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NORMS OF RANDOM MATRICES

G. BENNETT, V. GOODMAN1, AND C. M. NEWMAN2

Under rather general conditions on the matrix entries,
we obtain estimates for the probability distribution of the
norm of a random matrix transformation from <2 to Al
(2 ̂  q < oo). Asymptotically, the expected norm is remark-
ably small and this enables us to produce an interesting
class of bounded linear operators from S% to Sq. As an
application, we complete the characterization of (p, q)
absolutely summing operators on Hubert space, thereby
answering a question left open by several previous authors.

1* Introduction* Many questions in the theory of / p spaces
require, for their solution, the existence of finite matrices with ± 1
entries whose norms satisfy prescribed conditions. In several cases
the required matrices have been given explicitly: the simplest examples
stem from the orthogonality of the Walsh functions (see, for example,
[10] where non-complemented subspaces of /v are constructed) or
from the Rademacher functions via Khintchine's inequality (see, for
example, [6] where the p-absolutely summing operators on Hubert
space are characterized). In many problems, however, the construc-
tion of suitable matrices leads to formidable combinatorial difficulties.
We consider in this paper one such problem for which no constructive
method is available. The appropriate matrix is obtained here pro-
babilistically by showing that "most" matrices satisfy the prescribed
norm inequalities.

Specifically, the problem we consider is that of characterizing
the ideal, ΐ[P>q, of (p, g)-absolutely summing operators on Hubert
space. Recall that a bounded linear operator T on ^ 2 is (p, q)-absolutely
summing (1 ^ q <^ p <k °°) if (|| Txn\\)Z=ιe sp whenever (xn)n=i is a
sequence of elements of ^ 2 with the property that ((xn, 2/»SU β /q for
each y e /2. This problem has received a good deal of attention in
recent years and the known results are described below. We denote
by @r(l ^ r < oo) the Schatten r-class of all compact linear operators
T on / 2 for which Σ»=ilλ»Γ < °° where {λ%}£=1 are the eigenvalues
of (Γ*Γ)1/2, counted according to multiplicities (and arranged in order
of decreasing modulus); for convenience the class of all bounded linear
operators on / 2 is denoted by Θ^.

We then have:

(a) if p =q < oo, Πp>q = @ 2 ;
(b) ifp = oo or (1/q) - (1/p) ̂  1/2, Πp>g - ©„;
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(c) if {IIq) - (Ijp) < 1/2 and q ^ 2, Πp>q = Θr

1/r - (l/j>) - (1/g) + (1/2);
(d) if2<q<p< oo9e2pJqSΠp>qS&P.

(a) is due to Peiczynski [6]; (b) to Kwapien [4]; (c) and the first part
of (d) to Mitiagin [4]; and the second part of (d) to Pietsch-Triebel
[8]. Special cases were discovered earlier by Grothendieck ((a) for
p = 1) [3]; Pietsch ((a) for 1 ^ p ^ 2) [7]; and Orlicz ((b) for p = 2,

9 - 1) [5].
The only outstanding case is thus 2 < q < p < oo. This case is

more subtle than the others in that a new ideal, @r,f, generated by
the Lorentz sequence space /r'8 is involved. @r,β(l < r, s < oo) is the
set of all compact linear operators T on /2 for which Σ"=i^ ( s / r ) ~1 λ J s <
oo where the λ/s are defined as above. In [1], it is shown that

(e) if 2 < q < p < oo9 &Λpi9tP g ΠPyq, with equality
when q is an even integer;

we here remove the restriction that q be an even integer, thereby
completing the description of Πp>q. This is done in Section 3 of the
paper by using the following result whose proof is given in Section 2.

THEOREM 1. Let A — (a^) be an m x n matrix whose entries
are independent, mean-zero random variables with \ai3-\ ^ 1 for all
i, j . For 2 <; q < oo, there is a constant K, depending only on q,
such that

E(\\A\\2>q) ̂  Kmaxim1'*, n1'2)

where ||A||2,g denotes the operator norm of A\/l~*/l.

It should be noted that the estimate of Theorem 1 is best possible
(up to the choice of K) in the sense that every m x n matrix A! =
(alj) with Ola = ± 1 has ||A'||2,ff ^ max(m1/?, n1'2).

2. Random matrices* Theorem 1 is proved below using the
following lemmas. Our techniques were suggested by methods used
in deriving limit theorems for large deviations of sums of random
variables ([2] and [9]). We begin with a standard result whose
proof is included for completeness.

LEMMA 1. Let (X,)£=t be independent, mean-zero random varia-
bles with \XS\ ^ 1 for all j ; then for any λ > 0 and real blf , bn,

P(± bjXj j ̂  λ) ^ 2 exp (-λ2/4 ± b)) .
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Proof. Using the elementary inequality, exp (x) — x ^ exp (x2),
it follows that for all real μ,

E[exp (μX,)] = #[exp (μXf) - μXd] £ E[exp (μ*X})] g exp (μ2) .

The independence of (-3Γ/)*=i thus yields

#[exp ( / ί | δy-aΓy)] ̂  exp (;"" Σδ/)

Applying Chebyshev's inequality, we obtain, for μ > 0,

exp b) -Σ
3=1

Taking μ = λ/2 Σ?«i &?• gives the desired result.

The next lemma is really the technical key to our results (at
least for q Φ 2).

LEMMA 2. i^or each q >̂ 2, ίAerβ is α constant C, depending
only on q, so that if (Xj)"=i satisfy the hypotheses of Lemma 1,

^[exp^lgo^l')] ^ 1 + Cμ(±bή"β

for O^μ^ (Σ"=i 6})-"V-"78 .

Proof. Without loss of generality we may take Σ" = 1 δ* = 1.

^exp Σ 6yX, = J exp

= l + Γgμλ-ί~1exp(/αι)p(|Σ > λ

via integration by parts. Since IΣ*=i&i-X/l ^ (Σ*=i &J ) ι/V2, we have
-P(IΣ"=iδ, X;,| > w1'2) = 0. We apply the estimate from Lemma 1 to
obtain

Λl/2

since

^ 1 + 2qμ \ Xq~1 exp (μXq — λ2/4)dλ
Jo

^ 1 + 2qμ[\q-ί exp (-λ2/8)dλ
Jo

nι~ql2/S. This gives the desired result with

C=2q ( V - 1 exp (-λ 2 /8)^ - Sqi2qΓ(q/2) .
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We now assume that q ̂  2 is fixed and that {αi? } are independent
random variables satisfying the hypotheses of Lemma 1. Given real
Xj we obtain estimates (independent of {x-j}) on the probability dis-
tribution for the random variable

I1 = 1 I 3 = 1

9 / / » .\QI2

Σ ί
i=i

LEMMA 3. For any real X and positive integers m, n,

P(Y^ Cm + SXnql2) g exp (~Xn) ,

where C is the constant appearing in Lemma 2.

Proof. For real μ, we set K(μ) = log E[exp(μY)] so that
E[exip(μY — K(μ))] = 1. It follows from Chebyshev's inequality that
for any real v,

^ K(μ) + v) £ exp (~v) .

O n t h e o t h e r h a n d , w e h a v e f r o m L e m m a 2 t h a t f o r O g / i ^

(μ Γ)] = Π μ Σ

^ Π (1 + C/i) ^ exp (mCjw) ,

where δ, = ̂ -/(ΣjU ^l)1/2 s o t h a t -κ'(Aί) ^ mCμ. Setting v = Xn and
^ = nι~qj2l%, we obtain the desired result.

We now consider the random m x n matrix A with entries ai5

and denote the norm of A: /I —> /I by

y = sup^dl AcclU) .

LEMMA 4. TΆerβ βxΐsί constants cίy c2 (depending at most on q)
such that for all λ > 0,

P(\\ A\\2>q ^ c,(m + Xng!2)lιq) ^ exp (~(λ - c2)n) .

Proof. Let 0 < ε < 1 be fixed; by an ε-net for the unit sphere
S= {x: \\x\\2 = 1} in Rn, we mean a finite subset, N, of S satisfying

s u p m i n \\x — y\\2 <
 ε -

x e S y z N

Any matrix A effectively attains its norm on such a set N: more
precisely, we have
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\\A\\iq = s u p | | A α | | g ^ max| |A?/|[g + s u p m i n | | A ( ^ - y)\\q ,
xes yeN » e < S y ε N

so that

- I- ε ».Λ

For such an N, we have, putting cx = (max (C, 8))ιlί/(l — ε),

^ Pfmax || Ay||ff ^ (Cm

^ Σ exp (-λw) = |iSΓ| exp (~

by Lemma 3, where \N\ denotes the number of elements in N.
Moreover, using elementary geometrical arguments, it is straight-
forward to show that N may be chosen with \N\ ̂  exp(c2^) with
c2 a constant depending only on e; this completes the proof.

We can now proceed to prove Theorem 1.

Proof of Theorem 1. We let μx = c?(ra + c2n
ql2); then by Jensen's

inequality,

S oo

expf-w 1 "^—m + J«/C?) + c2n}dμ

from which the desired result immediately follows.
Before concluding this section we apply Lemma 4 in a somewhat

different manner to obtain the following result.

THEOREM 2. For 2 <J q < oo, there is a constant K\ depending
only on q, so that if (for each m, n = 1, 2, •) Am>n is an m x n
random matrix satisfying the hypotheses of Theorem 1, then with
probability one,

lim sup || Aw,J|2,g/max (m1^, Φ*) ^ K' .
max(τw,ίi)-+oo

Proof. Using the estimate of Lemma 4 with λ = c2 + max (1,
mlnqβ) gives



364 G. BENNETT, V. GOODMAN, AND C. M. NEWMAN

^ Kr) ^

with Kf = Ci(2 + c2ψ\ By the Borel-Cantelli lemma,

P(\\Am,n\\2>g/ma,x(mllg, n112) ̂  i Γ for infinitely many m, w) = 0

if Σm,« P( | | A||2,ff/max (m1/9, u1/2) ^ X') < oo. Hence it suffices to show
that

oo

Σ e χ P (—max (n, mn1'912)) < °o ,

which is easily verified.

REMARK. Defining for an m x n matrix A,

= i n f i l l 11, ,

we have of course that 0 ̂  L2tg(A) <; || A\\2,q with L2,q{A) = 0 for
m < n. Estimates similar to those obtained above can be used to
derive asymptotic lower bounds for L2>q(A) (at least with m much
larger than n). It can be shown, for example, that if infi,J £

r[(αo )
2]>0,

then for 2 < q < co and any δ > 0, there exists a constant c£ > 0 so
that with probability one,

lim inf LUAnJ/m1!9 ^ d .

3* Absolutely summing operators* In this section we complete
the description of the (p, tf)-absolutely summing operators on Hubert
space, thereby answering a question left open in [4], [8] and [1].

THEOREM 3. If2<q<p<oo, then ΠPtq = 82P/?,P.

Proof. The inclusion Πp>q 3 @22>/ί>P has already been established
in Theorem I of [1]. For the converse, we apply Theorem 1 (or
Lemma 4 or Theorem 2), choosing the matrix entries (aiS) indepen-
dently with P(ai3' = +1) = P(ati = — 1) = 1/2. It follows that there
exists, for each positive integer n> at least one matrix of order
[nQI2] x n with all ± 1 entries satisfying \\A\\z>q ̂  Knlf%, where K is
a constant depending only on q. This generalizes Proposition 2 of
[1], and the argument used to prove Theorem II of that paper shows
t h a t Πp>q S @2P/g,p.

Added in proof. For further applications of these results the
reader should consult the forthcoming paper "On uncomplemented
subspaces Lp, 1 < p < 2, being prepared jointly with L. E. Dor and
W. B. Johnson.
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For extensions to matrix transformations of /* into sq, 1 ^ p,
q <; oo, consult "Hadamard multipliers," being prepared by G. Bennett.
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