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INFINITE SUBRINGS OF INFINITE RINGS
AND NEAR-RINGS

HOWARD E. BELL

Leffey has proved that every infinite associative ring con-
tains an infinite commutative subring, and thereby suggested
the problem of finding reasonably small classes ^ of infinite
rings with the property that (*) every infinite ring contains
a subring belonging to ^ 1 Clearly, there is no minimal
class ^ in] the obvious sense, for in any class satisfying (*)
a ring may be replaced by any proper infinite subring of
itself. In §§ 1-3 we determine a class ^ ό satisfying (*) and
consisting of familiar and easily-described rings; and § 4 we
indicate how our results subsume and extend known finite-
ness results formulated in terms of subrings and zero divisors.

Section 5 identifies classes which satisfy (*) and are
minimal in a certain loose sense, and § 6 extends the major
result of the first three sections to distributive nearrings.
The ring-theoretic results are proved in the setting of
alternative rings.

In the remainder of the paper, Z stands for the ring of integers
and Zv for the ring of integers modulo p, where p is prime. The
term J-ring refers to a ring R such that for each xe R, there
exists an integer n(x) > 1 for which xn{x) = x. The cyclic group of
order p is denoted by CP9 the infinite cyclic group by CL, the Prϋfer
p-group by C(p°°).

Let p be a prime and λ = (p^ an infinite strictly-increasing
sequence of primes. Then G(λ) will denote the direct sum of the
groups CPi, H(X) will denote the direct sum of the fields Zp., and
F(p,X) will denote the field (J"=i GF(p*n), where πn = pt p2 pn.
If λ is replaced by an infinite sequence all terms of which are equal
to the same prime q, then the analogous groups and rings will be
denoted by G(q), H(q), and F{p, q).

Finally, for any subset S of R, AL(S), AB(S), and A(S) will
denote respectively the left, right, and two-sided annihilators of S.

The major theorem of the paper is

THEOREM 1. Let ^ be the class consisting of all rings of the
following kinds:

(a) the zero ring on one of the groups (?«,, C(p°°), G(q), or G(λ);
(b) rings generated by a single element and isomorphic to a

subring of Z, to the ring XZ[X], or to the ring XZP[X] for some
prime p)
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(c) a ring H(q), a ring if(λ), a field F(p, q), or afield F(p, λ).
Then every infinite alternative ring contains a subring belonging
to

1* Preliminary results* We begin this section with some pre-
liminary results on alternative rings. Denoting the associator
(xy)z — x(yz) by (x, y, z), we note that it is skew-symmetric and
satisfies the identity [4, p. 379]

(A) (y, x\ z) = (y, x, xz + zx) = x(y, x, z) + (y, x, z)x .

LEMMA 1. For any alternative ring R, the following results
hold:

( i ) A(R) is a two-sided ideal of R;
(ii) if xe R, A(x) is a subring of R)
(iii) if xe R and x2 = 0, and if H = AR(x), then Hx is a zero

ring)
(iv) if e is an idempotent of R which commutes elementwise

with R, then e is in the nucleus and R is the direct sum of the
orthogonal ideals Re and A(e).

Proof. ( i ) The proof is trivial and is omitted.
(ii) Clearly A(x) is an additive subgroup. Also, if al9 a2e A(x),

we have (al9 x, α2) = ( α ^ ) ^ — a^xa^ = 0; thus (a^x = xfaaj = 0.
(iii) Since H is an additive subgroup, so is Hx. Moreover,

letting hlf h2e H and applying (A), we get 0 = (hίf 0, h2) = (h19 x
2, h2) —

(hu x, xh2 + h2x) = (hu x, h2x) = (h^ih^x) — hx{x{h2x)) = (h&MhtX); there-
fore, Hx is a zero ring.

(iv) Taking x — e in (A) and using the skew-symmetry of the
associator yields {e, y, z) = e(e, y, z) + (β, y, z)e = 2e(e, y, z). Multiply-
ing through by e then gives e(β, y, z) ~ (e, y, z) — 0. The [result of
(iv) now follows trivially.

LEMMA 2. (See [5].) Let R be an infinite alternative ring
containing no infinite zero ring. Then for each nilpotent element
xe R, A{x) is infinite.

Proof. Let G denote any infinite additive subgroup of R, and
define the additive subgroup homomorphism φ: G~+xG by y\-* xy.
Application of the first isomorphism theorem shows that either xG
is infinite or {y e G \ xy — 0} = G Π AR{x) is infinite; similarly, one of
Gx and G Π AL(x) must be infinite. Using these results, we proceed
by induction on the index of nilpotence of x.

Suppose first that x2 = 0. Since either xR or AR(x) must be
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infinite, AR(x) is infinite in any event. By (iii) of Lemma 1, (AR(x))x
is a zero ring, hence finite; therefore AB(x) Π AL{x) = A(x) must be
infinite.

Now assume the result for nilpotent elements of index less than
k, k ^ 3; and suppose xk = 0. Since (x2)*"1 = 0, A(x2) is infinite and
hence either (i) xA(x2)is infinite or (ii) A(x2) Π AR(x) is infinite. In
the event that (i) holds, then one of (xA(x2))x and xA(x2) Π AL(x) is
infinite; and since both are contained in A(x), we are done. If (ii)
holds then either (A(x2) Π AR(x))x is infinite or A(x2) Π AR{x) Π AL(x) is
infinite, and again we are finished because both are contained in
A(x).

Finally, we present for the sake of completeness some easy
results on periodic (alternative) rings R—that is, rings with the
property that for each xe R there exist distinct positive integers
n, m for which xn — xm.

LEMMA 3. Let R be a periodic alternative ring. Then (i) if
R is not nil, R has a non-zero idempotent; (ii) if R has no non-zero
nilpotent elements, R is a J-ring.

Proof. ( i ) If xn = xm for n > m, then χ^k^~m) = x* for each
positive integer k and each j ^ m. Thus χm^-m) is idempotent.

(ii) Let xn = xm, n > m > 1. Then xm~2x(x - ^~w+1) = 0 =
χm-2χn-m+i(χ _ x*-m+i) = χ™-*(χ _ χn-m+1)\ The obvious induction shows

that x — xn~m+1 is nilpotent, hence 0.

2* Initial reduction of the problem*

PROPOSITION 4. Every infinite alternative ring contains an
infinite subring of one of the following kinds:

(a) a nil ring;
(b) a ring generated by a single element;
(c) a J-ring.

Proof. Let R be any infinite ring containing no infinite sub-
ring of type (a) or (b); note that every infinite subring of R has
the same property. Since every element of R generates a finite
subring, R must be periodic.

Suppose for the time being that for every set SN ~
{0 = xu x2, , xN} of distinct elements of R such that

(4.1) xtxs = 0 for all i, j = 1, - , N

and

(4.2) RN = A(SN) is infinite ,
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it is possible to find y e BN\SN for which y2 = 0. By (ii) of Lemma
1 and our earlier observations on R, RN is an infinite ring with no
infinite zero subring; thus by Lemma 2, the annihilator of y in RN,
namely RN n A(y), must be infinite, and SN+1 — SN U {y} is a set of
N+ 1 distinct elements satisfying (4.1) and (4.2). Thus, beginning
with S1 = {0} we can construct inductively an infinite sequence of
pairwise-orthogonal elements squaring to zero and therefore an
infinite zero ring—a contradiction.

Thus, R contains some set SN satisfying (4.1) and (4.2) such
that every element y of RN squaring to zero already belongs to SN;
replacing R by RN, we assume henceforth that R has the property
that S = {x e R \ x2 — 0} is finite and equal to A(R).

By (i) of Lemma 3, R contains a nonzero idempotent e. Now
for each xe R, and every nonzero idempotent e of R, ex — exe and
xe — exe are elements of R squaring to zero, hence are in S and are
annihilated by β. Thus xe — exe = ex — exe = 0; and by (iv) of Lemma 1,
β is central in R and R = ei?0A(β). Since S £ A(e), eR can contain
no nonzero elements squaring to zero, hence no nonzero nilpotent
elements; thus eR is a /-ring. We may assume that βiϋ is finite
for all nonzero idempotents e, for otherwise we are done. A
straightforward induction yields an infinite sequence of pairwise
orthogonal nonzero idempotents et such that for each m, R =
eJK φ © βmi2 φ Γm, where Tm = ΠΓ=i A(et). The restricted direct
sum Σ φ β ^ of the /-rings β,i2 is therefore an infinite /-ring con-
tained in R.

PROPOSITION 5. Every infinite alternative nil ring contains
an infinite zero ring.

Proof. Assume the result is false. Then by the second and
third paragraphs of the proof of Proposition 4, every counter-
example must contain as a subring a counterexample R with the
property that

(P) S = {x 6 R ] x2 = 0} is finite and is equal to A(R) .

We first show that R must have bounded index of nilpotence.
Denote the number of elements of S by N, and suppose that x2k = 0
for k^N+1; note that xh, •• ,x2fc~1 all square to zero. Since
k > N these elements cannot be distinct, and there exist positive
integers j \ and j2 such that j \ < j2 ^ 2k — 1 and &* = £i2+i(i2~"il) for
all positive integers j . Thus x3'1 = 0 and it follows that x2N — 0 for
all xe R.

We assume now that R has degree of nilpotence K, minimal for
the family of counterexamples with property (P). Clearly R = R/A(R)
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is infinite; and since (xκ~1)2 — 0 for all x e R, R must have index of
nilpotence at most K — 1. If R were a counterexample to Proposi-
tion 5, then it would contain a counterexample with property (P),
thereby contradicting the minimality of K; thus, R has an infinite
zero subring T = T/A(R). Clearly T is an infinite subring of R
such that (xy)z = x(yz) = 0 for all x, y, ze T; in particular, #3 = 0
for all x e T. Since T contains only a finite number of elements
squaring to zero, each necessarily of finite additive order, there must
exist a positive integer n such that y2 = 0 implies ny — 0. Thus,
wx2 = 0 for all x e T, so that %Γ has each of its elements squaring to
zero, hence is finite. Therefore f = {xe T\ nx = 0} must be infinite.

Replacing R by T, we now have a counterexample R such that
S = {x e R I x2 = 0} = A(β) is finite, A(JB) 2 i22, and nR = 0 for some
positive integer %. For any finite or infinite sequence <&,> of
elements of .#, denote by TF* the subring generated by S\J{xlf , α?f};
and note that each Wt must be finite. Using Lemma 2 and (ii) of
Lemma 1 we can obtain a sequence <&<> of elements of R such that

(5.1) S = Wo c TΓx c c Wi

for each i, the inclusions all being strict

(5.2) xixύ = 0 for all i Φ j

(5.3) for each &, Γ̂  = A(Wk) is infinite .

Specifically we begin by choosing any xλ & S and proceed inductively —
once xl9 —*,xk have been defined, the finiteness of Wk permits the
choice of xk+1 e Tk\Wk; and Lemma 2 applied to Tk guarantees that
Tk Π A(xk+1) = Tk+1 is infinite.

Since x\ e S for each i, the finiteness of S implies the existence
of seS for which x\ = s for n distinct a?<. Letting # be the sum
of these xi9 we have the result that z2 — ns = 0 but «$ S. This
contradiction completes the proof of Proposition 5.

PROPOSITION 6. Every infinite alternative ring contains an
infinite subring which is both associative and commutative.

Proof. Since one-generator subrings and zero rings are obviously
associative and commutative, we need only establish the same for
alternative /-rings. These are commutative by a theorem of Smiley
[10]; the associativity follows from the general result that a com-
mutative alternative ring with no nonzero nilpotent elements is
associative [7, Lemma 3].

3* Proof of Theorem !• The proof of Theorem 1 is completed
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by three lemmas, which further refine the classes (a), (b) and (c)
of Proposition 4 (in that order). In view of Proposition 6, we may
assume that our rings are associative.

LEMMA 7. Every infinite zero ring contains a zero ring on one
of the following groups: (i) C ;̂ (ii) G(λ) for some strictly-increasing
sequence λ of primes; (iii) G(q) for some prime q\ (iv) C(̂ °°) for some
prime p.

Proof. Of course, we wish to prove that every infinite abelian
group contains one of the indicated groups as a subgroup.

Suppose then that G is any infinite abelian group. If G contains
an element of infinite order, it contains an infinite cyclic subgroup;
hence we may suppose that G is periodic, in which case G = Σ 0 Gp,
where the Gp are the p-primary components for all primes p. If
there are infinitely many nontrivial GPf then G has a subgroup of
type (ii); thus we consider the case of only finitely many nontrivial
Gp and assume without loss that G is a countable p-group for some
prime p. Let H be the subgroup of G consisting of elements of
order p.

If G has no elements of infinite height, then G has a subgroup
of type (iii) by Theorem 11.3 of [3]; if H is infinite, then we can
replace G by H and apply the same argument. Thus, we suppose
that H is finite and that G contains an element x0 of infinite height
such that px0 = 0. There exists a sequence xt of elements of G for
which p*χt = xQ, i = 1, 2, and the set {xt — pi~ιxi \ i = 2, 3, }
is a subset of H. There is, therefore, a smallest integer M ̂  2
for which pM~1xM is equal to pi~1xi for infinitely many i; and it
follows that x[ = pM~1xM is of infinite height and px[ = x0. Proceed-
ing inductively, we get a sequence x0, xl9 x2, where px0 = 0 and
pXi = #<_!, i = 1, 2, •; hence G must contain C(p°°) as a subgroup.

LEMMA 8. Let B be an infinite ring which is generated by a
single element, and suppose R contains no infinite zero ring. Then
R must contain XZ[X], or XZP[X] for some prime p, or a subring
of Z.

Proof. Suppose initially that R is generated by an element a
of infinite additive order. Clearly, if a is not algebraic over the
integers, R ~ XZ[X], Consider now the case where a is algebraic
over the integers, and let a satisfy

(8.1) n,akl + n2a
k2 + + nsa

ks = 0 ,

where kx < k2 < < ks, nx Φ 0, and kλ is the smallest positive
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integer occurring as the lowest power of a in any such relation.
If &! > 1, then ab = 0, where b = w^α*1"1 + + n8a

ks~λ', and since
the annihilator of a is the annihilator of R, which under our
assumptions is finite, either b = 0 or jb = 0 for some positive integer
j . In either case the minimality of kx is contradicted; therefore
&! = 1 and

(8.2) nta = ap(a) ,

where p(X) e Z[X] has zero constant term. Letting b — p(a) in
(8.2), we see that b has infinite order and b2 = 7̂ 6. Thus, the
subring of R generated by 6 is isomorphic to the subring of Z
generated by nt.

We turn now to the case where the generator a has finite order
% = pfip«2.. .p«kf the ^ being distinct primes. Since R is the direct
sum of its p rprimary components and since each of these is
generated by a single element, we may assume that n = pa for
some prime p. If a == 1, in which case R may be regarded as an
algebra over Zp, then R ~ XZP[X]; otherwise the generator would
be algebraic over Zp and hence R would be finite.

Suppose, then, that a > 1. Since pR is nil, it must be finite
by Proposition 5; therefore R = {x e R \ px = 0} is infinite. If a
denotes the generator of R, then for appropriate positive integers
n, m we have pan = pam = pa

m+k^~m^ for all integers k ^ 1; and it
follows that b = Σj'Γ1 αm+i(%~m) is an element of R. Moreover,
b Φ 0 since α would otherwise generate a finite ring. Clearly b
cannot be algebraic over Zp—that too would imply R is finite; hence
δ generates a subring isomorphic to XZP[X].

LEMMA 9. Let R be an infinite J-ring. Then R must contain
a subring of one of the following forms: H(X) for some strictly-
increasing sequence λ of primes) H(q) for some prime q; a field
F(P, λ) for some strictly-increasing sequence of primes; a field
F(p, q).

Proof. Let R be any infinite J-ring. Since the additive group
of a J-ring is a torsion group, R = Σ ®RP, where Rp are the
^-primary components of R+. Clearly each nontrivial Rp contains a
non-zero idempotent of additive order pf hence R contains a ring
if(λ) if there are infinitely may nontrivial Rp. Otherwise we may
assume that the additive group of R is a p-group; moreover, since
R has no nonzero nilpotent elements, the additive order of each
nonzero element is square-free and we have pR = 0. If xeR
satisfies xn+1 = x, then xn = e is an idempotent such that ex — xe = x;
thus if R has a unique nonzero idempotent, it is an identity element
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and R is a field. On the other hand, if e is a nonzero idempotent
which is not an identity element, we get a nontrivial decomposition
R = Re 0 A{e) with one of the summands infinite. Thus, by con-
tinuing direct sum decompositions as long as possible, we either get
a ring H(p) or an infinite field. The proof is completed by showing
that every infinite J-field contains a subfield of type F(p, λ) or
F(p, q).

Accordingly, let F be an infinite J-field and note that every
finitely-generated subring is a finite field. Thus, F contains a subfield
F which is the union of a strictly ascending tower Zp — FociF1c:F2 •
of finite fields; and we may assume that the tower has been so
refined that there are no subfields properly contained between any
two of its members. It follows that for each i = 1, 2, , [Ft: Ft_^\
is a prime p%. Using the basic facts about finite fields, it is easy
to construct a field F(p, λ) if there are infinitely many different pi

and a field F(pf q) otherwise. This completes the proof of Lemma 9
and hence of Theorem 1.

4* Some consequences of Theorem I* Theorem 1 leads directly
to the following two extensions of Szele's result [11] that an associa-
tive ring must be finite if it has both a.c.c. and d.c.c. on subrings.

THEOREM 2. If R is an alternative ring satisfying both
ascending chain condition and descending chain condition on com-
mutative associative subrings, then R is finite.

Proof. If there were a counterexample the class «Ĵ  of Theorem
1 would include rings having both a.c.c. and d.c.c. on subrings; but
it does not.

THEOREM 3. Let R be an alternative ring having only a finite
number of zero subrings and a finite number of subrings which
are integral domains. Then R is finite.

Proof. The rings of type (a) in Theorem 1 all contain infinitely
many zero subrings; those of types (b) and (c) all contain infinitely
many integral domains.

REMARKS 1. Of course we could have obtained Theorem 2 by
invoking our Proposition 6 and Szele's proof for the associative
case. The proof of Theorem 1, however, is conceptually more
elementary than Szele's proof.

2. In the hypotheses of Theorem 3, finiteness cannot be replaced
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by a.c.c. and d.c.c, as can be seen by considering the ring H(X)
for a strictly-increasing sequence λ.

The following theorem, which presents a new finiteness criterion
for rings, does not seem to be a direct corollary of Theorem 1 but
uses some of the machinery from its proof.

THEOREM 4. Let R be an alternative ring having nonzero
divisors of zero. If A(x) is finite for each nonzero (two-sided)
zero divisor x, then R is finite.

Proof. Suppose that R is an infinite ring with nonzero divisors
of zero. If R has nonzero nilpotent elements, then by Lemma 2,
R has a nonzero element x for which A(x) is infinite; thus, assume
that R has no nonzero nilpotent elements, in which case ab = 0
if and only if ba — 0, so that there is no distinction between
right and left annihilators. If for some nonzero pair α, b we
have ab = 0 and a generating an infinite subring, then A(b) is
infinite; if there exists no such pair, for each nonzero zero divisor
α, we have am = an for distinct positive integers n> m and some
power of a is a nonzero idempotent, necessarily central. In the
latter case, the decomposition R = Re 0 A(e) is nontrivial with at
least one of the summands infinite, so we again have a nonzero x
with A(x) infinite.

An immediate consequence of Theorem 4 is the following theorem
which extends Theorem 3 of [1].

THEOREM 5. If R is an alternative ring with nonzero divisors
of zero and has a.c.c. and d.c.c. on subrings consisting of two-
sided zero divisors of R, then R is finite.

Our final application of Theorem 1 deals with the question of
when an infinite ring contains infinitely many infinite subrings.

THEOREM 6. If R is an infinite alternative ring containing
no zero ring on a Prilfer p-group and no field F(p, q), then R has
infinitely many infinite (commutative associative) subrings. In
particular, if R contains no infinite subring whose subrings are
totally ordered by inclusion, R must have infinitely many infinite
subrings.

Proof. The first assertion is obtained by noting that all the
members of the class *J% with the exception of zero rings on groups
C(p°°) and fields F(p, q) contain infinite decreasing sequences of
infinite rings. The second assertion is immediate from the fact that
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the zero rings on the groups C(p°°) and the fields F(p, q) are pre-
cisely the infinite rings whose subrings are totally ordered by inclu-
sion (see [9]).

5* Minimality considerations* In this section, we deal with
a notion of minimality for classes satisfying (*).

If ^ is any such class of rings, it must obviously contain all
infinite rings having no proper infinite subrings—specifically, all fields
F(p, q) and the zero ring on each group C(p°°); and it must contain
all infinite rings which are isomorphic to each of their proper in-
finite subrings—i.e., the zero ring on (?«,, the zero ring on each
group G(p), and all rings H(p). It must include at least one de-
creasing sequence of subrings of Z, at least one subring of XZ[X],
and at least one subring of XZP[X] for each prime p. Finally, it
must include infinitely many rings of the form H(X), infinitely many
zero rings on groups G(λ), and infinitely many fields F(pf λ); this
fact follows at once from the observation that infinite subrings of
rings of these types are of the same type.

Such a class J? need not contain more than one decreasing
sequence of rings UiZ provided that the one sequence has the pro-
perty that each nonzero integer n divides some nt; and since every
subring of XZ[X] or XZP[X] contains a subring isomorphic to the
entire ring, it will be sufficient for ^ to contain any one subring
of XZ]X] and any one subring of each ring XZP[X].

It is not clear exactly which classes of rings H(X), F(p, λ), and
zero rings on G(X) must be included in ^ but we can say some-
thing. Let λ0 denote the sequence of all primes of Z in their
natural order, and let J denote any strictly-increasing sequence of
positive integers. Denote by λ̂  the subsequence of λ0 obtained by
choosing those terms indexed by J. Then ^ need contain no rings
H(λj) where J has bounded gaps; similar considerations apply to
fields F{p, λ) and zero rings on G(λ).

A set ^f of strictly-increasing sequences of positive integers will
be called adequate if each of its members has an unbounded set of
gap lengths and if it contains at least one subsequence of every
strictly-increasing sequence of positive integers. It being understood
that JF in each occurrence denotes an adequate set of sequences,
we now define a class J? satisfying (*) to be irredundant if it
includes each of the following:

( i ) all fields F(p, q) and the zero ring on each group C(p°°);
(ii) the zero ring on CL, the zero ring on each group G{p), and

the ring H(p) for each prime p;
(iii) one infinite decreasing sequence (riiZ) of subrings of Z,

with the property that each positive integer n divides some nt;
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(iv) one nonzero subring of XZ[X]; and one nonzero subring
of XZP[X] for each prime p;

(v) the zero rings on any family of groups of the form
{G(Xj) I Je ^};

(vi) any family {H(Xj) \ Je J")\
(vii) for each prime p, one family {F{p, Xj) \ Je J?\.
We can now state a characterization theorem. A formal proof

is omitted, since most of the details are included in the preceding
discussion.

THEOREM 7. A class ^ of rings satisfies (*) if and only if it
contains an irredundant subclass.

It would, of course, be interesting to know more about adequate
sets of sequences; but we are unable to give a tight description of
them. It is clear, however, that they are quite large—in fact, it
is easily shown that an adequate set contains uncountably many
subsequences of each increasing sequence of positive integers.

6* Extensions to distributive near-rings* A near-ring R is a
binary system satisfying all the (associative) ring axioms except
right distributivity and commutativity of addition; R is called a
distributive near-ring (dnr) if it does have right distributivity. An
ideal of a dnr R is a normal subgroup of R+ which is closed under
left and right multiplication by elements of R; the theory of homo-
morphisms is the same as for rings.

A recurring consideration in the study of near-rings is the
relationship between distributivity and additive commutativity. By
extending our earlier results a bit, we can show that "most" in-
finite distributive near-rings contain infinite sub-near-rings which are
additively commutative, hence rings. Clearly, not all dnr's have
this property, for there exist infinite groups with no infinite abelian
subgroups—we shall refer to them as exceptional [8, p. 35]—and
the near-ring with trivial multiplication on such a group has no
infinite subrings.

We shall make use of two well-known elementary results on
dnr's—

(I) If R is a distributive near-ring, R2 is a ring [2].
(II) If R is a distributive near-ring and R' is the derived group

of the additive group R+, then Rf is an ideal of R and RR' — R'R =
0 [6].

THEOREM 8. Let R be an infinite distributive near-ring for
which the derived group of R+ is not exceptional. Then R contains
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an infinite subring.

Proof. In view of (I) and (II) we consider only R with both R2

and Rr finite. The finiteness of R2 implies the existence of a posi-
tive integer n such that nx2 = 0 for all x e R; thus, if u is an
element of R having infinite additive order, we have (nu)2 = 0 and
nu generates an infinite ring. Therefore, we may assume hence-
forth that R+ is a periodic group. Another consequence of the
finiteness of R2 is that R is a periodic near-ring—i.e., for each x e i2,
there are distinct positive integers n, m for which xn = xm.

Observe that R\Rf is an infinite ring. If it has no infinite zero
ring, then by Theorem 1 it contains an infinite subring S/Rf with
no nonzero nilpotent elements. Now by Lemma 3 periodic rings
with no nonzero nilpotent elements are /-rings, hence are commuta-
tive by Jacobson's well-known theorem; and it follows that for all
x, y e S9 xy — yxe R'QA(R). In particular, if e is an idempotent of
S and s an arbitrary element of S, then (es — se)e = e(es — se) = 0 and
therefore idempotents of S are in the centre of S. Since eeeSξZ R2,
we easily obtain a finite set E of pairwise-orthogonal idempotents
such that So — Sf)A(E) is infinite and contains no nonzero idempotents;
and because So is periodic, it must be nil. Since So is infinite, we
cannot have So £ Rf; thus, we have contradicted the fact that S/R'
had no nonzero nilpotent elements.

To complete the proof, we need only discuss the case where R'
and R2 are both finite and RjR' contains an infinite zero ring SIR'.
For x,yeS, we must have xye R' Q A(R), so in particular x* = 0
for all xeS.

By applying an inductive argument similar to that used in the
proof of Proposition 5, we can show that S must contain an infinite
sequence <#<> of pairwise-orthogonal elements squaring to zero. We
omit the datails, but mention that Lemma 2 holds in the context of
dnr's and that the ability to choose xi+1 not in the subring generated
by {xu '",%«} depends on local finiteness of R+, which is guaranteed
by the fact that R+ is a periodic group with finite derived group.

Consider all additive commutators of the form [xu xx] = xγ + xt —
xt — xi9 i > 1. Since S' is finite, we may assume that [xu xt] =
[xl9 Xj] for all i, j > 1.

Defining the sequence <X > by ux = x1 and uά = — x2 + Xj+ί for
j > 1, we obtain a sequence of pairwise-orthogonal elements squaring
to zero, such that no ut belongs to the additive subgroup generated
by the previous terms and such that all its terms commute addi-
tively with ut Continuing with the inductive construction this
suggests, we arrive at a sequence of pairwise orthogonal elements
squaring to zero and generating an infinite abelian subgroup of S+;
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therefore S contains an infinite zero ring. The proof of Theorem 8
is now complete.

COROLLARY 1. If R is an infinite distributive near-ring, then
R contains an infinite ring or an infinite near-ring with trivial
multiplication.

COROLLARY 2. // R is an infinite distributive near-ring having
ascending chain condition and descending chain condition on sub-
near-rings and if R' is not exceptional, then R is finite.

Proof. Use Theorem 2 and Theorem 8.

REMARK. Whether the hypothesis that Rf is not exceptional is
required in Corollary 2 is equivalent to the unsolved problem as to
whether a group with ace and dec on subgroups need be finite.

COROLLARY 3. Let R be an infinite distributive near-ring with
solvable additive group. Then R contains an infinite subring.

Proof. Let R{i) denote the ith term of the derived series of
R+, i = 1, 2, •••. Since R+ is solvable, there is a smallest positive
integer m for which R(m) is finite. If m = 1, R' is not exceptional
and we are finished; if m > 1, then B^"^ is an infinite distributive
near-ring whose derived group is not exceptional, and i2(m~υ con-
tains an infinite ring.

COROLLARY 4. // R is an infinite distributive near-ring the
additive group of which is locally finite, then R must contain an
infinite subring.

Proof. If Rr is not finite, it must contain an infinite abelian
subgroup by the Hall-Kulatilaka-Kargopolov theorem [8, p. 95];
therefore R' is not exceptional, and the result follows from
Theorem 8.
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