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^-CLOSED SUBSETS OF HAUSDORFF SPACES

R. F. DICKMAN, JR. AND JACK R. PORTER

A topological property of suhspaces of a Hausdorff space,
called 0-closed, is introduced and used to prove and interrelate
a number of different results. A compact suhspace of a
Hausdorff space is 0-closed, and a 0-closed subspace of a
Hausdorff space is closed. A Hausdorff space X with property
that every continuous function from X into a Hausdorff space
is closed is shown to have the property that every ^-continuous
function from X into a Hausdorff space is closed. Those
Hausdorff spaces in which the Fomin ϋZ-closed extension
operator commutes with the projective cover (absolute) oper-
ator are characterized. An ϋΓ-closed space is shown not to
be the countable union of 0-closed nowhere dense subspaces.
Also, an equivalent form of Martin's Axiom in terms of the
class of iT-closed spaces with the countable chain condition
is given.

I* Preliminaries* For a space X and i g X , the θ-closure of
A, denoted as o\θ A, is {x e X: every closed neighborhood of x meets
A}. The subset A is ^-closed if cl* A = A. Similarly, the θ-interior
of A, denoted as int^ A, is {x e X: some closed neighborhood of x is
contained in A}. Clearly, c\θA is closed and intθA is open. The concept
of ^-closure was introduced by Velicko [15] and used by the authors
in [3]. Also introduced in [15] is the concept of a If-set: a subset A
of a Hausdorff space X is an H-set if every cover of A by sets open
in X has a finite subfamily whose closures in X cover A; this concept
was independently introduced in [11] and called H-closed relative to
X. An open filter is a filter with a filter base consisting of open
sets. A maximal open filter is called an open ultrafilter. A filter
^ on X is said to be free if a d ^ ^ Φ 0 , otherwise, ^ is said
to be fixed. A subset A of X is far from the remainder (f.f.r.)
[1] in X if for every free open ultrafilter *fr on X, there is open
Ue^ such that c\xU f] A = 0 ; a subset A of X is rigid in X [3]
if for every filter base ^ on X such that A n n {<&ΘF\ Fe^~} =
0 , there is open set U containing A and Fe ^ such that clU Π F =
0 . The following facts are used in the sequel:

(1.1) In A Q B £ X and A is ^-closed in X, then A is 0-closed
in B.

(1.2) A compact subset of a Hausdorff space is 0-closed.
(1.3) [15] A 0-closed subset of an ϋΓ-closed space is an iϊ-set.
(1.4) [3] Let A be a subset of a space X. The following are
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equivalent:
(a) A is rigid in X.
(b) For any filter base ^ o n l , if i n Π {cl* F: Fe ^} = 0 ,

then for some Fe^, A f] cl0 F = 0 .
(c) For each cover S>f of A by open subsets of X, there is a

finite subfamily ^ g j / such that A £ int cl (U ̂ ) .
(d) For every open filter g Ό n l such that Af] Π {clU:Ue gf} =

0 , there is Ϊ7e ^ such that A Π clU = 0 ,
(1.5) [3] Disjoint rigid subsets in a Hausdorίf space can be

separated by disjoint open sets.
(1.6) [3] If A is rigid in X, then A is f.f.r. in X.

Since any closed subset of a regular Hausdorff space is 0-closed
and since there are regular Hausdorff spaces with noncompact closed
subsets, then the converse of 1.2 is false. In [3], it was shown that
every rigid subset of a Hausdorff space is an ίf-set. Thus, the
converse of 1.3 is false since the subset X in the space Y described
in Example 1.1 in [3] is rigid in Y but is not ^-closed in Y. On the
other hand, by Theorem 4 in [15] a subset of an ίf-closed, Urysohn
space is ^-closed if and only if it is an iϊ-set. Since an iϊ-closed
regular space is compact, then a subset of an if-closed, regular
space is 0-closed if and only if it is compact. By 1.2 and 1.3, the
concept of "#-closedness" is similar to the concept of "iϊ-closure" in
the sense that both are bracketed by the concepts of "compactness"
and "iϊ-set".

Also, needed in the sequel is a few definition about semiregularity,
^-continuity, and extensions. For a space X, Xs is used to denote
X plus the topology generated by the regular-open subsets (a subset
is regular-open if it is the interior of the closure of itself). A space
X is semi-regular if X = Xs; in particular, (Xs)s = Xs.

A function f:X—+Y, where Xand Y are spaces, is θ-continuous
if for each xeX and open subset U of f(x), there is an open subset
V of x such that f(dV)QelU. The Kate to v extension [9] (resp.
Fomin extension [5]) of a Hausdorff space X is denoted as /cX(resp.
σX); these ίf-closed extensions are studied in [12, 13]. In [11], it
is shown that if Y is an iϊ-closed extension of X, then there is a
continuous surjection / : icX—>Y such that f(x) — x for xeX.

2* 0-closed subsets of if-closed spaces. For a space X and a
subset A £ X, we will let X/A denote the set X with A identified
to a point and endowed with the quotient topology.

(2.1) Let X be a Hausdorff space and A Q X. The following
are equivalent:
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(a) A is 0-closed in X.
(b) XIA is Hausdorff.
(c) A is the point-inverse of a continuous function from X into

a Hausdorff space.
(d) A is the point-inverse of a ^-continuous function from X

into a Hausdorff space.

Proof. The proof of the equivalence of (a) and (b) is straight-
forward to prove. Clearly, (b) implies (c) and (c) implies (d). To
show (d) implies (a), let f:X~+Y be a ^-continuous function into a
Hausdorff space Y, A = f~\y) for some yeY, and x$A. There is
open set U of f(x) in Y such that y$c\U. Since there is open set
V of x such that /(clF) £ clU, then clFΠ A = 0 .

(2.2) Let X be a Hausdorff space and A £ X. The following
are equivalent:

(a) A is 0-closed in /cX.
(b) A is rigid in X.
(c) A is f .f .r. in X and A is 0-closed in X.

Proof, (a) implies (6). Let J%f be a cover of A by open subsets
of X. For £> 6 tcX\A, let Z7p be an open subset of tzX containing p
such that clκX IT, Π A = 0 . There is a finite subset ^ £ J ^ and
finite subset B £ /cX\A such that

κX= [J{cl£ZUp:peB}\J Ό{e\κXV:Ve^} .

Thus, A £ Z\ U {clχ (*/*> Π X): p e B) £ U i^χ V: Ve ^}, and by 1.4,
A is rigid in X.

(b) implies (c). By 1.6, A is f.f.r. in X. Suppose peX\A.
Then A and p are disjoint rigid subsets and, by 1.5, can be separated
by disjoint open sets. Hence, A is 0-closed in X.

(c) implies (α). Let p e X\A. Since A is ^-closed in X, then
there is an open set U in X such that p e U and clx Ϊ7 n A = 0 .
Since X is open in ttX, then ί7 is open in fcX and clΛXU = clxUU B
where B = {g 6 /ciί\E:: [7e <?}. Thus, A ΠcUzU= 0. Suppose p e ιcX\X
(thus, pί A). Then p is a free open ultrafilter on X and there is
open set Uep such that c l x ϊ 7 Π A = 0 . Now, Uϋ{p} is open in
fcX and contains p and c\κX (UU{p}) = clx 27U 5 where i? is the same
as above. Thus, A ΓΊ clκX(Uϋ {p}) = 0 .

By 2.2 and 1.1, it follows that a rigid subset of a Hausdorff
space is ^-closed in the space.

Let X and Y be Hausdorff spaces and f:X—>Y a continuous
function. We say / is absolutely closed [17] if / cannot be con-
tinuously extended to a proper Hausdorff extension Z of X and is
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regular closed [2] if the image of the closure of an open set is closed.
Dickman [2] proved that / is absolutely closed if and only if / is
regular closed and point-inverses are f.f.r. in X. By 2.1 and 2.2,
this statement converts into the following:

(2.3) Let / : X —>Y be a continuous where X and Y are Hausdorff
spaces. The following are equivalent:

(a) / is absolutely closed.
(b) / is regular closed and point-inverses are f.f.r. in X.
(c) / is regular closed and point-inverses are rigid in X.
Another consequence of 2.2, in combination with 1.5, is the follow-

ing result.

(2.4) Disjoint ^-closed subsets of an iϊ-closed space are contained
in disjoint open subsets.

In [9], Kate to v shows that if every closed subset of an Hausdorff
space X is iϊ-closed, then X is compact. Similarly, by 6.1.1 in [3],
if every closed subset of a Hausdorff space X is rigid, then X is
compact. A Hausdorff space X in which every closed subset is an
Jϊ-set is called C-compact [16], and there are noncompact, C-compact
spaces [17, Example 2], The next result will help us prove a property
possessed by C-compact spaces.

(2.5) If / : X—>Y is ^-continuous where X and Y are Hausdorff
and if A is iί-subset of X, then f(A) is an ff-subset of Y.

Proof. Let ^ be cover of f(A) by open subsets of Y. For each
a e A, there is open set Uae ^ such that /(α) e Ua. There is an open
set Va of a such that /(cl Va) £ cl Ua. There is finite subset B £ A
such that A Q \J {cl Va: a e B}. It follows that f(A) Q \J {cl Ua: a e B).

A Hausdorff space X is called functionally compact [4] if every
continuous function from X into a Hausdorff space is closed. A C-
compact space is functionally compact [4], and by 2.5, every θ-
continuous function from a C-compact space into a Hausdorff space
is closed. Clearly, a Hausdorff space X in which every ^-continuous
function from X into a Hausdorff space is closed, is functionally
compact. Surprisingly, the converse is true. We need the following
definition and theorem to prove the converse.

A Hausdorff space X is called θ-seminormal [6] if for every
0-closed subset A £ X and every open set G containing A, there is
regular open set R such that A £ R £ G.

(2.6) [6] A Hausdorff space is functionally compact if and only
if it is iϊ-closed and 0-seminormal.
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(2.7) A Hausdorff space X is functionally compact if and only
if every ^-continuous function from X into a Hausdorff space is
closed.

Proof. The proof of one direction is obvious. To prove the
converse, suppose X is functionally compact and f:X—>Y is a θ-
continuous function where Y is Hausdorff. To prove / is closed,
suppose S S l i s a closed subset and peelrf(B). By Corollary 2.1
in [4], X is iϊ-closed. By 2.5, f{X) is Jϊ-subset and, hence, closed
in Y. So, p e f{X). Assume, by way of contradiction, that p £ f{B).
So, f-\p) £ X\B. By 2.1, f~\p)9 is 0-closed in X and by 2.6, there
is regular open set R such that f~\p) £ R £ X\B. Now, B £ X\R,
but X\R, the closure of an open set, is iϊ-closed by 1.2 in [9]. By
2.5, f(X/R) is an iϊ-set, and hence, closed. This leads to a contradic-
tion as f(B) £ f(X\R) and p £ f(X\R).

Problem. Characterize those Hausdorff spaces X with this pro-
perty: every weakly ^-continuous function from X into a Hausdorff
space is closed. A function f:X-+Y is weakly ^-continuous [5, 3]
if for every xe X and open set V of f(x), there is open set U of x
such that / (U) £ cl V. Every compact Hausdorff space has this
property; we are unaware of any noncompact Hausdorff space with
this property.

3* ^closure in if-closed extensions* With the use of the next
result, we will derive a new characterization of those subsets of a
Hausdorff space X that are ^-closed in tcX.

(3.1) If Y is a Hausdorff extension of X and A is a rigid subset
of X, then A is rigid in Y.

Proof. By 2.2, it suffices to show that A is 0-closed in tcY.
By 4.4 in [11], there is a continuous surjection / : κX-+fcYsuch that
that f(x) — x for xeX. Since tzX is jff-closed, then / is absolutely
closed. Let ze/cY\A. Then f~\z) is rigid in KX by 2.3. Using
that φX) = tcX, it follows by 2.2 that A is rigid in KX. By 1.5,
there is open set U in KX such that A £ U and dκXUf] f~ι(z) = 0 .
Let T7= Λ:Γ\/(CLXC7). Since / is regular closed by 2.3, W is open;
also, zeW. Now, f~ι{W) is open in X and /"'(W) Π c l^ ί/^ 0 .
So c l β X / - ι ( Ψ ) Π i l = 0 . Since A = f~ιf(A) by 1.8 in [13],
/(cUz/" 1(TΓ))Πil= 0 . Again, by 2.3, /(c l , x Z" 1 (W)) is closed
implying clβΓTΓΠ A— 0 . Thus, A is 0-closed in Λ Γ .

(3.2) Let X be a Hausdorff space and A £ X. The following
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are equivalent:
(a) A is 0-closed in tcX.
(b) A is 0-closed in every Hausdorff extension of X.
(c) A is 0-closed in σX.
(d) A is 0-closed in some iϊ-closed extension of X.

Proof. By 3.1 and 2.2, (a) implies (b). Clearly, (b) implies (c)
and (c) implies (d).

(d) implies (a). Suppose A is ^-closed in an ff-closed extension
Y of X By 4*4 in [11], there is a continuous surjection f:κX—>F
such that f(x) = x for x e X. Let z e /cX\A. Since f~ιf(A) = i by
1.8 in [13], then f(z)e Y\A. So, {/(«)} and A are contained in disjoint
open sets. By the continuity of / , {z} and A are contained in disjoint
open sets. So, A is 0-closed in tcX.

It is not possible to replace "ίf-closed" in 3.4(d) by "Hausdorff"
as a subset A of X can be 0-closed in some Hausdorff extension Y
of X while A is not ̂ -closed in tcX. For example, if X is Hausdorff
but not JEZ-closed, then X is 0-closed in the trival Hausdorff extension
X of X, but X is not 0-closed in tcX.

For each Hausdorff space X, we let ΘX denote {q: q is open
ultrafilter on X}. For each open set U in X, let G(U) denote {qe
θX:Ueq}; {G(U):U open in X) forms a basis for an extremally
disconnected, compact Hausdorff topology on ΘX [8]. By 5.2 in [13]
there is a ^-continuous, perfect irreducible function π: ΘX~+σX defined
by π(q) — q for each free open ultrafilter q on X and π(q) = x where
x is the unique convergent point of the fixed open ultrafilter q.

(3.3) Let X be a Hausdorff space and U, V open subsets of X.
(a) G(U)f)G(V)= G(UnV) and G(tΓ) U G(V) = G(UU V).
(b) lϊ xeX and ̂ (a;) £ G(?7), then xe intx clx U.

(3.4) If X is a Hausdorff space and A £ X, then 7T-1(A) is compact
if and only if A is ^-closed in /cX.

Proof. Suppose π~\A) is compact. By 3.2, it suffices to show
A is 0-closed in σX. Suppose y e σX\A. By the compactness of
π~\A) and π^iy), the Hausdorffness of ΘX, and 3.3(a), there are open
sets U and V in X such that n~x(A) Q G(U), π~1(y)QG(V)t and
G(U)n G(F) = 0 . Now, by 3.3.(b), A £ intx clx U and ye intz c l z F.
Since 0 = G(ί7) Π G(F) = G(U f] V) and since every nonempty open
set is contained in some open ultrafilter, then ί/Π V= 0 . By 2.14
in [11], intx clx U Π intx c\x V — 0 . Thus, A and y are contained in
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disjoint open sets in X and by 4.1(c) in [11], in fcX.
Conversely, suppose A is 0-closed in fcX and, hence, by 3.2, θ-

closed in σX. It suffices to show π~'(A) is closed in ΘX. Let ye
ΘXXπ'^A). Then π(y) $ A, and there is open neighborhood U of π(y)
in σX such that clσX U Π A = 0 . So flΓ1^) Π ̂ ( c l ^ U)= 0. But
yeπ'Xπiy)) £ inttfπ"1(clff2t7'). Hence, π " 1 ^ ) is closed in #X.

A liability of the concept "^-continuity" is that the restriction
of a ^-continuous function is not necessarily 0-continuous; this fact
is emphasized by 3.4. In particular, if A is a ^-closed, but not In-
closed, subspace in an iϊ-closed space Y (e.g., the set of nonisolated
points of the space Y of Example 1.1 in [3]), then by 3.4, π~ι(A) is
compact; however, π\π~ι{A): π~ι(A)—>Y is not ̂ -continuous.

For a HausdorίE space X, let EX denote {q e ΘX: q is fixed}. Now,
n~%X) = JSXand π\EX: EX—^Xis a ^-continuous, perfect, irreducible
function (see [8, Th. 10]). Porter and Votaw [13] proved that
σ(EX) = E(σX) if and only if the set of nonisolated points of EX
is compact. We now characterize when σ and E commute in terms
of X.

COROLLARY (3.5). Let X be a Hausdorff space σ(EX) = E(σX)
if and only if the set of nonisolated points of X is θ-closed in fcX.

Proof. Let A be the set of nonisolated points of X. By Theorem
5.8 in [13], π~\A) is the set of nonisolated points of EX. The stated
result now follows immediately by 3.4.

It is known that [10] no ίf-closed space is the countable union
of compact nowhere dense subspaces and that [10] there exists an
if-closed space that is the countable union of closed nowhere dense
subspaces. An unsolved problem by Mioduszewski [10] is whether
some iϊ-closed space is the countable union of iϊ-closed nowhere dense
subspaces. We now show that no iϊ-closed space is the countable
union of 0-closed nowhere dense subspaces.

(3.6) An iϊ-closed space is not the countable union of 0-closed
nowhere dense subspaces.

Proof. Assume, by way of contradiction, that X is an ίf-closed
space and X = (J {An: neN} where each An is nowhere dense
and 0-closed in X. Since X is ϋ-closed, then X = tcX = σX and
ΘX = EX. By 3.4, π~ι(An) is compact for each neN. If π~x{An)
contains a nonempty open set, then by the irreducibility and closed-
ness of π [8, Lemma 17], π(π~\An)) = An contains a nonempty open
set. So, each π~ι{An) is nowhere dense. Hence, the compact Hausdorff
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space ΘX is the countable union of nowhere dense closed subsets, a
contradiction.

A space has the countable chain condition (c.c.c.) if every family
of pair wise disjoint nonempty open sets is countable. One of the
equivalent forms (see [14]) of Martin's axiom is the following:
Every compact Hausdorff space with ccc is not the union of less
than c( = 2*o) closed nowhere dense subsets.

(3.7) Martin's axiom is equivalent to
(*) every iϊ-closed space with c.c.c. is not the union of less than

c ^-closed nowhere dense subsets.

Proof. Clearly, (*) implies the "compact Hausdorff" form of
Martin's axiom. Conversely, suppose Martin's axiom is true and
X is an iϊ-closed space with c.c.c. Since X is iJ-closed, then ΘX =
EX. Using the fact int x π{ U) Φ 0 for every nonempty open set U
of EX, it follows that EX has c.c.c. If X is the union of a, a car-
dinal number, ^-closed nowhere dense subsets, then, as in the proof
of 3.6, the compact Hausdorff space EX with c.c.c. is also the union
of a closed nowhere dense subsets. Thus, (*) is true.
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