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A MOMENT PROBLEM FOR POSITIVE
MEASURES ON THE UNIT DISC

AHARON ATZMON

A necessary and sufficient condition on an infinite matrix
(tfm,n)m,π=o is given for the existence of a positive Borel measure
μ on the closed unit disc D in the complex plane such that

α». = \ Zmzn dμ(z)

holds for all nonnegative integers m; n.

1* Introduction* The purpose of this note is to present the
solution of the following complex moment problem:

For which infinite matrices («»,»)£,»«<> does there exist a positive
Borel measure μ on the closed unit disc D is the complex plane such
that

(1.1) α», = \ zm*n dμ(z)

holds for all nonnegative integers m, nt

In § 2 we give the complete solution of this problem, and in § 3
we deduce, as corollaries, known solution of the trigonometric moment
problem and the power moment problems for the intervals [0,1] and

Our interest in the moment problem (1.1) arose from the obser-
vation that the invariant subspace problem for bounded linear
operators on a separable Hubert space is equivalent to the following
problem:

Let A = (am,n)Z,n=o be an infinite matrix which satisfies the
following two conditions:

(1.2) Σ 0LMwmw% > 0
m,n=0

and

(1.3) Σ («...• ~ am+lt%+ι)wjvn ^ 0
Q

Σ (

for every nonzero sequence (wn)™=0 of complex numbers which has
only finitely many nonzero terms.

Let P denote the vector space of all polynomials with complex

317



318 AHARON ATZMON

coefficients, and define on it the inner product

where p(z) = Σ i o M m and q(z) = Σ£=*cuz*.
It follows from (1.2) that with this inner product P forms a

pre-Hilbert space, and we denote by Sί?A the Hubert space obtained
as its completion. Let S denote the operator of multiplication by z
on P, that is, Sp (z) - zp(z) for peP. Condition (1.3) implies that
II JSΓ{I ^ 1, and therefore, since P is dense in £ίfA, S admits a unique
extension to a bounded linear operator on βέ?A with the same norm,
which we shall also denote by S.

The problem which is equivalent to the general invariant subspace
problem is as follows:

For every matrix A = (am,n)%,n=(i which satisfies (1.2) and (1.3)
does the associated operator S have a nontrivial invariant subspace?

Indeed, assume that there exists a linear operator Ton a separable
Hubert space 21?, such that || Γ| | <£ 1, which has no nontrivial in-
variant subspace, and let x be any nonzero element of Si?. Define
the matrix A = (am>χ,n=o by: am,n - (Tmx, Tnx), m, n = 0,1, 2, . . .
The assumptions on T imply that the matrix A satisfies conditions
(1.2) and (1.3). Let S be the operator associated with A as before,
and consider the isometric linear transformation U of 2έ?A onto έ%?
which is defined on the dense subspace P by Up = p(T)x, pe P.
Then S = U~ιTU, and therefore if T has a nontrivial invariant sub-
space, neither has S.

In view of this observation, it is of interest to consider matrices
(α», )ΐ,n=o for which (1.2) and (1.3) hold, and to find further conditions
on these matrices which imply that the associated operator S has a
nontrivial invariant subspace. In the particular case in which
(α», )»,n=o satisfies condition (1.1) for some positive Borel measure μ
on the closed unit disc, then conditions (1.2) and (1.3) are satisfied,
and Sί?A can be identified with H\dμ)—the closure of P in L\dμ)—
and the associated operator S is now multiplication by z on H2(dμ).
It is worth nothing that the problem of whethere for every positive
Borel measure μ on D the operator of multiplication by z on H\dμ)
has a nontrivial invariant subspace is still open, and is equivalent to
the invariant subspace problem for sub-normal operators. (We learned
this from A. Shields. See also [5] p. 192 for further details.)

In the particular cases when (ctm>n)Z,n=o is a Toeplitz matrix or
a Hankel matrix, which satisfies conditions (1.2) and (1.3), the operator
S, associated with this matrix, has a nontrivial invariant subspace
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whether or not the moment problem (1.1) is soluble for the matrix
(tf»,n)ΐ, =o This can be seen as follows: Let l0 be the polynomial
which is identically equal to 1, and consider the closed subspace M
of 2ί?A spaned by the vectors SH0, n = 0, 1, 2, . If M Φ SίfA then
M is a nontrivial invariant subspace for S, and if M = £tfA it is
easily verified that in the case of Toeplitz matrices S is unitary and
in the case of Hankel matrices S is self-ad joint. Thus by well known
results S has a nontrivial invariant subspace also in this case. Finally,
we remark that S has obviously a nontrivial invariant subspace when
(#»,»)£,»=<> ί s a diagonal matrix.

2 Solution of the moment problem* The general solution of
the moment problem (1.1) is given by the following proposition:

THEOREM 2.1. Let ((xm>n)™in=:0 be an infinite matrix of complex
numbers. Then condition (1.1) holds for some positive Borel measure
μ on the closed unit disc if and only if the following two conditions
are satisfied:

oo

(2.1) Σ am+ίtn+kcnJcmtk ^ 0

for every matrix (cj>k)J.k=:o with only finitely many nonzero entries

(2.2) Σ (<*•,» - o:m+1>n+1)wmwn ^ 0
m,n=0

for every sequence (wn)^=0 with only finitely many nonzero terms.

Proof. Assume first that (am>n)%>n=0 satisfies condition (1.1) for
some positive Borel measure μ on the closed unit disc D and let
(Gd,k)7,k=o be an infinite matrix such that for some positive integers
M and N, cj>k — 0 if j > M or k > N. Consider the polynomials:
PJfr) = Σ£=o cn>kz\ n = 0, 1, 2, , M. It follows that

— I
JD

dμ(z) ^ 0

which proves that (2.1) holds.
To show that (1.1) implies (2.2) consider a sequence of complex

numbers (ww)2U which has only finitely many nonzero terms. Then

oo ί oo

Σ o:m+hn+1wmwn = \ Σ wnz
n+ί dμ{z)

m,n=0 JD w=0

<C 1 X 1 on <yn \ ri n(σ\ — X 1 sv on oTi
JD ίt=0 I m,n=0

Hence (2.2) holds.
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We turn now to the proof that conditions (2.1) and (2.2) are
sufficient for (1.1) to be satisfied for some positive Borel measure μ
on D. Observe first that (2.1) implies that for any sequence of
complex numbers (wΛ)*=o which has only finitely many nonzero terms,

(2.3) Σ am,nwmwn ^ 0 .
m,n=0

Indeed, (2.3) is obtained by applying (2.1) with the matrix (cj}k)J}k=0

defined by cn,0 = wn, n = 0, 1, 2, , and cnΛ = 0 for k = 1, 2, 3, ,
n = 0, 1, 2,

We shall now show that (1.1) holds under the additional assump-
tion that whenever (wn)n=0 is not the zero sequence, the inequality
in (2.3) is strict, that is, we assume that (αw>w)ϊU=0 satisfies also
condition (1.2). It will be clear from the proof that the general case
can be established in the same way, using only (2.3), by an obvious
quotient space argument.

Let now Sί?A be the Hubert space associated with the matrix
(am,n)Z,n=o and let S be the corresponding operator as defined in § 1.
It is easily verified that condition (2.1) is equivalent to the condition

(2.4) Σ (S*pn, Smpn) ^ 0
m,n=Q

for any finite set of polynomials p0, p19 , pt. Since the polynomials
are dense in §ίfA it follows from (2.4) that

(2.5) Σ <S*fw S"/ > ̂  0
n,n— 0

for any finite set /„, fl9 , /z in SίfA. By a theorem of J. Bram [3,
Theorem 1], condition (2.5) implies that S is a subnormal operator,
that is, S can be extended to a normal operator K on a Hubert space
έ%f which contains £%fA as a closed subspace. Moreover, we may also
assume that | | S | | = | | iΓ| | [3, p. 81, Lemma 2], and since | | S | | ̂ 1
we also have | | iΓ| | <Ξ 1. Let E be the spectral measure associated
with K by the spectral theorem for normal operators [4, p. 71]. Let
lQ be the element of P which is identically equal to 1, and consider
the positive Borel measure μ defined by μ(B) = (E(B)l0, l0) for every
Borel set B in the plane. We claim now that this measure satisfies
the required conditions.

First, since μ is supported by the spectrum of K and || J5Γ|| ^ 1,
the support of μ is contained in the closed unit disc. Secondly, it
follows from the well-known properties of spectral measures [4, p. 61]
that for all p, q e P,

, q(K)l0) = \ p(z)q(z)dμ(z) ,
JD
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and therefore since K is an extension of S we obtain that

α». = (Smk, SHo) = \ zmz«dμ(z) .
JD

This completes the proof of the theorem.

REMARKS. 1. Since every continuous function in the closed unit
disc is a uniform limit of polynomials in z and z, it follows that the
solution of the moment problem (1.1), whenever it exists, is unique.

2. It follows from Theorem 2.1 and the fact that a polynomial
in one variable has only finitely many zeros, that the measure μ
which satisfies (1.1) has an infinite support if and only if the inequality
(2.1) is strict for every nonzero matrix (c, , *)£*=<> with only finitely
many nonzero entries.

3. One might be tempted to conjecture that condition (2.1) can
be replaced by condition (2.3) in the hypothesis of Theorem 2.1. That
this is not the case can be seen from the following example: Consider
the matrix (α»,»)S,n=o defined by a0>0 = a1Λ = 2, an>n = 1 for n > 1 and
am>n = 0 for m Φ n. Then conditions (2.2) and (2.3) are satisfied but
condition (2.1) is violated by the matrix (cj)k)J>k^0 given by: co,o = 1>
<α,i = — 2 and cάΛ — 0 otherwise.

3* Application to the trigonometric and power moment prob-
lems* In order to apply Theorem 2.1 to the trigonometric and power
moment problems we first need two lemmas.

LEMMA 3.1. Let («»,»)£,»=<> δe α matrix for which there exists
a positive measure μ on the closed unit disc such that (1.1) holds.
Then:

( a ) If (<xm>n)Z,n=o is & Toeplitz matrix, that is, am>n = ccm_n)0 for
m^n, the support of μ is contained in the unit circle {z: | z \ = 1}.

(b) // (<xm,n)Z,n=o is a Hankel matrix, that is, amtn = am+%tQ,
m, n = 0,1, 2, , then the support of μ is contained in the interval

[-1, 1].
(c) If (<xm>n)Z,n=o is a diagonal matrix that is am>n = 0 for mΦn,

then using the representation of D in polar coordinates D = {(r, θ),
0 ^ r < ; i , 0 ^ 0 ^ 2τr}, we have μ = v x dθ where v is a positive
Borel measure on [0, 1], and dθ denotes Lebesgue masure on [0, 2π).

Proof. ( a ) Using the assumption for m ~ n = 1 we see that

S (l — I z \2)dμ(z) = 0, and therefore since μ is a positive measure its
D

support is contained in {z, \ z \ — 1}.
(b) Using again the hypothesis for m - n = 1 we obtain that
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hence writing z — x + iy we infer that 1 y2dμ(x, y) = 0. Consequently,

since μ is a positive measure its support is contained in [ — 1,1],
(c) Let v be the positive Borel measure on [0, 1] defined by

v{B) = 2πμ(B x [0, 2τr)) for every Borel set B in [0, 1]. We claim that
μ = v x dθ. Since the polynomials in z and z are dense in the space
of continuous functions on D, it suffices to prove that for every pair
of nonnegative integers m, n we have:

(3.1) [ zmzndμ(z) = [ zmzndv x dθ .
JD JD

Now for m — n, the definition of v implies that

ί zmzndμ(z) = ί r2mdμ(r, θ) = J - ί V ^ O ) = ί ^w^cίv x d#
JD JD 2TΓ JO JD

and for m 7̂  n it follows from the hypothesis and the fact that
eikθdθ = 0 for k Φ 0, that both sides of (3.1) vanish. This completes

0

the proof of the lemma.

LEMMA 3.2. ( a ) Let (ίθ^= o o he a two sided infinite sequence
of complex numbers, and define the Toeplitz matrix (<xm}n)Z,n=o by
<xm,n = &»-«» m, n = 0,1, 2, . I%ew (ar«,*)SU=o satisfies conditions
(2.1) α^cί (2.2) i/ αwd owϊ?/ if

(3.2) Σ bP_qwPwq ^ 0

for any sequence {wn)n=~oo with only finitely many nonzero
terms.

( b ) Let (bn)n=o be an infinite sequence of complex numbers and
define the Hankel matrix (<xm>n)Z,n=o by am>n = bm+n, m, n = 0, 1, 2,
Then (am,n)Z,n=o satisfies (2.1) and (2.2) if and only if the following
two conditions are satisfied:

(3.3) Σ bp+qwpwq ^ 0
q,p=0

and

(3.4) Σ (&p+« ~~ bp+q+2)wpwq ^ 0

for any sequence (wn)n=0 of complex numbers with only finitely many
nonzero terms.

( c ) Let (bn)n=o be an infinite sequence of complex numbers and
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define the diagonal matrix ((xm>n)m,n=o by amjn — bn for m = n and
a™,*, = 0 for m Φ n. Then (<xm,n)Z,n=o satisfies (2.1) and (2.2) if and
only if the following two conditions are satisfied:

oo

(3.5) Σ (*W ~ bP+q+1)wPwg ^ 0
P,g=0

and

(3.6) Σ bP+q+1wPwq ^ 0
d,q=0

for any sequence (wn)^=0 of complex numbers with only finitely many
nonzero terms.

Proof. ( a ) We show first that (2.1) implies (3.2). Let (wJ~=-oo
be a sequence with only finitely nonzero terms and consider the matrix
(ci,*)Γ.*=o defined by: cOyP = w-p, cPf0 = wp, p = 0,1, 2, , and cJtk = 0
otherwise. A direct computation then shows that

oo oo

Σ bp-qwpwθ = Σ ^m+j>n+kcn)jcmίk .

Therefore (3.2) follows from (2.2). Conversely, to show that (3.2)
implies (2.2), consider any matrix (ci)k)Jtk==0 with only finitely many
nonzero entries and put c_^,m = 0 , m, n = 0, 1, 2, . Defining
Wp — Έi?=oGP+j,jP = 0, ± 1 , ± 2 , , we obtain that

Σ am+S,»+kCn,jCmtk = Σ bp_qWpWq .
m,n,j,k=0 p,q=— oo

Hence (3.2) implies (2.1). Finally, since (2.2) is clearly satisfied for
any Toeplitz matrix, the proof of (a) is complete.

( b ) First notice that (3.4) is equivalent to (2.2) and that (3.3)
follows from (2.3) hence from (2.1). It therefore remains to prove
that (3.3) implies (2.1). Let (cj)k)T,k=o be any infinite matrix with only
finitely many nonzero entries, and define wp = Σ?=o <V-i,j> V — 0> 1> 2,
• . A direct computation then shows that

oo

Σ bp+qwpwq = Σ am+itΛ+kcnjCmtk .
p,q—0 m,n,j,k

Hence (2.1) follows from (3.3).
( c ) By adding (3.5) and (3.6) we see that

(3.7) Σ bp+qwpwq ^ 0
p,q=0

for any sequence (wp)pss0 with only finitely many nonzero terms. We
claim now that for any such sequence (wp)p=0 we also have
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(3.8) Σ bu+9+twpwt ^ 0
p,g=O

for every nonnegative integer m.
Indeed, assuming first that m — 2k for some integer k, it follows

that

oo oo

Σ bm+p+qwpwq = Σ bp+qwp-kwq_k
?>,g=0 P,q=0

where we define w_n = 0, n — 0, 1, 2, . Consequently (3.8) follows
from (3.7) for m even. Similarly (3.5) implies (3.8) for m odd.

To prove that (3.8) implies (2.1), consider any matrix (cj>k)J)k=0

with only finitely many nonzero terms. Using the assumption that
(ttm,»)ΐf*=o is diagonal we obtain that

Hence (3.8) implies (2.1). Using (2.1) with matrices (cjtk)lk=0 such
that citk = 0 for j Φ 1 we see that (2.1) implies (3.5). Finally since
(3.6) is equivalent to (2.2), the proof of the lemma is complete.

We recall that a two sided infinite sequence (δJϊUo is called a
trigonometric moment sequence if there exists a positive Borel measure
μ on the unit circle

T = {z: \z I = 1} such that bn = [ e~intdμ(t) ,

n = 0, ± 1 , ± 2 , . . .

A sequence (bn)™ is called a power moment sequence of the interval
[a, b] on the real line, if there exists a positive Borel measure μ on
[a, b] such that:

K= Γ tndμ(t) , n = 0,1,2, . . .
Jet.

An obvious application of Theorem 2.1, Lemma 3.1 and Lemma
3.2 now yields:

PROPOSITION 3.3. ( a ) A sequence (&w)"=0O is a trigonometric
moment sequence if and only if it satisfies condition (3.2).

( b ) A sequence (&Jί=0 is a power moment sequence for the
interval [ — 1,1] if and only if it satisfies (3.3) and (3.4).

( c ) A sequence (bn)™=Q is a power moment sequence for the
interval [0, 1] if and only if it satisfies (3.5) and (3.6).

Part (a) of the proposition is the well known theorem of Herglotz
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on the characterization of trigonometric moment sequences.
Part (b) of the proposition is proved by Akhiezer and Krein [2,

p. 35, Theorem 19] for finite sequences of the form (bk)kt0. Since an
infinite sequence (&&)?=0 is a power moment sequence for a given
interval if and anly if for every m the sequence (5*)ϊ=0 is a finite
moment sequence on that interval, it follows that the two conditions
are equivalent for infinite sequences.

Part (c) of the proposition is a known theorem, but we are unable
to determine its origin. See however Akhieser [1, p. 74].

For the power moment sequences for the interval [0, 1] we also
have the well known characterization of Housdorff (see [1, p. 74]).
It seems that there is not direct way to prove that the two conditions
are equivalent.
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