LUSIN AREA FUNCTIONS ON LOCAL FIELDS

Jia-Arng Chao

Abstract

We show that over a local field, Lusin area functions and nontangential maximal functions of a regular function are equivalent in the L^{p} "norm" for $0<p<\infty$. As a consequence, we have that "nice" singular integral transforms preserve H^{p}-spaces for $0<p<\infty$.

1. By a local field, we mean a locally compact, nondiscrete, totally disconnected, (complete) field. Various aspects of harmonic analysis on local fields have been studied. A list of references can be found in [4]. We also refer to [4] for notation and preliminaries.

Let K be a fixed local field with the ring of integers $\mathcal{O} . \mathcal{O} / \mathscr{P} \cong$ $G F(q)$ where \mathscr{P} is the maximal ideal in \mathcal{O} and q is a prime power. For $k \in Z$, let $\mathscr{P}^{-k}=\left\{x \in K:|x| \leqq q^{k}\right\},\left(\mathcal{O}=\mathscr{P}^{0}\right)$. $\quad \mathscr{P}_{y}^{-k}=y+\mathscr{P}^{-k}$ are spheres. The Haar measure on K has been normalized so that $|O|=\int_{0} d x=1$ and $\left|\mathscr{P}_{y}^{-k}\right|=q^{k}$ for all k. The theory of regular functions which are the local field analogue of harmonic functions is studied in [10] and [4]. In particular, distributions on K have been identified with regular functions on $K \times Z$ and the regularization kernel $R_{k k}(x)=q^{-k} \Phi_{-k}(x)$, where Φ_{-k} is the characteristic function of \mathscr{P}^{-k}, serves as the Poisson kernel.

Write $\left(\mathscr{P}_{y}^{-l}, k\right)=\left\{(x, k) \in K \times Z: x \in \mathscr{P}_{y}^{-l}\right\}$. For a nonnegative integer l and $z \in K$, let $\Gamma_{l}(z)=\left\{(x, k) \in K \times Z:|x-z| \leqq q^{k+l}\right\}=$ $\mathbf{U}_{k}\left(\mathscr{P}_{z}^{-(k+l)}, k\right)$. For a distribution f on K or a regular function $f(x, k)$ on $K \times \boldsymbol{Z}$, denote $d_{k} f(x)=f(x, k)-f(x, k+1)$. The Lusin area function of f with respect to Γ_{l} is given by

$$
S^{(l)} f(z)=\left(\sum\left|d_{k} f(x)\right|^{2}\right)^{1 / 2}
$$

where the sum runs over distinct $\left(\mathscr{P}_{x}^{-k}, k\right) \subset \Gamma_{l}(z)$. Write $S f(z)=$ $S^{(0)} f(z)=\left(\sum_{k}\left|d_{k} f(z)\right|^{2}\right)^{1 / 2}$. The nontangential maximal function of f with respect to Γ_{l} is given by

$$
m^{(l)} f(z)=\sup _{(x, k) \in \Gamma_{l}(z)}|f(x, k)|
$$

Write $f^{*}(z)=m^{(0)} f(z)=\sup _{k}|(z, k)|$.
Let us suppose that $f(x, k) \rightarrow 0$ as $k \rightarrow \infty$ for each $x \in K$. Let $\|f\|_{p}=\sup _{k}\|f(\cdot, k)\|_{p}$ for $0<p<\infty$. It is shown in [10] that for $1<p<\infty$,
(1) $\quad A_{p}\|f\|_{p} \leqq\|S f\|_{p} \leqq B_{p}\|f\|_{p}$ with constants $A_{p}, B_{p}>0$.

It is easy to see that for $1<p<\infty$

$$
\begin{equation*}
\|f\|_{p} \leqq\left\|f^{*}\right\|_{p} \leqq C_{p}\|f\|_{p} \text { with constant } C_{p}>0 \tag{2}
\end{equation*}
$$

In other words,

$$
\begin{equation*}
\|S f\|_{p} \approx\|f\|_{p} \approx\left\|f^{*}\right\|_{p} \text { for } 1<p<\infty \tag{3}
\end{equation*}
$$

From [4], we have that, for all nonnegative l and h,

$$
\begin{align*}
\left\{x \in K: S^{(l)} f(x)<\infty\right\} & \cong\left\{x \in K: \lim _{k \rightarrow-\infty} f(x, k) \text { exists }\right\} \tag{4}\\
& \cong\left\{x \in K: m^{(h)} f(x)<\infty\right\}
\end{align*}
$$

i.e., the above sets are equal except possibly for a set of measure 0 . Our main objective is to show that

$$
\left\|S^{(l)} f\right\|_{p} \approx\left\|m^{(h)} f\right\|_{p} \text { for } 0<p<\infty
$$

As a consequence, we show that "nice" singular integral transforms preserve H^{p}-space $(0<p<\infty)$ which is the space of distributions whose maximal function are in L^{p}. The last result is the main contribution of [5].

The euclidean version of the main theorem can be found in [2] (see also [7]); its martingale version about $S f$ and f^{*} is proved in [1]. Our work has been motivated by these results. In Appendix we shall discuss briefly how our argument can be applied to certain martingales.

Remark 1. The equivalence in L^{p} "norm" is interpreted in the obvious way, i.e., if one side is finite, so is the other and is bounded by a constant multiple of the former one. The restriction that $f(x, k) \rightarrow 0$ as $k \rightarrow \infty$ is needed only for the first inequality of (1) and $\left\|m^{(h)} f\right\|_{p} \leqq A_{p}\left\|S^{(l)} f\right\|_{p}$.

REMARK 2. A trivial modification gives us the same result for K^{n}, the n-dimensional vector space over K. The " Φ-inequalities" of Burkholder-Gundy [1][2] for $S^{(l)}$ and $m^{(h)}$ could also be proved.
2. We first show that $\left\|f^{*}\right\|_{p} \approx\left\|m^{(l)} f\right\|_{p}$ for $0<p<\infty$.

Lemma 1. For $\lambda>0$,

$$
\left|\left\{x \in K: f^{*}(x)>\lambda\right\}\right| \leqq\left|\left\{z \in K: m^{(l)} f(z)>\lambda\right\}\right| \leqq q^{l}\left|\left\{x \in K: f^{*}(x)>\lambda\right\}\right|
$$

Proof. $\left|\left\{f^{*}>\lambda\right\}\right| \leqq\left|\left\{m^{(l)} f>\lambda\right\}\right|$ is obvious since $f^{*} \leqq m^{(l)} f$.
Suppose $m^{(l)} f(z)>\lambda$. Then there exists $(x, k) \in \Gamma_{l}(z)$ such that $|f(x, k)|>\lambda$. Hence $\mathscr{P}_{x}^{-k} \subset\left\{f^{*}>\lambda\right\}$ and $z \in \mathscr{P}_{x}^{-(k+l)}$. Therefore

$$
\left|\left\{m^{(l)} f>\lambda\right\}\right| \leqq q^{l}\left|\left\{f^{*}>\lambda\right\}\right|
$$

THEOREM 1. $\left\|f^{*}\right\|_{p} \leqq\left\|m^{(l)} f\right\|_{p} \leqq q^{l / p}\left\|f^{*}\right\|_{p}$ for $0<p<\infty$.
Proof. This follows from Lemma 1 and the following identity:

$$
\begin{equation*}
\|g\|_{p}^{p}=p \int_{0}^{\infty} \lambda^{p-1}|\{g>\lambda\}| d \lambda, \quad 0<p<\infty \tag{5}
\end{equation*}
$$

Now let us break up the proof of $\left\|S^{(l)} f\right\|_{p} \approx\left\|m^{(h)} f\right\|_{p}(0<p<\infty)$ into several lemmas:

Lemma 2. $\left\|S^{(l)} f\right\|_{2}^{2}=q^{l}\|S f\|_{2}^{2}=q^{l}\|f\|_{2}^{2}$.
Proof. Easy and known. (See Lemma 2.8(c) of [4].)
LEmma 3. $\left\|f^{*}\right\|_{p} \leqq A_{p}\|S f\|_{p}$ for $0<p<2$.
Proof. By (5), it suffices to show the following estimate:

$$
\begin{equation*}
\left|\left\{f^{*}>\lambda\right\}\right| \leqq A \lambda^{-2} \int_{0}^{\lambda} t|\{S f>t\}| d t \text { for } \lambda>0 \tag{6}
\end{equation*}
$$

For a fixed $\lambda>0$, let

$$
\sigma(x)=\sup \left\{n: S_{n} f(z)>\lambda \text { for some } z \in \mathscr{P}_{x}^{-(n+1)}\right\}
$$

where $S_{n} f(z)=\left(\sum_{k \geq n}\left|d_{k} f(z)\right|^{2}\right)^{1 / 2}$. (Convention: $\sup \varnothing=-\infty$.)
For $x \in K$ with $\sigma(x)=n$, let

$$
g(x, k)= \begin{cases}f(x, k) & \text { if } \quad k \geqq n+1 \\ f(x, n+1) & \text { if } \quad k \leqq n\end{cases}
$$

Hence $S g(x) \leqq \lambda$ and $S g(x) \leqq S f(x)$ for all x. Moreover, for $x \in$ $\{\sigma=-\infty\} \subset\{S f \leqq \lambda\}$, we have $g^{*}(x)=f^{*}(x)$ and $S g(x)=S f(x)$. On the other hand, suppose $\sigma(x)=n>-\infty$. Then there exists $z \in$ $\mathscr{P}_{x}^{-(n+1)}$ such that $S_{n} f(z)>\lambda$. Thus $\mathscr{P}_{z}^{-n} \subset\{z: S f(x)>\lambda\}$ with $x \in$ $\mathscr{P}_{z}^{-(n+1)}$. Therefore we have

$$
|\{x: \sigma(x)>-\infty\}| \leqq q|\{z: S f(x)>\lambda\}|
$$

Now

$$
\begin{aligned}
\left|\left\{f^{*}>\lambda, \sigma>-\infty\right\}\right| & \leqq q|\{S f>\lambda\}| \\
& \leqq 2 q \lambda^{-2} \int_{0}^{\lambda} t|\{S f>t\}| d t
\end{aligned}
$$

and, by Lemma 2 and (5),

$$
\begin{aligned}
\left|\left\{f^{*}>\lambda, \sigma=-\infty\right\}\right| & \leqq\left|\left\{g^{*}>\lambda\right\}\right| \leqq 2 \lambda^{-2}\|g\|_{2}^{2} \\
& =2 \lambda^{-2}\|S g\|_{2}^{2}=4 \lambda^{-2} \int_{0}^{\infty} t|\{S g>t\}| d t \\
& =4 \lambda^{-2} \int_{0}^{\lambda} t|\{S g>t\}| d t \\
& \leqq 4 \lambda^{-2} \int_{0}^{\lambda} t|\{S f>t\}| d t
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left|\left\{f^{*}>\lambda\right\}\right| & \leqq\left|\left\{f^{*}>\lambda, \sigma>-\infty\right\}\right|+\left|\left\{f^{*}>\lambda, \sigma=-\infty\right\}\right| \\
& \leqq(2 q+4) \lambda^{-2} \int_{0}^{\lambda} t \mid\{S f>t\} d t
\end{aligned}
$$

This establishes (6) and Lemma 3.
Lemma 4. For $l>0$ and $0<p<2$,

$$
\left\|S^{(l)} f\right\|_{p} \leqq B_{p}\left\|m^{(l)} f\right\|_{p}
$$

Proof. Again, it suffices to show that for $l>0$ and $\lambda>0$,

$$
\left|\left\{S^{(l)} f>\lambda\right\}\right| \leqq B \lambda^{-2} \int_{0}^{\lambda} t\left|\left\{m^{(l)} f>t\right\}\right| d t
$$

Let $\mu(z)=\sup \left\{n:|f(x, n)|>\lambda\right.$ for some $\left.x \in \mathscr{P}_{z}^{-(n+l)}\right\}$. For $z \in K$ with $\mu(z)=n$, we have $\mu(x)=n$ for all $x \in \mathscr{P}_{z}^{-(n+l)}$; and let

$$
g(z, k)= \begin{cases}f(x, k) & \text { if } k \geqq n+1 \\ f(x, n+1) & \text { if } k \leqq n\end{cases}
$$

Hence $\{\mu=-\infty\}=\left\{m^{(l)} f \leqq \lambda\right\}$ and for $\mu(z)=-\infty$, we have $g(x, k)=f(x, k)$ if $x \in \mathscr{P}_{z}^{-(k+l)}$ or $(x, k) \in \Gamma_{l}(z)$. Thus on $\{z: \mu(z)=$ $-\infty\}, S^{(l)} g(z)=S^{(l)} f(z)$ and $m^{(l)} g(z)=m^{(l)} f(z) \leqq \lambda$. Now

$$
\begin{aligned}
\left|\left\{S^{(l)} f>\lambda, \mu>-\infty\right\}\right| & \leqq\left|\left\{m^{(l)} f>\lambda\right\}\right| \\
& \leqq 2 \lambda^{-2} \int_{0}^{\lambda} t\left|\left\{m^{(l)} f>t\right\}\right| d t
\end{aligned}
$$

and by Lemma 2 and (5),

$$
\begin{aligned}
\mid\left\{S^{(l)} f>\lambda, \mu\right. & =-\infty\}\left|\leqq\left|\left\{S^{(l)} g>\lambda\right\}\right| \leqq \lambda^{-2}\left\|S^{(l)} g\right\|_{2}^{2}\right. \\
& =q^{l} \lambda^{-2}\|g\|_{2}^{2} \leqq q^{l} \lambda^{-2}\left\|m^{(l)} g\right\|_{2}^{2} \\
& \leqq q^{l} \lambda^{-2} \cdot 2 \int_{0}^{\infty} t\left|\left\{m^{(l)} g>t\right\}\right| d t \\
& \leqq 2 q^{l} \lambda^{-2} \int_{0}^{\lambda} t\left|\left\{m^{(l)} f>t\right\}\right| d t
\end{aligned}
$$

Hence

$$
\left|\left\{S^{(l)} f>\lambda\right\}\right| \leqq 2\left(q^{l}+1\right) \lambda^{-2} \int_{0}^{\lambda} t\left|\left\{m^{(l)} f>t\right\}\right| d t
$$

Therefore Lemma 4 is proved.
Lemma 5. For $l \geqq 0$ and $2<p<\infty$,

$$
\left\|S^{(l)} f\right\|_{p} \leqq C_{p}\|f\|_{p}
$$

Proof. Suppose $p>4$ and let r be the conjugate index of $p / 2$. Thus $1<r<2$. Consider a fixed $k \in Z$. For $x \in K$, let $\left\{x_{i}\right\}_{i=1}^{q^{l}}$ be the distinct coset representatives such that $\mathscr{P}_{x_{i}}^{-(k-l+1)} \subset \mathscr{P}_{x}^{-(k+1)}$. For $g \in$ L^{r} with $\|g\|_{r}=1$, we have

$$
\begin{aligned}
& \int_{K} \sum_{i=1}^{q^{l}}\left|d_{k} f\left(x_{i}\right)\right|^{2}|g(x)| d x=\sum_{i} \int_{K}\left|d_{k} f\left(x_{i}\right)\right|^{2}|g(x, k+1)| d x \\
& \quad=\sum_{i} \int_{K}\left|d_{k} f\left(x_{i}\right)\right|^{2}\left|g\left(x_{i}, k+1\right)\right| d x \\
& \quad=q^{2} \int_{K}\left|d_{k} f(x)\right|^{2}|g(x, k+1)| d x
\end{aligned}
$$

Hence it follows from this, Hölder's inequality, (1) and (2) that

$$
\begin{aligned}
& \int_{K}\left[S_{n}^{(l)} f(x)\right]^{2}|g(x)| d x=\sum_{k \geq n} \int_{K} \sum_{z=1}^{q^{l}}\left|d_{k} f\left(x_{i}\right)\right|^{2}|g(x)| d x \\
& \quad=\sum_{k \geq n} q^{l} \int_{K}\left|d_{K} f(x)\right|^{2}|g(x, k+1)| d x \\
& \quad \leqq q^{l} \int_{K}\left[S_{n} f(x)\right]^{2} g^{*}(x) d x \\
& \quad \leqq q^{l}\left\|S_{n} f\right\|_{p}^{2}\left\|g^{*}\right\|_{r} \\
& \quad \leqq B_{p}\|f\|_{p}^{2}
\end{aligned}
$$

where B_{p} depends only on p and q. Thus

$$
\begin{aligned}
\left\|S_{n}^{(l)} f\right\|_{p}^{2}=\left\|\left[S_{n}^{(l)} f\right]^{2}\right\|_{p / 2} & =\sup _{g \in L^{r}, \|| | r=1}\left|\int_{K}\left[S_{n}^{(l)} f(x)\right]^{2} g(x) d x\right| \\
& \leqq B_{p}\|f\|_{p}^{2}
\end{aligned}
$$

Therefore $\left\|S^{(l)} f\right\|_{p} \leqq C_{p}\|f\|_{p}$ for $4<p<\infty$.
Apply the Marcinkiewicz interpolation theorem to this and Lemma 2, we have

$$
\left\|S^{(l)} f\right\|_{p} \leqq C_{p}\|f\|_{p} \quad \text { for } \quad 2<p<\infty
$$

Theorem 2. For $l, h \geqq 0$ and $0<p<\infty$,

$$
\left\|S^{(l)} f\right\|_{p} \approx\left\|m^{(h)} f\right\|_{p}
$$

Proof. The case of $p=2$ is obvious.

If $0<p<2$, then, from Lemma 3, Lemma 4 and Theorem 1, we have for $l>0$,

$$
\begin{aligned}
\left\|f^{*}\right\|_{p} & \leqq A_{p}\|S f\|_{p} \leqq A_{p}\left\|S^{(l)} f\right\|_{p} \\
& \leqq A_{p} B_{p}\left\|m^{(l)} f\right\|_{p} \approx\left\|f^{*}\right\|_{p} .
\end{aligned}
$$

If $2<p<\infty$, then, by Theorem 1, (3) and Lemma 5,

$$
\begin{aligned}
\left\|m^{(h)} f\right\|_{p} & \approx\left\|f^{*}\right\|_{p} \approx\|f\|_{p} \approx\|S f\|_{p} \\
& \leqq\left\|S^{(l)} f\right\|_{p} \leqq C_{p}\|f\|_{p} .
\end{aligned}
$$

Therefore $\left\|S^{(l)} f\right\|_{p} \approx\left\|m^{(h)} f\right\|_{p}$ for $0<p<\infty$ and the proof of the theorem is completed.

Remark 3. The above argument simplifies the extension argument as used in §2 of [4] and is essentially similar to the decomposition argument of [5]. It is also a sort of stopping time argument for martingales relative to a regular stochastic basis. (See Appendix.) The main result (with respect to "truncated cones") could be used to show (4)-the Fatou-Calderón-Stein theorem, in a similar manner as in [2].
3. Let π be a (multiplicative) unitary character on K^{*} such that it is homogeneous of degree 0 and is ramified of degree $h \geqq 1$. Denote $Q(x)=c \pi(x)|x|^{-1}$ where $c=1 / \Gamma(\pi)$. (See [9] for details about Γ-function.) Let $Q_{n}=R_{n} * Q$ and $Q_{n}^{N}=Q_{n} \Phi_{-N}$ for $N \geqq n+h$. For a distribution f on K or a regular function $f(x, k)$ on $K \times \boldsymbol{Z}$, we note that $Q_{n}^{N} * f(x, k)=Q_{k}^{N} * f(x, k)=Q^{v} * f(x, k)$ for $n \leqq k \leqq N-h$. Define

$$
\left(T_{\pi} f\right)(x, k)=\lim _{N \rightarrow \infty} Q^{N} * f(x, k) \text { for }(x, k) \in K \times \boldsymbol{Z}
$$

If $f \in L^{p}(K), 1 \leqq p<\infty$, then this is just a sort of singular integral transform as been studied in [8], [11] and [4].

For $0<p<\infty$, let $H^{p}(K)$ be the space of all distributions f on K whose maximal function $f^{*} \in L^{p}(K)$ with the H^{p} "norm" $\left\|f^{*}\right\|_{p}$. From [5], we know that for $f \in H^{p},\left(T_{\pi} f\right)(x, k)$ is a well-defined regular function. The regularization of the corresponding distribution is just $\left(T_{\pi} f\right)(x, k)$. Moreover, the following is also shown:

Theorem 3. T_{π} preserves H^{p}-spaces for $0<p<\infty$. That is, $\left\|\left(T_{\pi} f\right)^{*}\right\|_{p} \approx\left\|f^{*}\right\|_{p}$ for $0<p<\infty$.

We show here how this result can be obtained as a consequence of Theorem 2.

Lemma 6. $\quad S^{(h)} f(z)=S^{(h)} T_{\pi} f(z)$ for all $z \in K$.

Proof. For a fixed $k \in Z$ and $x \in K$,

$$
d_{k} T_{\pi} f(x)=T_{\pi} f(x, k)-T_{\pi} f(x, k+1)=T_{\pi} d_{k} f(x)
$$

For each $m \in Z$, let $\varepsilon_{m}^{i}, i=1,2, \cdots,(q-1) q^{h-1}$, be coset representatives of $\mathscr{P}^{-(m-h+1)}$ in $\left\{t:|t|=q^{m+1}\right\}$. Then

$$
\begin{aligned}
& T_{\pi} f(x, k)=c \int_{|t|>q k} f(x-t) \frac{\pi(t)}{|t|} d t \\
&=c \sum_{m=k}^{\infty} q^{-(m+1)} \int_{|t|=q}{ }^{m+1} \\
&=c q^{-k} \sum_{m=k}^{\infty} \sum_{i=1}^{(q-1) g^{h h-1}} \pi\left(\varepsilon_{m}^{i}\right) f\left(x-\varepsilon_{m}^{i}, m-h(t) d t\right. \\
&
\end{aligned}
$$

Thus

$$
\begin{equation*}
T_{\pi} d_{k} f(x)=c q^{-h^{(q-1) q} \sum_{i=1}^{h-1}} \pi\left(\varepsilon_{k}^{i}\right) f\left(x-\varepsilon_{k}^{i}, k-h+1\right) \tag{7}
\end{equation*}
$$

Now let $g(x)$ be the restriction of $d_{k} f(x)$ on $z+\mathscr{P}^{-(k+1)}$ for any fixed z. Hence from (7) we see that $T_{\pi} g(x)$ is also supported on $z+$ $\mathscr{P}^{-(k+1)}$. By Plancherel's theorem, since $|\pi|=1$, we have

$$
\left\|T_{\pi} g\right\|_{2}=\left\|\left(T_{\pi} g\right)^{\wedge}\right\|_{2}=\left\|\pi^{-1} \hat{g}\right\|_{2}=\|\hat{g}\|_{2}=\|g\|_{2}
$$

That is,

$$
\sum_{i=1}^{q^{h}}\left|d_{k} f\left(x_{i}\right)\right|^{2}=\sum_{i=1}^{q^{h}}\left|d_{k} T_{\pi} f_{\pi}\left(x_{i}\right)\right|^{2}
$$

where $x_{i}, i=1,2, \cdots, q^{h}$, are coset representatives of $\mathscr{P}^{-(k-h+1)}$ in $\mathscr{P}_{z}^{-(k+1)}$. Thus summing this up with respect to k, we have

$$
S^{(h)} f(z)=S^{(h)} T_{\pi} f(z)
$$

Proof of Theorem 3. It follows immediately from Theorem 2 and Lemma 6 that for $0<p<\infty$,

$$
\left\|f^{*}\right\|_{p} \approx\left\|S^{(h)} f\right\|_{p}=\left\|S^{(h)} T_{\pi} f\right\|_{p} \approx\left\|\left(T_{\pi} f\right)^{*}\right\|_{p}
$$

Appendix. Let (Ω, \mathscr{A}, P) be a probability space and $\left\{\mathscr{A}_{n}\right\}_{n=1}$ a nondecreasing sequence of sub- σ-fields of \mathscr{A}. Let $f=\left\{f_{n}\right\}_{n \geq 1}$ be a real-valued) martingale relative to $\left\{\mathscr{A}_{n}\right\}_{n \geqq 1}$ and $\left\{d_{k}\right\}_{k \geqq 1}$ be the difference sequence of f. For a nonnegative integer l, write

$$
m^{(l)} f=\sup _{n} E\left(\left|f_{n+l}\right| \mid \mathscr{A}_{n}\right)
$$

and $S^{(l)} f=\left[\sum_{k>l} E\left(d_{k}^{2} \mid \mathscr{A}_{k-l}\right)\right]^{1 / 2} . \quad f^{*}=m^{(0)} f=\sup _{n}\left|f_{n}\right|$ is the maximal function of f and $S f=S^{(0)} f=\left[\sum_{k>0} d_{k}^{2}\right]^{1 / 2}$ is the square function of f. Burkholder and Gundy [1] proved that for a large class of
martingales,

$$
\|S f\|_{p} \approx\left\|f^{*}\right\|_{p} \text { for } 0<p<\infty
$$

However examples (in [1]) show that

$$
\begin{equation*}
\left\|S^{(l)} f\right\|_{p} \approx\left\|m^{(h)} f\right\|_{p} \quad \text { for } \quad 0<p<\infty \tag{9}
\end{equation*}
$$

fails to hold. Nevertheless by a slight modification of the previous argument, we can show that this is true for martingales relative to a regular stochastic basis (after Chow [6]).

Indeed, the crucial part of the proof is to consider the following stopping time:

$$
\mu(x)=\inf \left\{n: E\left(\left|f_{n+l}\right| \mid \mathscr{A}_{n}\right)<\lambda\right\} \quad(\lambda>0) .
$$

Together with the regularity of the stochastic basis and (8), we get (9) by a similar argument as before.

We remark that our argument gives a simplified proof of (8) for martingales relative to a regular stochastic basis. Also the argument used in Lemma 5 similar to the one in [3] provides a new proof of that

$$
\|s f\|_{p} \leqq C_{p}\|f\|_{p} \quad \text { for } \quad p>2
$$

where $s f=S^{(1)} f=\left[\sum_{k>1} E\left(d_{k}^{2} \mid \mathscr{A}_{k-1}\right)\right]^{1 / 2}$ is the conditioned square function of the martingale f (relative to any stochastic basis).

References

1. D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math., 124 (1970), 249-304.
2. -, Distribution function inequalities for the area integral, Studia Math., 44 (1972), 527-544.
3. J.-A. Chao, A note on martingale square functions, Ann. Prob., 1 (1973), 1059-1060. 4. -, H^{p}-spaces of conjugate systems on local fields, Studia Math., 49 (1974), 267-287.
4. , Maximal singular integral transforms on local fields, Proc. Amer. Math. Soc., 50 (1975), 297-302.
5. Y. S. Chow, Convergence of sums of squares of martingale differences, Ann. Math. Statist., 39 (1968), 123-133.
6. C. Fefferman and E. M. Stein, H^{p}-spaces of several variables, Acta Math., 129 (1972), 137-193.
7. K. Phillips and M. H. Taibleson, Singular integrals in several variables over a local field, Pacific J. Math., 30 (1969), 209-231.
8. P. J. Sally and M. H. Taibleson, Special functions on locally compact fields, Acta Math., 116 (1966), 279-309.
9. M. H. Taibleson, Harmonic analysis on n-dimensional vector spaces over local fields, II. Generalized Gauss kernels and the Littlewood-Paley function, Math. Ann., 186 (1970), 1-19.
10. ——_ III. Multipliers, Math. Ann., 187 (1970), 259-271.

Received February 20, 1975.
The University of Texas at Austin

