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PLESSNER’S THEOREM FOR RIESZ
CONJUGATES

G. E. PETERSON AND G. V. WELLAND

Plessner’s theorem states that if a trigonometric series
converges everywhere in a set E of positive measure, then its
conjugate series converges almost everywhere in E. Recently,
Ash and Gluck have shown that this theorem is false in two
dimensions by exhibiting a Fourier series of an L' function which
converges almost everywhere, but each of its conjugates is
divergent almost everywhere. We show that if instead of the
usual conjugates in two dimensions, one uses Riesz conjugates,
then Plessner’s theorem remains true provided the conjugates
are required only to be restrictedly convergent almost
everywhere in E. The techniques used to obtain this result are
similar to those used in the one-dimensional case and involve the
notions of stable convergence, nontangential convergence, the
theory of Riesz conjugates as developed by E. M. Stein and G.
Weiss, and a Tauberian theorem for Abel summability.

1. Introduction. In [1], J. M. Ash and L. Gluck presented
some results for Fourier series in several variables. They proved in
dimension 2 that each of the conjugate series of a Fourier series of a
function in L?(p > 1) converges almost everywhere in the set where the
Fourier series converges. In the case p = 1, however, they exhibited a
function whose Fourier series converges almost everywhere such that
each of its conjugates is also a Fourier series of an L' function, but is
square divergent almost everywhere. Furthermore, in dimension 3 or
greater, they found-a continuous function whose Fourier series con-
verges almost everywhere such that each of its conjugates is also a
Fourier series of a continuous function, but is restrictedly divergent
almost everywhere.

On a philosophical level, this distressing state of affairs can be
explained by the fact that the ‘“‘singularity” of each conjugate transfor-
mation they use, thought of as a ‘‘singular integral operator”, has
changed from a point to a pair of lines as the dimension of the space was
increased from 1 to 2. This can be altered by using instead of the
ordinary. conjugate series, the Riesz conjugates. This is done also to
take advantage of the theory of conjugate transformations developed by
Stein and Weiss in [3] or [4] and [5]. By doing this, we are able to retain
Plessner’s theorem in its original form except that the conjugates will be
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required only to converge restrictedly almost everywhere in the set
where the original series converges.

The arguments will be presented in two dimensions. However,
similar arguments should obtain for higher dimensional spaces.

2. Definitions and statement of the main theorem.
Bold face letters such as N will represent two-dimensional vectors with
coordinates N, and N,. However, we will not use bold face letters for
variables x, t in the torus. The norm ||N| is (N} + N3". The notation
N> M means N,> M and N,> M, whereas N >k means that N, >k,
and N,>k,. For each vector N of integers, let Sy be a scalar. Then,
we speak of {Sx} as a sequence. By Sy— S as N— o, we will mean
that for every € > 0 there exists M such that N> M implies |[Sx— S| <€
(this is unrestricted rectangular convergence and in this case we speak
of convergence without qualifiers). We will say that Sy— S as N—>x
restrictedly if for every 6 > 0 and € > 0 there exists M such that N> M
and 8 '< N,/N,< 8 imply |Sx— S|<e. To say that Sy is restrictedly
bounded means that for every 6 >0 there exists H such that §7'<
N,/N,< & implies |Sx| < H. The notation Sy = 0(Ax) will mean that
Snx/Ax is bounded and —0 as N— . Finally Z;., means 2§,-o <o

Let

t = 2 (axcos k,x,cos k,x,+ b, sink,x, cos k,x,
k=0

+ ¢ cos k,x, sin k,x, + d, sin k,x, sin k,x,),
= (cos k,x,cos k,x,, sin k,x, cos k,x,,
cos k.x, sin k,x,, sin k,x, sin k,x,)

and V., =(a,, by, c\, d,), then we can write t =3(V,, T\) =2 A(x),
where (,) is the standard euclidean inner product in 4 dimensional

space, E*.
Let
0 1 00 0 010
-1 0 00 0 0 0 1
M, = M,=
00 0o 1], -1 0 00
00 -1 0 0 -1 00

and M;= M,M,. By using M, and M, as transformations on E‘ we can
define the Riesz conjugate series

=3 i Ve T = 3 i B
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and

Z ”k” M, V,, T = z ”k” Cu(x).
We will also use the double conjugate series
=3 &k v, 1o = 3 Kk p),
Ik k|

In these definitions and elsewhere, 0/0 is interpreted as 0. The essen-
tial difference in these definitions and those used by Ash and Gluck is
that the factors k,/||k|,k./||k|| and k,k./|k|} do not appear in the
definitions of conjugates they use.

THEOREM 1. Suppose X A.(x) converges in a set E of positive
measure. Then

kik,
z ||k” Bi(x), 2 ”k” CuJ(x), and Z ”k||2 Dy(x),

each converge restrictedly almost everywhere in E.

3. LeMMAs. Let Sx(x) = Z,<n AK(X), then straight forward calcu-
lations show that

(2.1)  Sn(x,+1t, %) =D (Adx)cos kt, + By(x)sinkit,),
k=N

(22)  Sn(xi, X2+ 1) = D, (Au(x) cos kot + Ci(x) sin kst5),
k=N

(2.3)  Sn(x,+t, X2+ ) = D (A(x) cos k,t,cos k,t

k=N
+ Bu(x)sink,t, cos k,t,+ Cy(x) cos k,t, sin k,t,
+ Dy(x) sink,t, sin k,t,).

The sequence {Sx(x)} is said to converge stably to s at x° as N—
(unrestrictedly) if for each sequence ty= (fx,, ty,) for which ty, =
O/N)(i =1,2), Sx(x°+ty)— s.

We need the following lemmas for which the proofs follow in much
the same way as those in [7, vol. 2, pp. 216-219].  In these lemmas it is
to be understood that convergence or stable convergence of double
series also means that the partial sums are bounded.
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LEMMA 1. A  necessary and  sufficient condition  for
2 a,COS N,X,COS NyX, OF 2a,COS NX, Or 2 a,Cos n,X, to converge stably
to s at x =0 is that Z a, converges to s.

LEMMA 2. (i) A necessary and sufficient condition for
2b,sinnx, or £ b,sinn,x,cos n,x, to converge stably to zero at x =0 is
that

LSS ub =0,

n, v1=0 v2=0

(ii) A necessary and sufficient condition for X c,sinn,x, or
2 €, COS 1,X, Sin n,X, to converge stably to zero at x =0 is that

1 "2 i v,c, = o(1).

n, vi=0 v2=0

LEMMA 3. A  necessary and sufficient condition that
Y d,sinnx,sin n,x, converge stably to zero at x =0 is that

n

I 2 i viv.d, = o(1).

nin; ;=o v=o0

LEMMA 4. The series = A(x) is stably convergent at x° to the sum
s if and only if

(1) 2 A(x°) converges to s,
(i)  Zpzk=nk; Bil(x°) = 0(N)),
(i)  Zpken k2 Clx°) = 0(N,),
(iv) Zoz=nkika Di(x°) = 0 (N,N>).

Proof. Suppose = A,(x) converges stably at x°to s. Then (2.1),
(2.2) and (2.3) (with x = x°) each converge stably to s at t =0. Part (i)
is obvious. Since X A(x°) converges, Lemma 1 implies that
S AWx°)cosk,t, is stably convergent at t=0 and by (2.1),
2 B (x°)sink,t, is stably convergent to 0 at t =0 and Lemma 2 gives
(if). Similarly we obtain (iii). Using these results and similar reason-
ing applied to (2.3) gives (iv). The converse follows easily.

LeEmMmA 5. If £ A(x) converges stably at x° to the sum s, then the
harmonic function T A(x)r™ tends to s as (x,r) tends to (x°1)
nontangentially ; that is, with | x = x°||= C(1—r)asx ->x°andr — 1.

LEMMA 6. If £ Ax) converges for x € E, where E is of positive
measure, then it converges stably at almost all points of E.
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The final two lemmas come from different sources.

LEmMmA 7. [2, Theorem 2.1 and Lemma 2.3] Suppose X A.(x)
converges (no hypothesis on the nature of the partial sums) in a set E,
|E|>0. Then, for almost all points x € E, all the partial sums of
2 A(x) are bounded. Furthermore, the coefficients of = A (x) are
bounded.

Lemma 8. If t(x,r) =2 Ax) r™ converges nontangentially in a
set E, |E|>0 then

tix,r)=>, ”—I:('l—' B.(x) r™
and

L, r)=2 ”—kkL" Cu(x) r™

converge nontangentially for almost every point in the set E.

The proof is achieved by appealing to the following theorem which
we list as a lemma.

Lemma 8. [3, page 213] Let u(x, y) be a function which is defined
and harmonic on E;={(x,y)|x EE>, y>0}. Let u, and u, be the
conjugate harmonic functions associated with u (see [3] for
definitions). Assume u converges nontangentially ((x, y)— (x°, 0) with
|x —x°|<Cy)inaset E,|E|>0. Thenu,and u,converge nontangen-
tially almost everywhere in the set E.

In order to see how Lemma 8 follows from this, we first point out
that after a simple change of variable, we may think of X A,(x) as a
distribution on T?=[0, 1) X [0, 1), since by the hypothesis of our
theorem and Lemma 7 the coefficients of ¥ A,(x) are bounded. Extend
2 A\ (x) periodically so that it is defined on E*. In this case, we will also
denote the resulting distribution by #(x). Since we now have a
tempered distribution on E’, we will be able to ““convolve” it with the
Poisson kernel for the upper half-plane E;. In general, suppose that ¢
is a rapidly decreasing function and that A is the 2-dimensional lattice
plane. Define ®(-)=Z,er¢(-+m). In this case, ® is an infinitely
differentiable function which is periodic on E’* and hence defined on
T?. We then obtain (¢ * ¢)(x) = = ®(m)A.(x) where the ®(m) are the
Fourier coefficients of @ expressed in the real form. In particular, if
P,(-) is the Poissson kernel for the half-plane Ej and P,(-) is the
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Poisson kernel for the torus T?, we have P,(-) =Z2,c,P,(- + m) [see 6,
page 255] and (¢t *P,)(x) = Zper P.(m) A.(x). The following identifica-
tion between r and y  is necessary for the above formulas, r =
e . With these preliminaries one can see that t *P, is a periodic
function on E? which as a function of (x, y) is a harmonic function on
Ei. With the additional remark that P,(m) = r'™ we see that nontangen-
tial limits for ¢ *P,(x) and £ A.(x) r™ for x € T? are the same.

Again for ¢ a rapidly decreasing function and with the Fourier
transform defined in the appropriate normalization, the Fourier coeffi-
cients ®(m) = ¢ (m) where these are understood now in complex form.
It then follows with u = ¢ * P, that the conjugate functions u, and u, are
t *P,, and t *xP,, with

- _ & s g 4
T A 1

Expressing these results in series form and writing the coefficients in
real form gives u,(x) = = (k,/|k||)Bu(x)r™ and

ux)= E (kz/"k")Bk(x)rM-

The nontangential convergence of these series now follows directly
from Lemma 8'. By repeating an application of this lemma we get that
= (k.ko/ |k |) Diu(x)r™ also converges nontangentially almost everywhere
in E.

4. The Tauberian theorem. Before we can prove
Theorem 1, we must have available a Tauberian theorem for Abel
summability so that results about nontangential convergence can be
translated to results about restricted convergence. This is the purpose
of Theorem 2. We need a preliminary lemma.

LEMMA 9. Suppose A. is a scalar for each two vectors of
nonnegative integers n and k. If

o

4.1) > |Au|—0 as n—>x restrictedly for each k;_(i = 1,2),

ki=0

and

M

4.2 | Au| is restrictedly bounded,

k=0

then o,=2; 0 A €&x— 0 as n— o restrictedly whenever €, = o(1).

Proof. Choose 8 >0 and suppose during the rest of this proof that
87'<Ni|N,<8. Suppose ex=0(1). By (4.2) =|An.|is bounded, say
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by H, and since ¢, is bounded, o, exists for each n. Choose € >
0. Since ¢,—0 we may choose an M such that k> M implies
le.] <€/2H. By (4.1) we can choose M’ such that N> M’ implies
ENxéMoerngANk Ekl <E/2 If N>M’, then

I‘TN = =% .ANkEk'+ Z lANka]

Ni=MorN:=M

€

€
< ﬁ -H+ -2- = €.
THEOREM 2. Suppose
4.3) lim > a.r™®=S§
r—1" k=0
and
1 & ;
(4.4) NETlekll‘ak=o(1), i=1 or i=2,

then Sy=23ra,— S as N— o restrictedly.

Proof. We will first prove the theorem in the case i =1. Let
r =1-1/N, and consider

2 ax — 2 a,r™ = 2 k|| ax B
k=0

where By=0 if k=0, By=(1—-r™)/|k|| if 0=k=N, k#0, and
Bwo= —r™M/| k|| otherwise. The proof will be completed by showing
that Ay—0 as N— restrictedly. Using summation by parts we
obtain (with t, = ||k| €,)

J J,-1
- hm [Z t A" B+ Z b A" Bk, s
% Lk=0 k=0
I-1
+ z th,kz AO! BN.J:.kz + tJ BNJ]
k2=0
=lim [C\+ C,+ C;+ CJ).

However, lim,.. C, = lim,...(— €, r™) =0 by (4.4). Furthermore,

b d pledl
AloB'lz::f —_[___]
Niki,J: o dx ”(x, IAYl dx
— 1yl |
. [CAL [Icx, ltog 3+ 1] dx

_ Drlw
- ”(kh JZ)“
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where D is independent of J. Therefore, since k, + J, = \/§|l(k,, D,

7-1

|C.|=D kzo | €] P11

J-1

= Dp]2 z 'ekl,k' p“I

ki=o

where p =r"2  Since €., is assumed bounded, it follows that
lim,. C,= 0. Similarly, lim,_.C;=0. This leaves

Ay= ;} & /K[| A" By,

and we may complete the proof by showing that ||k||A" By, satisfies
conditions (4.1) and (4.2) of Lemma 9.
We will first obtain bounds on A" Bn. If k<N(k #0), then

kit fhotl 92 1
J; fk PR y* - dy dx, dx,

|A“ BNkl —

k,+1 k,+1 1
AR R e 7 “ SN 1(10 l+i)d dx. dx
fk. f LY OBy 0By k) YR e

. 1 1,1
=(1-r)log - <log;+”k—”>

gz(l—r)z(Z(l"”II_ll(Il)

whenever r > 1.
If k,> N, or k,> N,, then using integration by parts we obtain

k,+1 ky+1 r
B B =N 1(10 o) dy d, dx
fk. f o Ixp? 708y OBy M) @

IA“ BNK' —
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A short calculation shows that if k, = N,, k,< N, orif k, < N,, k,=N,,
then

1
A"Bu| = Q(rK) +55 .
| w = Q(r k) k[
Finally, if k =N, it is easily seen that
1
A"Bul = Q(r,K)+ = .

Combining these estimates, we find that

kZIklllA”BmJ—ZlIkIHA"BwI+ 2 kA" By

10rk2=ZN>

=41-ry kzo Ik +2(1 = ry: ;) 1

1 i I
+ [(lo 2 )r +3lo +3 —r—~]
2, | log & Tl 3 i

kizZNiorkz2zN>

Np-1 1 Ny—1 1
D vz vam e R D YT
PR sy RPN AT
2
= 13 (NIN>+ NiND + 35 NI,
1
3log -
+[log2—+ - LA 2][ ! I z ]
r min(N,, N;) (min(N,, N))’{|1—-r 2]og r

log2
s VT ) rn G VBT )+
+ +lg(N,+ N, +1)+ +log N, N, +1 1

and if §7'= N,/N, =4, then this is easily seen to be bounded. Thus
condition (4.2) of Lemma 9 is satisfied. In a similar, but easier,
manner, one can also show that condition (4.1) of Lemma 9 is
satisfied. The proof of Theorem 2 in case i = 1is, therefore, complete.

The proof is similar in case i =2. Only the changes will be
noted. The B, will be defined as in the previous case except that the
denominator will be ||k|? instead of | k||. In showing that lim,..C,=0
it is necessary to estimate

ky+1 d rlkx,l,)ﬂ

@.5) . I [T ™
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instead of the similar term of the previous case. Carrying out the
differentiation and proceeding as before we find that (4.5) is majorized

b
Y C rldatl

Ik, TP

and the rest of the proof of this part of the theorem proceeds as
before. In obtaining bounds on A" B, note first that if k <N(k # 0),
then

ky+1 82 1 . r|lx|l

w xox X T

IA”Bnk] —

Carrying out the indicated differentiations and using estimates as
before, we find that

1—r)?
kP

d-r
(13§

|A” nkI—C( +

If k,> N, or k,> N,, then we have

|A" By = s ds dy dx, dx,

o 0X,;0X,

and we may proceed through several integrations by parts and some
simple estimates to obtain

[fiel 1 rllkll ||k|I
A" B, | = log? 4 Slo
A" Bu| = log'y i+ Slog 1 it 8

= P(r, k).

In case k, = N,, k, <N, or k,<N,, k,=N, we find

18" Bul = PO+ s

and if k =N, then
1
" =Pk +ims.
A" Ba| = P(r k) +

Multiplying these estimates by || k|, summing and proceeding as before
will complete the proof for the case i = 2.

5. Proof of Theorem 1. Suppose Z A,(x) converges in a set
E with positive measure. By Lemma 7 the partial sums of £ A(x) are
bounded almost everywhere in E. By Lemma 6, £ A,(x) converges
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stably at almost all points of E. By Lemma 5, £ A(y)r™ tends to
Z Aux) as (y, r) tends to (x, 1) nontangentially almost everywhere in
E. By Lemma 8,

Il .l(_l_C [ d LWLy 5)
S [k Beor. S Geort and 3 Dor

each converge as r — 1~ almost everywhere in E. Furthermore, the
Tauberian conditions

N

Y. kiBu(x) = o(|N]), 2 k.Ci(x) = o (||N])

and

N

Z sz(x)“O(”N")

follow from Lemma 4. Thus Theorem 2 is applicable and yields
Ski/|k||B(x) and Zk,/||k|Ci(x) converge restrictedly almost
everywhere in E by the use of case i = 1, and that 2k k,/||k| Dy(x)
converges restrictedly almost everywhere in E follows from an applica-
tion of Theorem 2 in the case i = 2.
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