SOME MATRIX TRANSFORMATIONS ON ANALYTIC SEQUENCE SPACES

Roy T. Jacob, Jr.

Abstract

Let A denote the space of all complex sequences a such that if z is a complex number and $|z|<1$ then $\sum a_{n} z^{n}$ converges, and B the space of all complex sequences b for which there is a complex number z such that $|z|>1$ and $\sum b_{n} z^{n}$ converges. In this paper we characterize matrix transformations from A to B and from B to A.

M. G. Haplanov [1] has described the matrix transformations from A to A, and P. C. Tonne [4] those from A to the bounded sequences, the convergent sequences and l.

A sequence space is a linear space each point of which is an infinite complex sequence. If λ is a sequence space, then λ^{*}, the dual of λ, is the collection of all infinite complex sequences y such that $\sum\left|x_{n} y_{n}\right|$ converges for every x in λ. For each λ a dual system with λ^{*} is formed using the bilinear functional

$$
Q(x, y)=\sum_{n=0}^{\infty} x_{n} y_{n},
$$

where x is in λ and y is in λ^{*}. Under this duality, λ is provided with the standard weak topology.

Theorem A is a classic result of Köthe and Toeplitz [2]:
Theorem A. Suppose λ is a sequence space such that $\lambda=\lambda^{* *}$. In order that a linear transformation from λ to a sequence space be weakly continuous, it is necessary and sufficient that it be a matrix transformation.

In [3] O. Toeplitz studied the topological properties of the spaces A and B. The following theorem is a summary of his basic results:

Theorem B. (1) $A^{*}=B$ and $B^{*}=A$.
(2) A point set M is bounded in $A[B]$ if and only if there exists a point y of $A[B]$ such that $\left|x_{n}\right|<y_{n}$ whenever x is a point of M and n is a nonnegative integer.
(3) A point sequence is convergent in $A[B]$ if and only if it is bounded in $A[B]$ and coordinatewise convergent.

Theorem 1. If M is an infinite matrix then the following are
equivalent:
(1) M throws A into B.
(2) Each row and each column of M is in B, and there exist numbers t and r such that $0<r<1$ and $\left|M_{j k}\right| \leqq t r^{j+k}$ whenever each of j and k is a nonnegative integer.

Proof. (1) \rightarrow (2). Suppose statement (1) is true and statement (2) is not. In that case there exist increasing sequences $j_{0}, j_{1}, j_{2}, \ldots$ and $k_{0}, k_{1}, k_{2}, \cdots$ of positive integers such that if n is a nonnegative integer, then

$$
\left|M_{j_{n}, k_{n}}\right|>\left(\frac{n}{n+1}\right)^{j_{n}+k_{n}}
$$

and either (i) $j_{n} \leqq k_{n}$ for each nonnegative integer n or (ii) $k_{n} \leqq j_{n}$ for each nonnegative integer n.

Suppose case (i) holds. For each nonnegative integer n, let c_{n} denote a complex number such that

$$
\left|c_{n}\right|=\frac{1}{\left|M_{j_{n}, k_{n}}\right|} \quad \text { and }\left|\sum_{i=0}^{n} M_{j_{n}, k_{i}} c_{i}\right| \geqq 1
$$

Each c_{n} has the property that $\left|c_{n}\right|<(1+1 / n)^{2 k_{n}}$.
For each nonnegative integer n, let ξ_{n} denote the point of A such that for each nonnegative integer $m, \xi_{n m}=c_{i}$ whenever there is an integer i such that $0 \leqq i \leqq n$ and $m=k_{i}$, and $\xi_{n m}=0$ otherwise.

The point sequence ξ is bounded in A, so $M(\xi)$ is bounded in B. However, for each positive integer n,

$$
\begin{aligned}
\left|\left(M \xi_{n}\right)_{j_{n}}\right| & =\left|\sum_{i=0}^{k_{n}} M_{j_{n}, i} \xi_{n i}\right| \\
& =\left|\sum_{i=0}^{n} M_{j_{n}, k_{i}} c_{i}\right| \\
& \geqq 1 .
\end{aligned}
$$

This is a contradiction.
In case condition (ii) holds, M^{\prime} is a matrix that throws A into B and satisfies condition (i). This is also a contradiction.
$(2) \rightarrow(1)$. If x is a point of A and j is a nonnegative integer, then

$$
\begin{aligned}
\left|(M x)_{j}\right| & =\left|\sum_{k=0}^{\infty} M_{j k} x_{k}\right| \\
& \leqq t r^{j} \sum_{k=0}^{\infty} r^{k}\left|x_{k}\right|
\end{aligned}
$$

Consequently, $\lim \sup _{j}\left|(M x)_{j}\right|^{1 / j} \leqq r$, and $M x$ is a point of B.

Theorem 2. If M is an infinite matrix then the following are equivalent:
(1) M throws B into A.
(2) Each row and each column of M is in A, and if $\varepsilon>0$ there is a positive integer m such that $\left|M_{j_{k}}\right|^{1 /(j+k)}<1+\varepsilon$ whenever each of j and k is a nonnegative integer and $j+k \geqq m$.

Proof. (1) \rightarrow (2). Suppose statement (1) is true and statement (2) is not. In that case, there exist a positive number ε and infinitely many nonnegative-integer pairs (j, k) such that $\left|M_{j k}\right|^{1 /(j+k)}>1+\varepsilon$.

Case (i). Suppose there exist infinitely many such integer pairs such that $j \leqq k$. Let r denote a number such that $(1+\varepsilon) r>1+\varepsilon / 2$.

Let (j_{0}, k_{0}) denote a nonnegative integer pair such that

$$
j_{0} \leqq k_{0} \quad \text { and } \quad\left|M_{j_{0}, k_{0}}\right|^{1 /\left(j_{0}+k_{0}\right)}>1+\varepsilon .
$$

Let $c_{0}=r$. Then

$$
c_{0}\left|M_{j_{0}, k_{0}}\right|^{1 / k_{0}} \geqq c_{0}\left|M_{j_{0}, k_{0}}\right|^{1 /\left(j_{0}+k_{0}\right)}>(1+\varepsilon) r>1+\frac{\varepsilon}{2} .
$$

Let $\left(j_{1}, k_{1}\right)$ denote a nonnegative integer pair such that $j_{1} \leqq k_{1}$, $j_{0}<j_{1}, k_{0}<k_{1}$, and

$$
\sum_{i=k_{1}}^{\infty}\left|M_{j_{0}, i}\right| r^{i}<[(1+\varepsilon) r]^{k_{0}}-\left[1+\frac{2}{\varepsilon}\right]^{j_{0}}
$$

Let c_{1} denote a complex number such that $\left|c_{1}\right|=r$ and

$$
\left|M_{j_{1}, k_{1}} c_{1}^{k_{1}}\right| \leqq\left|M_{j_{1}, k_{0}} c_{0}^{k_{0}}+M_{j_{1}, k_{1}} c_{1}^{k_{1}}\right|
$$

Continue this process in the following way: For each positive integer n, after choosing j_{n}, k_{n}, and c_{n}, let (j_{n+1}, k_{n+1}) denote a nonnegative integer pair such that $j_{n+1} \leqq k_{n+1}, j_{n}<j_{n+1}, k_{n}<k_{n+1}$, and

$$
\sum_{i=k_{n}+1}^{\infty}\left|M_{j_{n}, i}\right| r^{i}<[(1+\varepsilon) r]^{k_{n}}-\left[1+\frac{\varepsilon}{2}\right]^{j_{n}}
$$

and then let c_{n+1} denote a complex number such that $\left|c_{n+1}\right|=r$ and

$$
\left|\left(c_{n+1}\right)^{k_{n+1}}\left(M_{j_{n+1}, k_{n+1}}\right)\right| \leqq\left|\sum_{i=1}^{n+1} c_{2}^{k_{i}}\left(M_{j_{n+1}, k_{i}}\right)\right|
$$

Now, for each nonnegative integer n, let ξ_{n} denote the point of B such that for each nonnegative integer m,

$$
\xi_{n m}=c_{i}^{k_{i}}
$$

whenever there is an integer i such that $0 \leqq i \leqq n$ and $m=k_{i}$, and

$$
\xi_{n m}=0
$$

otherwise.
The point sequence ξ is bounded in B, so $M(\xi)$ is bounded in A. However, for each positive integer n,

$$
\begin{aligned}
\left|\left(M \xi_{n}\right)_{j_{n}}\right| & =\left|\sum_{i=0}^{n} c_{2}^{k_{i}}\left(M_{j_{n}, k_{i}}\right)+\sum_{\imath=n+1}^{\infty} c_{i}^{k_{i}}\left(M_{j_{n}, k_{2}}\right)\right| \\
& \geqq\left|\sum_{i=0}^{n} c_{2}^{k_{i}}\left(M_{j_{n}, k_{i}}\right)\right|-\sum_{i=n+1}^{\infty}\left|c_{i}^{k_{i}}\left(M_{j_{n}, k_{i}}\right)\right| \\
& \geqq\left[1+\frac{\varepsilon}{2}\right]^{j_{n}} .
\end{aligned}
$$

Consequently, $\left|\left(M \xi_{n}\right)_{j_{n}}\right|^{1 / j_{n}} \geqq 1+\varepsilon / 2$. This contradicts the fact that $M(\xi)$ is a bounded subset of A.

Case (ii). Suppose there exist infinitely many such integer pairs (j, k) such that $j \geqq k$. In that case, M^{\prime} throws B into A and satisfies the assumption of case (i). This is also a contradiction.
(2) \rightarrow (1). Suppose x is a point of B. Let t and r denote numbers such that $0<r<1$ and $\left|x_{n}\right| \leqq t r^{n}$ for each nonnegative integer n. If ε is a positive number so small that $(1+\varepsilon) r<1$, and m is a positive integer such that $\left|M_{j k}\right|^{1 /(j+k)}<1+\varepsilon$ whenever each of j and k is a nonnegative integer and $j+k \geqq m$, then for each nonnegative integer p,

$$
\begin{aligned}
\left|\sum_{k=0}^{\infty} M_{m+p, k} x_{k}\right| & \leqq \sum_{k=0}^{\infty}\left|M_{m+p, k}\right| t r^{k} \\
& \leqq(1+\varepsilon)^{m+p} \frac{t}{1-(1+\varepsilon) r}
\end{aligned}
$$

Therefore,

$$
\lim \sup _{p}\left|\sum_{k=0}^{\infty} M_{m+p, k} x_{k}\right|^{1 /(m+p)} \leqq 1+\varepsilon .
$$

It follows that

$$
\lim \sup _{j}\left|\sum_{k=0}^{\infty} M_{j_{k} x_{k}}\right|^{1 / j} \leqq 1
$$

that is, $M x$ is a point of A.
The author is indebted to the referee for his suggestions of a number of improvements in the text.

References

1. M. G. Haplanov, Infinite matrices in an analytic space, Amer. Math. Soc. Transl.,
(2) 13 (1960), 177-183.
2. G. Köthe and O. Toeplitz, Lineare Räume mit unendlichen Koordinaten und Ringe unendlicher Matrizen, J. Reine Angew. Math., 171 (1934), 193-226.
3. O. Toeplitz, Die linearen vollkommenen Räume der Funktionentheorie, Comment. Math. Helv., 23 (1949), 222-242.
4. P. C. Tonne, Matrix transformations on the power-series convergent on the unit disc, J. London Math. Soc., (2) 4 (1972), 667-670.

Received January 23, 1975 and in revised form July 22, 1975.
University of New Orleans, New Orleans

