
PACIFIC JOURNAL OF MATHEMATICS

Vol. 60, No. 1, 1975

ON LOOP SPACES WITHOUT P TORSION

RICHARD K A N E

Let (X, m) be a 1-connected if-space whose loop space ΩX
has no p torsion. We study the algebra structure of
HJ$IX\ Zp) and its relation, via the Eilenberg-Moore spectral
sequence, to that of i/*(X; Zp). The module Q(H*(X; Zp)) of
indecomposables is a module over A*(p), the Steenrod
algebra. Our main result is to show that, when X is finite, lack
of torsion in the loop space is reflected in the A *(p) structure of
Q(J/*(X;ZP)).

1. Introduction. It is a standard conjecture that if (X, m) is a
l-connected finite //-space then its loop space ΩX is torsion free. We
will show;

THEOREM 1.1. Let (X, m) be a l-connected finite H-space. Then
//*(ΩX; Z) has no p torsion if and only if

Q(//even(X;Zp)) = Σ βP&mQ(H2m+\X;Zp)).

We note that for p = 2 our condition on <2(//even(X; Z2)) amounts to
saying that //*(X; Z2) has no indecomposables of even degree.

Our method of proving 1.1 differs from the usual approach to finite
//-spaces. Rather than constructing "implications" which contradict
finite dimensionality we will study the structural consequences for ΩX
of lack of p torsion and then reinterpret the results, in terms of X.

The main tool in this proceedure will be the Eilenberg-Moore
spectral sequence converging to //*(ΩX;ZP). We will show:

THEOREM 1.2. Let (X, m) be a l-connected finite H-space such
that //*(ΩX;Z) has no p torsion. Then, in the Eilenberg-Moore
spectral sequence for the prime p, £"**(X) = J5**(X).

We will prove 1.2 by using results of Zabrodsky to severely limit
the possible coalgebra structure on the term of convergence and from
this conclude that it must agree with the pth term. The following
theorem (or, more precisely, its dual in cohomology) is the major result
needed in this respect.
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190 RICHARD KANE

THEOREM 1.3. Let (X,m)be a 1 -connected H-space where βp acts
trivially on //*(ΩX; Zp). Given x E //*(ΩX; Zp), if x is of finite height
then xp = 0.

The equivalences in 1.1 have a number of consequences for finite
//-spaces. In particular:

THEOREM 1.4. Let (X, m) be a I-connected finite H-spaces such
that //*(ΩX;Z) has no p torsion. Then H*(X;Z) has no higher p
torsion.

THEOREM 1.5. Let(X,m)bea l-connected finite H-space of rank
r such that //*(ΩX; Z) has no p torsion. Then, for all x G //*(X; Zp)
we have xpr+ι = 0.

A proof of 1.4 was asserted by Clark in [4]. However, as John
Hubbuck has pointed out, Theorem 1.6 of his proof is incorrect. A
counterexample is obtained by looking at H*(ΩSt/(3); Z) The difficulty
arises from the fact that H*(ΩSU(3); Z2) has elements of finite height
greater than 2. For, a restricted version of Theorem 1.6 is true. Let
Qp be the integers localized at the prime p. Given X, a l-connected
//-space where H*(ΩX; Qp) is torsion free, a splitting of //^(ΩX; Qp),
as an algebra, into a tensor product of quasimonogenic Hopf algebras
can be obtained from Theorem 1.3 of this paper. Also, by working
over Qp and using this restricted theorem Clark's arguments will go
through. However we deduce Theorem 1.4 as a simple consequence of
Theorem 1.1.

In §2 we will discuss the Eilenberg-Moore spectral sequence. In
§3 we will look at Hopf algebras over the Steenrod algebra. In §4 we
use Zabrodsky's work to analyze the algebra structure of //*(X; Zp) for
certain H-spaces (X, m). In particular we prove Theorem 1.3. In §5
we prove some near collapse results for the Eilenberg-Moore spectral
sequence. In particular we prove Theorem 1.2. In §6 we prove
Theorems 1.1, 1.4, and 1.5.

All spaces will be assumed to have the homotopy type of CW
complexes of finite type. All Hopf algebras are graded, of finite type,
and over Zp. A Hopf algebra will not be assumed to be either
associative or commutative unless indicated. The dual of A, written
A *, will be defined by

(A*)m = Hom( A ~m\Zp)

In particular the homology of spaces will be considered as being
negatively graded. If a Hopf algebra is not connected then its dual
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is. We use Q(A) and P(A) to indicate indecomposables and primitives
respectively.

Given a commutative associative Hopf algebra A it is isomorphic,
as an algebra, to a tensor product (g) ie/A where each A, is a Hopf
algebra generated as a algebra by a single element αt. Such a tensor
product is called a Borel decomposition of A. The elements {ai}ieI are
called generators of the decomposition. An element x E A is said to
be of height n if JCΠ 1 7̂  0 and xn = 0 where n < °° or of height °° if no
such n exists. The height of x is a power of p or 00 unless x is of odd
degree and p is odd in which case the height of x is 2. The symbols
E(x), P(x), and Γ(JC) indicate exterior, polynomial, and divided polyno-
mial Hopf algebras respectively, in each case generated by JC. The
symbol T(x) indicates the Hopf algebra obtained from P(x) by truncat-
ing JC at height p. A divided polynomial Hopf algebra truncated at
height pn will mean a Hopf algebra whose dual is obtained from a
polynomial Hopf algebra P(x) by truncating JC at height pn.

2. The Eilenberg-Moore spectral sequence. Let
(X, m) be a 1-connected H-space. Then there exists, for each prime, a
second quadrant spectral sequence {F**(X), dr}r^ of commutative,
associative, bigraded Hopf algebras where:

(2.1) E2**(X) = TorH*(x,zP)**(Zp Zp) as Hopf algebras

(2.2) F,**(X) = F°(//*(ΩZ;Zp)) as Hopf algebras where
E°(H*(ΩX;Zp)) is the graded object associated to a
filtration on //*(ΩX;Zp)) The filtration
{F"(H*(ΩX; Zp))}ngl is an increasing one. In particu-
lar, F~\H*(ίlXm

9Zp) is the image of the loop map

Ω: Q(H*(X; Zp))->P(//*(ΩAΓ; Zp))

(2.3) The differentials dr are maps of bidegree (r, - r + 1).

For the construction of this spectral sequence consult [9]. The
spectral sequence has many properties.

(2.4) TorH*(x;zp)**(Zp;Zp) is a tensor product ® ί e / A where
each A, is either an exterior Hopf algebra E(at) where a,
has external degree - 1, or a divided polymonial Hopf
algebra Π A ) where a{ has external degree - 1 or - 2 .
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This decomposition ® f e /A of TorH*{X.Zp)**(Zp Zp) can be deter-
mined from any Borel decomposition of H*(X; Zp). For details again
consult [9]. We merely note the following:

(2.5) There exists an isomorphism Q(H*(X;Zp))~
Tor//*(x;zprs *(Zp; Zp), While if at is of external de-
gree - 2 then it has bidegree ( - 2, 2pts) where t > 0 and
Q(Hs(X;Zp))έ0

Using 2.4 and the Hopf algebra structure of the spectral sequence
we can argue as in [3] that:

(2.6) For r^2ydr acts trivially unless r = pk - 1 or 2pk - 1 for
some k > 0. Furthermore, for such values of r, Er**(X)
can be regarded as a tensor product (g)/GJ B} where each
jBy is either a trivial deferential Hopf algebra or a Hopf
algebra of the form Γ(b, )(£)£"((:,) where dr(γk(bι)) = c,
and bj and c} have external degrees as determined in 2.4
and 2.5.

We will use these properties in section §5. At the moment we will
draw only one immediate conclusion. First of all we notice:

(2.7) Given a differential Hopf algebra A =
where d(γk(a)) — b, then the homology H(A) of A is a
divided polymonial Hopf algebra truncated at height pk.

We use this to prove

PROPOSITION 2.8. H*(ΩX;Zp) and E»**(X) = £°(/f*(ΩX; Zp)
are isomorphic as coalgebras.

Proof. From 2.4, 2.6, and 2.7 we conclude that any primitive
element of £Όc**(X) has external degree - 1 or - 2. Hence any
representative of a primitive element in £"X**(X) is already primitive in
iί*(ΩΛΓ; Zp). Now, by taking a Borel decomposition of H*(ΩX\ Zp)
and dualizing, we see that ί/*(ΩX; Zp) is isomorphic, as a coalgebra, to
a tensor product (8)«e/A of Hopf algebras where each A is an exterior
Hopf algebra or a divided polynomial Hopf algebra possibly truncated
at height pn cogenerated by an element ax. Let Bv be the sub Hopf
algebra of ZL**(X) generated by the elements represented by
{jkicii)^ 0\k gθ}. Then A and Bt are isomorphic as Hopf algebras
since otherwise, for some k > 0, then on primitive element γk(0;) would
give rise to a primitive element in Bt. Also 0 i e/Bi is a sub Hopf
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algebra of Eoo**(X), that is, the nonzero monomials in the elements
represented by {γ*(tfi) ¥" 01 k S 0, i E /} can be assumed to be linearly
independent. For, because of the comultiplication map on ZL**(X),
this will be true if the elements represented by {a, \ i E /} are linearly
independent. And we can rewrite the elements of <g)iej A if necessary
in order to obtain this property. From the isomorphism of Hopf
algebras ® ie/A\— CSW/?; we conclude that EJ**(X) = ®ie/JBi for
reasons of dimension and hence that if*(ΩX;Zp) and EX**(X) are
isomorphic as coalgebras.

Michael Barratt has also proven this result.

3. Hopf algebra over the Steenrod algebra. Let H be
an associative commutative Hopf algebra on which the Steenrod
algebra A*(p) acts so as to satisfy the Cartan formula. Further,
suppose there exists N such that Hι = 0 if i > N. Any 1-connected
finite //-space (X, m) gives rise to two examples of the above, namely
//*(X; Zp) with its standard A*(p) action, and H*(ίlX; Zp) with the
adjoint A*(p) action (recall homology is negatively graded). In what
follows we will also assume that A*(p) acts to the left. Any right
module over A *(p) can be converted to a left module via the canonical
antiautomorphism defined on A *(p) (see [7] for its properties). Hence,
with the necessary modifications, our results in this section will hold for
right modules as well.

A*(p) is a Hopf algebra and letting A*(p) be its dual we have:

(3.1) For p = 2 A *(p) = P(ξu ξ2, - - •) as an algebra where ξi is
dual to Sqn

For p odd A*(p) = P(£,,f2,6, •• )Θ£(τ o ,τ , ,τ 2 , •) as
an algebra where ξi is dual to &"

The action of Λ*(p) on H gives rise to a comodule structure

(3.2) λ:H-*H®A*(p)

which is defined by the formula

(3.3) Given J C E / / such that λ (x) = Σf JC, ® wf then, for any

Furthermore, λ is a ring homomorphism. The argument is based on
that of [7].

Now pick a Borel decomposition ® i e / A of H with generators
{<*i}iei- Then H has a Zp basis {a(T) = a\ιa^ αϋ1} consisting of all
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nonzero monomials in the generators. Likewise, by 3.1, A*(p) has a
Zp b a s i s {ξ(R)<g>τ(S) = ξ\* ξrz®τsf τ t f w h e r e R=(rl9r2 )
and 5 = (sx, s2 •) range through all sequences with only finitely many
nonzero terms. Hence H§Z)A*{p) has a basis B =
{a(T)(g)ξ(R)(g)τ(S)} where /?,5, Γ run through the appropriate
sequences. Given xG//, A(JC) can be expanded in terms of a finite
subset of B. The element α(T)(g) £ ( £ ) ® τ ( S ) is said to appear non
trivially in λ(x) if the coefficient λT,R,s of a(T)(g)ξ(R)<g)τ(S) is
nonzero when we expand A(JC) in terms of B.

PROPOSITION 3.4. Given xEH suppose a(T)(g)ξ(R) appears

nontrivially in λ(x).

Then xpk = 0 for any k ^ 1 imp/iw that a(T)pk = 0.

Proof. We have the identity

Since the elements of B are linearly independent λTJ?7^0 implies
a(T)pk <g)ξ(R)pk =0. Therefore a(T)pk =0 since ξ(R) belongs to a
polynomial algebra.

4. The algebra structure of H*(X; Zp). In this section
we will prove Theorem 1.3. To prove it we will use techniques of
Zabrodsky. He has obtained the following result:

LEMMA 4.1. Let (X, m) be an H-space where H*(X; Zp) is com-
mutative and associative and βp acts trivially on ίίe v e n(X; Zp). Also,
for p=2, β2 acts trivially on Hodd(X;Z2) as well. Given xE
P(H_ 2 m (X;Zp))nKer^ ! where m ̂  l(modp) then xp^0.

For a proof of this see Proposition 4.3 of [11]. For the case p = 2
we are using a stronger hypothesis regarding the action of the Bockstein
than Zabrodsky does. Zabrodsky's weaker hypothesis is not sufficient
to ensure the validity of his proof in that case. The problem is that the
Bockstein Sqι appears in the Cartan formula of Sq2.

Before proving 1.3 we use Lemma 4.1 to obtain the following:

THEOREM 4.2. For p odd let (X, m) be an H-space where
H*(X;Zp) is associative and commutative and βp acts trivially on
Heven(X; Zp). Given x E H*(X; Zp) ifx is of finite height then xp = 0.
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Proof. We first observe that all elements of odd degree must be of
height 2. We now prove 4.2 by contradiction. Pick the element JC of
highest degree such that x is of finite height greater than p(say
pn+]). Then xpk Gi/_2p-*(X; Zp) for some k>0. Moreover xpn is
primitive. To see this let Δ* = Δ - q{*- q2* where Δ,quq2: X->X x X
are the diagonal map and the two standard inclusion maps
respectively. Then, for ί ^ O

Since JC is of jinite height, Δ^(JC) is of finite height. Therefore, by our
choice of JC,Δ#(JC)P = 0 and xpn is primitive. Lastly, by the Cartan
formula, xpn G K e r ^ 1 . By 4.1 we have x p B +Vθ, a contradiction.

We will now prove Theorem 1.3. For the case p odd it is an
immediate consequence of 4.2. For p = 2 we first observe that all
elements of odd degree in H*(ΩX; Z2) are of height 2 since they come
from elements in H*(ΩX; Z4). Other than on this point our proof is a
repetition of that given for 4.2.

We close this section by listing a result of Browder which will be
needed in the next two sections. See [1] for a proof.

LEMMA 4.3. Let (X, m) be a \-connected finite H-space. Then
H*(ΩX;Z) has no p torsion if and only if H2i+](ΩX; Zp) =
H2ι+ι(ΩX;Zp) = 0 for all L

5. Near collapse results for the Eilenberg-Moore
spectral sequence. In this section we will prove 1.2. We first use
the results of the last two sections to conclude that:

THEOREM 5.1. Let (X, m) be a 1-connectedH-space where βp acts
trivially on H*(ΩX; Zp). Then, in the Eilenberg-Moore spectral se-
quence for the prime p, EP**(X) = EJ**(X) if p is odd and E4**(X) =
EJ**(X) ifp=2.

To prove 5.1 we first observe from §2 combined with 1.3 that
£2p**(X) = Eoc**(X) and E2p**(X) is a tensor product ® ί e i Λ where
each Λi is a Hopf algebra of the form E{aι) or Γ(α,) or Γ(α,), α, having
external degree - 1 or - 2 and internal as determined in 2.5. Moreover
Ep **(X) = E2p **(JC ) if and only if E2p **(X) has no factors T(a) where a
is of external degree - 2. Thus we must exclude the possibility of such
factors.

Let A be the Hopf ideal of H*(ΩX; Zp) generated by the image of
the loop map Ω from 2.2. Consider the quotient Hopf algebra B =
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J/*(ΩX; Zp)IA. Since the image of Ω is invariant under the action of
A*(p) it follows that B inherits a Steenrod module structure from
H*(ΩX;Zp). B also inherits a filtration from H*(ίlX;Zp). If
E\B) is the associated graded Hopf algebra we can see that it is
obtained from E«**(X) by equating to zero the Hopf ideal generated by
the elements of external degree - 1. Furthermore B and E\B) are
isomorphic as coalgebras. Let B* be the dual of B. Then B* is a sub
Hopf algebra of ίf*(ΩX; Zp) over A*(p). Also Ep**(x) = E2p**(X) if
and only if B* is a polynomial algebra. For, if the factors T(a) of the
last paragraph exist they will give rise to elements of height p in B*.

To see when 2?* must be a polynomial algebra we first prove:

LEMMA 5.2. If B* is not a polynomial algebra then there exists a
nonzero x eP(/f_2 p s + 2(ΩX; Zp)) where xp =0 and JC0=O for all
θ E A *(/?), of positive degree.

Proof We need only find such an element in 2?*. If B* is not a
polynomial algebra we can find x ^ 0 such that xp = 0. Pick such a x of
the highest possible degree. By 2.5 x E H-2ps+2(ΩX; Zp)). By the
formula (*) in section §4 JC must be primitive. Since βp acts trivially
on £ * it follows from 3.4 that xθ = 0 for any θ E A*(p).

For odd primes we conclude that JB* must be a polynomial
algebra. For, by 4.1, the properties possessed by x in 5.2 are incompat-
ible.

This concludes our proof of Theorem 5.1.
We now prove Theorem 1.2. For p odd 1.2 follows immediately

from 5.1. For p = 2 w e begin by repeating the proof of 5.1 up to the
end of Lemma 5.2. We now show that under the stronger hypothesis
of 1.2 the properties possessed by x in 5.2 are incompatible for p = 2 as
well. First of all x in 5.2 can be shown to possess one more property,
namely x E H-n(ΩX; Z2) where n = 2q+xQ + 2q - 2 and q, Q > 0. For,
by 2.5, JC has degree - 2a+ίb + 2 where Q(Hb(X; Z2)) / 0 and E2**(X)
has an element of bidegree ( - 1, b). If b is even this element cannot
survive to JB4**(X) = EJ**{X) because of 4.3. But it would then follow
from the definition of B * that B * has an element of higher degree than x
such y ̂  0 and y2 = 0. This contradicts the manner in which we choose
x in 5.2. Hence b is odd. In particular, since X is 1-connected, b > 1.

Let P2(X) be the projective plane of an H-space (X, m). We have
long exact sequences:

(5.3) £-H'(X Λ X; Z2) £- Hι{X Z2) ^ i f m(P 2(X); Z2)
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( 5 ' 4 ) '"^ HXX Λ X; Z2) ^ HXX Z2) ^ Hi+ι(P2(X); Z2)

The sequences are dual to each other and all maps respect the
Steenrod operations. Moreover:

(5.5) Image ι* = P(H*(X; Z2)

(5.6) φ* agrees with the Pontryagin product if we equate
H*(X A X; Z2) with H^(X; Z2)<g)#*(X; Z2)

(5.7) Given a G P(H*(X; Z2)) and b E H*(P2(X); Z2) such
that ι*(&) = α then b2 = λ*(a (g)α).

As a reference for the projective plane and its properties consult
[2].

Now since x2 = 0 in H*(CIX; Z2) we can find y G H*(P2(ύ,X)\ Z2)
such that A *(y) = x 0 JC. Pick a G P(//n (ΩX Z2) such that
<JC, α> φ 0. Pick 6 G ifn+1(P2(ΩX); Z2) such that t *(fc) = α.

Then

(5.8) <y, 5^ n + ιφ)) = (y, b2) = (y, λ*(a®a)) = <λ (y), fl ® fl>

But it is also true that

LEMMA 5.9. ySq2i = 0 for i >0.

Proof. In even degrees Ker λ* = 0 by 4.3. Hence ySq2iφ0 im-
plies

(JC <g)x)Sq2i =λ*(y)Sq2i =\*

But by 5.2 and the Cartan formula (x (g)Jc)Sq2ί = 0.

We can now apply a reduction argument to conclude that x in 5.2
cannot exist.

Given m = 2r+12? + 2Γ - 1 where r, 1? > 0 we have an Adem relation
of the form

(5.10) Sq2rSqmr = Sqm + Σ cttSq^Sq'
0=ii=i2r~l

where α, G Z2.
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We use 5.10 in proving:

LEMMA 5.11. Given c G H*(P2(CIX); Z2) such that

(y, Sq2'*'R+2r - 1 (c)> ̂  0 where R>0 and r>\

we can find d e H*(P2(ΩX); Z2) such that

(y,Sq2'*'s+2*-ι(d)> 7^0 where 5 > 0 and 0<s<r.

Proof. Letting m = 2r+'R + T - 1 we have, by 5.10, that

By 5.9

(y, Sq2rSqm-2r(c)) = (ySq2\ Sqm'r(c)) = 0

H e n c e t h e r e e x i s t s O^t ^ 2 r l s u c h t h a t at = 1 a n d

Also, t is even since for / odd

(y, Sq^'Sq'ic)) = (ySqm\ Sq'(c)) = 0

Pick any such t and ίet d = Sq'(c). Since t ^2r'] it follows that
m - t = 2S+15 + 2s - 1 where S > 0 and 0 < s < r.

We apply 5.11 in turn to prove:

LEMMA 5.12. There exists T>0 and e EH*(P2((ΪX); Z2) such
that (y,Sq4T+\e))/0.

Proof. Let 0 be the collection of ordered pairs (s, S) of positive
integers such that (y, Sq2S*'s+2*-[(e))^0 for some eG
H*(P2(ΩX); Z2). By 5.8 0 is nonempty. Let s be the smallest integer
which appears in the first factor. By 5.11 5 = 1.

But now consider the Adem relation

(5.13) Sq'Sq^-'^Sq^ +
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Again, using 5.9, we conclude

(y,Sq2Sq4T-l(e)) = 0

and

(y,Sq4TSql(e)) = 0.

Hence 5.12 and 5.13 are incompatible.
This concludes our proof of 1.2.

6. Proof of main theorems.

Proof of 1.1. First consider the case p = 2. Suppose ff*(X; Z2)
has no even degree indecomposables. By 2.5 E2**(X) has no elements
whose total degree is odd. The spectral sequence collapses and, by 4.3,
ΩX has no 2 torsion. Conversely, suppose SIX has no 2 torsion. By
1.2 and 4.3 E2**(X) has no elements whose total degree is odd. By 2.5
//*(X; Z2) has no indecomposables with even degree.

For odd primes we make an analogous argument. The one extra
fact used is the characterization of the differential dp-x for odd primes in
terms of the Steenrod powers βp$Pm. For details consult Theorem 14 of
[5] and Theorem 2.3 of [6].

Proof of 1.4. This is an application of the Bockstein spectral
sequence {Br*{X)}r^ ((see [1]). From 1.1 we conclude that B2*(X) is
an exterior algebra on generators of odd degree. Hence B2*(X) =
BJi{X) and there is no higher torsion.

Proof of 1.5. Pick a Borel decomposition of H*(X;ZP) with
generators al9a2, — ' βn Since H*(X; Zp) is commutative and associa-
tive we need only prove the theorem for the above generators. We
need the following results of Browder.

LEMMA 6.1. Given x E H2s(X; Zp) then βp(x) = βp(y) where y is
decomposable.

See Lemma 4.5 of [1] for a proof of this.

LEMMA 6.2. Any Borel decomposition o/f/*(X; Zp) has exactly r
generators of odd degree and at most r generators of even degree.

Proof. The restriction on the generators of odd degree comes
from Corollary 3.12 of [1]. The restriction on even degree generators
then follows from 1.1.
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We will now prove 1.5 in two parts.
(i) Case p = 2. We apply Lemma 6.1 to obtain the following

LEMMA 6.3. If a £Ξ H2n+ι(X; Z2) is a generator of the decomposi-
tion and flVO then we can find another generator b E H4n+ι(X; Z2) such
that a2ξ§ξ\ appears nontriυially in λ(b).

We now prove the theorem for the case p = 2 by
contradiction. Let a j be a generator such that a f+l ^ 0. By 1.1 a, is of
odd degree. In particular a]/0 and, by 6.3, we can find another odd
degree generator a2 such that a\(g)ξλ appears non trivially in λ(a2). By
3.4 αf^O. Since X is 1-connected aλ and a2 are distinct.

Assume by induction that for 1 ̂  k < r + 1 we have found distinct
generators aua2, - - ak of odd degree such that for 2g/^fc tf;(S>£i
appears nontrivially in A {ai+x) and a f "+ 1 ^ 0. As above we can find ak+ι

such that a2

k(&ξι appears nontrivially in λ(αfc+1) and αf+,Vθ.
It follows that we can produce r + 1 odd degree generators of a

Borel decomposition of H*(X; Z2) in contradiction to 6.2.

(ii) Case p odd. We argue in an analogous manner with the
exception that, this time, we consider only generators of even degree.

First, from 1.1, we see that Q(H2s(X; Zp)) = 0 unless s =
1 (mod p). From this we deduce:

LEMMA 6.4. Ifa E H2mp+\X\ Zp) is a generator of the decomposi-
tion and ap^0 then we can find another generator b E H2mp2+\X\ Zp)
such that ap (S)ξ\ appears nontrivially in λ(b).

As in the case p = 2 we can use this lemma to show that apr+i / 0
will produce a contradiction to 6.2.
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