{f'ι{C) Π L) =
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In [18] Whyburn proves that a continuous function from a locally
compact separable metric space onto a separable metric space which
has compact trace and compact, connected point inverses is proper.
The corollary to Theorem 7 together with Theorem 8 yields the
following improvement of Whyburn's result.

THEOREM 9. Let X be locally compact and T2, and let Y be a
k-space. If f:X-^>Y is continuous and has compact trace and
compact connected point inverses then f is perfect.

The connectedness criterion in the above theorem is necessary
by the following example: / : [0, 2] —> [0, 1] defined by f(x) = x for
^6 [0,1] and f(x)=2 — x for xe[l, 2] is continuous, has compact
point inverses and has compact trace but it is not perfect.

As a final comment on the compact trace property, Michael has
shown in [13] that a closed, continuous mapping from a paracompact
space has compact trace.

The final two results give conditions on a function sufficient to
insure that the image (respectively inverse-image) of a fc-space is
again a Λ-space. The first is well-known and appears in [10]. The
second is due to Arhangelski and appears in [2].

THEOREM 10. Let X be a k-space and let Y be T2. If / : X—>Y
is a quotient mapping then Y is a k-space.

Theorem 10 is not true for 1-1, continuous, proper maps for
if Y is a T2 space which is not a &-space then the identity mapping
from k(Y) onto Y is 1-1 continuous and proper.

THEOREM 11. Let X be T2 and let Y be a k-space. If f: X—>Y
is continuous and proper, then X is a k-space.

Theorem 11 is not true for continuous, closed, open mappings
for if X is an arbitrary non-&-space and Y a one point space, the
constant mapping from X onto Y is continuous, closed and open, Y
is a &-space but X is not. Neither can the continuity condition be
weakened to compactness for if X is a T2 space which is not a fc-space
the identity mapping from X onto k(Y) is compact and proper.

3* Convergence* In this section the properties "compact",
"closed", "proper" and "perfect" of a mapping are described in terms
of the convergence of sequences and filter bases.

THEOREM 12. Let X and Y be second countable T2 spaces. A con-
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tinuous f:X—+Y is perfect if and only if whenever {xn} has no
cluster points in X, {f(xn)} has none in Y.

Proof. Only if. Suppose {f(xn)} has a cluster point y0. There
exists a subsequence {f(yn)} which converges to yQ. Now A = {f(yn)} U
{y0} is compact and thus (since / if proper) f~ι{A) is compact and
contains {yn}. Thus {yn}, and hence {xn}, has a cluster point. If. In
order to show that / is perfect it suffices, by Theorem 5, to show
that / is proper. Assume A is compact in Y and that C = f~\A)
is not compact in X. Then there exists a sequence {xn} in C having
no cluster points. Hence {f(xn)} has no cluster points in A. Con-
tradiction.

COROLLARY. A continuous mapping on the real line is perfect
if and only if limit^i^ f{x) is either + °o or — 00.

In [18] Whyburn gives the following characterization of perfect
mappings.

THEOREM 13. A continuous mapping on the real line is perfect
if and only if it has compact point inverses.

THEOREM 14. Suppose X and Y are second countable Tz spaces,
f is proper if and only if whenever {/(#»)} has a cluster point y0

in Y then {xn} has a cluster point in X and if {xn} has only one
cluster point x0, f(x0) = y0.

Proof. Only if. Suppose {/(&„)} has a cluster point y0. Then
there exists a subsequence {/(#»)} which converges to y0. Now A —
{f(y«)} U {Vo} is compact and thus f~ι(A) is compact and contains {yn}.
Thus {yn}, and hence {xn}, has a cluster point xQ. Suppose {xn} has
only xQ as a cluster point. If f(x0) Φ y0 there exists a subsequence
{f{Vn)} of {f(xn)} which converges to y0 and such that f(yn) Φ y0 for
each n. Now A — {f(yn))} U {y0} is compact and hence f~ι(A) is com-
pact. Furthermore {yn} c f~ι(A) and thus must have a cluster point
in f~ι(A). Since x0 g f~~\A), {yn} and hence {xn} has a cluster point
other than α?0. Contradiction. If. Suppose A is compact in Y, and
{xn} is a sequence in f~\A). {xn} has a cluster point x0 in X. (Otherwise
ί/(^)} has n o cluster points in A, contradiction.) Thus there exists
a subsequence {yn} —> xQ. Now since {f(yn)} has a cluster point in A
it must be f(xQ). Therefore xQ e f~\A). Therefore f~\A) is compact.

LEMMA. Suppose X is a locally compact T2 space. A filterbase
{Ba} converges to x0 in X* if and only if {Ba} has at most x0 as a
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cluster point in X.

Proof. Suppose {Ba} has at most x0 as a cluster point in X
(equivalently f\a Ba contains at most xQ). If {Ba} does not converge
to x0 in X* then there exists a set U, open in X*, containing x0, such
that Ba Π Uc Φ 0 for every a. Since {Ba} is a ίilterbase {Bα Π Ϊ7C}
has the finite intersection property and since Uc is compact in X,
Π« Ba Π Uc Φ 0. Contradiction. Only if. Suppose {Ba} has a cluster
point τ/o in X in addition to perhaps xQ. Since X is locally compact
T2 there exists a set U, open in X, containing x0, such that yo£ U
and such that 17 is compact. Thus Ue contains y0 and is open in X*
(and hence in X) and since y0 is a cluster point of {Ba} in X, Ba Π
Όc Φ 0 for each α. Therefore no 5 α is contained completely in U
which implies that {Ba} does not converge to x0 in X*.

THEOREM 15. Let X and Y be locally compact T2 spaces. A
nonconstant f:X—>Y is proper if and only if whenever {Ba} is a
filterbase in X with at most x0 as a cluster point then {f(Ba)} is a
filterbase in Y with at most f(x0) as a cluster point.

Proof. From Theorem 1 / is proper if and only if /* is con-
tinuous. This together with the above lemma and the standard
characterization of continuity with respect to filterbases proves the
theorem.

THEOREM 16. f:X —>Y is compact if whenever xQ is a cluster
point of a filterbase {Ba} in X then f(x0) is a cluster point of {f(Ba)}
in Y.

Proof. Suppose A is compact in X and let & be a filterbase
in f(A). Now f~\^) Π i - {f~\D) Π A: De^} is a filterbase in
A and hence has a cluster point x0 in A, since A is compact. The-
refore f(x0) is a cluster point of f{Γι{^) nA) = {fif'KD) Π A): De

= {Df} f(A):De^} = &. Hence f{A) is compact.

THEOREM 17. Suppose X and Y are locally compact Γ2 / : X—*•
Y is closed if whenever a filterbase [Ba] has at most x0 as a cluster
point in X, then {f(Ba)} has a subordinate filterbase with at most
f(xQ) as a cluster point in Y.

Proof. By the lemma the hypothesis is equivalent to the following
statement in X* and F*: whenever a filterbase {Ba} converges to xQ

in X*, then f(x0) is a cluster point of {f(Ba)} in Y*. Hence by
Theorem 16 /* is compact. The result follows by part 6, Theorem 1.
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It is immediate from Theorem 15 that a proper mapping satisfies
the hypothesis of Theorem 17. Consequently this condition is weaker
than "proper" and stronger than "closed". The following counter
example shows in fact, that the condition is strictly stronger: Con-
sider / : i2-»{0, 1} defined by f(x) = {? |J 2 > 0 w h e r e { 0 ' 1 } h a s t h e

discrete topology. / is closed but does not satisfy the condition in
Theorem 17 for the sequence {1/n} has at most 0 as a cluster point
but {f(l/n)} is the constant sequence of Γs and thus has no subsequence
with at most 0 as a cluster point.

THEOREM 18. Suppose X and Y are first countable spaces, f:
X—>Y is closed if and only if whenever {/(#„)}—> 2/0, Vo Φ /OO for
any n, then there exists an x0 and a subsequence {yn} of {xn} such
that {yn} —> Xo and f(x0) = y0.

Proof. If. Suppose A is closed. To prove that f{A) is closed
it suffices to show that if y0 is the limit of a sequence from f(A)
then y0 e f(A). Suppose {f(xn)} —> y0 where each xn e A. If {/(#»)} is
a finite set we are done. If {f(xn)} is an infinite set there is a subse-
quence {f(an)} —> y0 such that yQ Φ f(an) for any n. Therefore there
exists an xQ such that y0 = f(x0) and xQ is the limit of some subsequence
of {an}. Since A is closed xoe A and thus y0 e f(A). Only if. Suppose
{/(sj}—>Vo where y0 Φ f(xn) for any n. Let A = {x~n}. Then f{A)
is closed and contains the sequence {f(xn)} Thus y0 e f(A). Therefore
there exists an xoe A such that y0 = f(x0). Since x0 & {xn}, there exists
a subsequence of {xn} which converges to x0.
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