ON SEMIGROUPS IN WHICH X = XYX = XZXIF AND ONLY IF X = XYZX

ZENSIRO GOSEKI

Recently M. S. Putcha and J. Weissglass ([4]) have given a characterization of a semigroup each of whose \mathcal{D} -classes has at most one idempotent. Using results in [4], this note gives also a characterization of a semigroup each of whose \mathcal{D} -classes is either idempotent free or consists of a single idempotent. Also, \mathcal{D} may be replaced by \mathcal{J} in the above statement.

Throughout this note S will denote a semigroup and E(S) the set of idempotents of S. Let the set-valued functions I and \bar{I} on S be defined by $I(x,S) = \{e \mid e \in E(S), e = exe\}$ and $\bar{I}(x,S) = \{y \mid y \in S, y = yxy\}$, respectively. We shall write E, I(x) and $\bar{I}(x)$ for E(S), I(x,S) and $\bar{I}(x,S)$, respectively, when there is no possibility of confusion.

Proposition 1. The following are equivalent.

- (1) $\bar{I}(x) \cap \bar{I}(y) = \bar{I}(xy)$ for every $x, y \in S$.
- (2) $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$. In this case we have $\overline{I}(x) = I(x)$ for every $x \in S$.

Proof. (1) \Rightarrow (2) follows from $\bar{I}(x) \cap E = I(x)$ for every $x \in S$. (2) \Rightarrow (1). We will prove that $\bar{I}(x) = I(x)$ for every $x \in S$. Let $a \in \bar{I}(x)$. Then a = axa. Hence ax = (ax)(ax) = (ax)(ax)(ax). Thus $ax \in I(ax) = I(a) \cap I(x)$. Hence $ax \in I(a)$, i.e., ax = (ax)a(ax). Hence axa = (axa)(axa), i.e., $a = a^2$. Therefore $a \in \bar{I}(x) \cap E = I(x)$. Thus $\bar{I}(x) \subseteq I(x)$. Clearly $I(x) \subseteq \bar{I}(x)$. Hence $\bar{I}(x) = I(x)$ for every $x \in S$.

PROPOSITION 2. Let N be the set of elements x of S such that $\bar{I}(x) = \emptyset$. If N is nonempty then N is an ideal of S and idempotent free.

Proof. Suppose that N is nonempty. It is easy to see that N is idempotent free. Let $x \in N$ and $y \in S$. If $xy \notin N$ there exists $a \in S$ such that a = axya. Hence ya = (ya)x(ya) and so $ya \in \overline{I}(x)$. This contradicts the fact that $\overline{I}(x) = \emptyset$. Thus $xy \in N$. Similarly $yx \in N$. This completes our proof.

LEMMA 1. Let N be an idempotent free ideal of S. Then S satisfies $I(x, S) \cap I(y, S) = I(xy, S)$ for every $x, y \in S$ if and only if the Rees factor semigroup S/N satisfies $I(x, S/N) \cap I(y, S/N) = I(xy, S/N)$ for every $x, y \in S/N$.

Proof. Let 0 denote the equivalence class N in S/N. Since N is idempotent free $E(S/N) = E(S) \cup \{0\}$. If $a, x \notin N$, then $a \in I(x, S)$ if and only if $a \in I(x, S/N)$. Furthermore I(0, S/N) = 0 and $I(z, S) = \emptyset$ for $z \in N$, since N is an idempotent free ideal of S. Hence $I(x, S) \cup \{0\} = I(\bar{x}, S/N)$ for every $x \in S$, where $\bar{x} = x$ if $x \notin N$ and $\bar{x} = 0$ if $x \in N$. From this, our result follows easily.

From Proposition 1, Proposition 2 and Lemma 1, we have the following

THEOREM 1. Let $E(S) \neq \emptyset$. The following are equivalent.

- (1) $I(x, S) \cap I(y, S) = I(xy, S)$ for every $x, y \in S$.
- (2) S is an ideal extension of an idempotent free semigroup (possibly empty) by a semigroup T such that $I(x, T) \cap I(y, T) = I(xy, T)$ and $I(x, T) \neq \emptyset$ for every $x, y \in T$.

Let τ be a congruence on S. If S/τ is a semilattice, τ is called a semilattice congruence on S. In this note, ρ denotes the smallest semilattice congruence on S and σ denotes the relation on S defined by $x \sigma y$ if and only if I(x) = I(y). If $\rho = S \times S$, then S is called sindecomposable. Furthermore, for any congruence τ on a semigroup S we denote by $\tau \mid E$ the restriction of τ to E and by $x\tau$ the equivalence class mod τ containing an element x.

Now we note that S is quasi-rectangular if and only if E(S) is nonempty and e = exe for every $e \in E(S)$ and $x \in S$.

THEOREM 2. The following are equivalent.

- (1) $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$.
- (2) (i) σ is a semilattice congruence on S,
- (ii) each σ -class is either idempotent free or a quasirectangular semigroup.

- (3) S is a semilatice of s-indecomposable semigroups each of which is either idempotent free or quasi-rectangular.
- (4) S is a semillatice of semigroups each of which is either idempotent free or quasi-rectangular.

In this case, for a semilattice congruence τ on S induced by the decomposition in (4) we have $\rho \subseteq \tau \subseteq \sigma$ and $\rho \mid E = \tau \mid E = \sigma \mid E$. Moreover, for any $a, b \in E$ we have $a \sigma b$ if and only if a = aba and b = bab.

- *roof.* (1) \Rightarrow (2) follows from easy calculations.
- $(1) \Rightarrow (3)$. S is a semilattice of s-indecomposable semigroups ([5]). On the other hand, since S satisfies $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$, any subsemigroup of S satisfies also the same. Therefore, if we consider the congruence σ on each component of S, it follows from (2) (ii) above that any component is idempotent free or quasi-rectangular. Thus (3) holds.
 - $(2) \Rightarrow (4)$ and $(3) \Rightarrow (4)$ a fortiori.
- $(4) \Rightarrow (1)$. Let τ be the congruence induced by the decomposition in (4) and let $x, y \in S$. If $a \in I(x) \cap I(y)$, we have a = axa = aya. Since τ is a semilattice congruence on S, we have $a \tau ax \tau ay$. Hence $axy \in a\tau$. On the other hand, $a \in a\tau \cap E$. Hence a = a(axy)a = axya. Thus $a \in I(xy)$. Conversely, if $a \in I(xy)$ we have a = axya. Hence $a \tau axy$. Thus $ay \tau axy^2 \tau axy$. Hence $ay \in a\tau$. Since $a \in a\tau \cap E$, a = a(ay)a = aya. Hence $a \in I(y)$. Similarly, $a \in I(x)$. Hence $a \in I(x) \cap I(y)$. Therefore $I(x) \cap I(y) = I(xy)$, i.e., (1) holds.

Now let $x, y \in S$ such that $x \tau y$. Let $a \in I(x)$. Then a = axa. Hence $ax \in ax\tau \cap E$ and $ay \in ax\tau$. Since $ax\tau$ is quasi-rectangular, ax = (ax)(ay)(ax). Hence a = axa = (ax)(ay)(ax)a = (axa)y(axa) = aya, i.e., $a \in I(y)$. Thus $I(x) \subseteq I(y)$. By symmetry, $I(y) \subseteq I(x)$. Hence I(x) = I(y). Thus $x \sigma y$. This shows that $\tau \subseteq \sigma$. On the other hand, clearly $\rho \subseteq \tau$. Now let $a, b \in E$. If $a \sigma \mid Eb$, then $a, b \in I(a) = I(b)$. Hence a = aba and b = bab. Conversely, if a = aba and b = bab we have $a \rho \mid Eb$ since ρ is a semilattice congruence on S. On the other hand, $\rho \subseteq \tau \subseteq \sigma$. Hence $\rho \mid E = \tau \mid E = \sigma \mid E$.

Corollary. Let S be a semigroup such that $I(x) \cap I(y) = I(xy)$ and $x\rho \cap E \neq \emptyset$ for every $x, y \in S$. Then:

- (1) $\rho = \tau = \sigma$, where τ is a congruence induced by the decomposition in Theorem 2 (4).
- (2) S is s-indecomposable if and only if E is a rectangular band. In this case, S is quasi-rectangular.

- *Proof.* (1) Let $x, y \in S$ such that $x \sigma y$. Let $a \in x\rho \cap E$ and $b \in y\rho \cap E$. Since $\rho \subseteq \tau \subseteq \sigma$, $a \sigma x \sigma y \sigma b$, that is, $a \sigma \mid Eb$. Hence $a \rho \mid Eb$ by Theorem 2. Therefore $x \rho a \rho b \rho y$, i.e., $s \rho y$. Since $\rho \subseteq \tau \subseteq \sigma$, this shows that $\rho = \tau = \sigma$.
- (2) Let S be s-indecomposable. From Theorem 2 (3), S is quasi-rectangular and so E is a rectangular band. Conversely, let E be a rectangular band. Let $x, y \in S$. Then there exist $a \in x\rho \cap E$ and $b \in y\rho \cap E$. Since a = aba and b = bab, $a \rho b$ and so $x \rho y$. Hence S is s-indecomposable.

We shall say that S has the decomposition (D) if S satisfies the following condition (D).

(D) E(S) is nonempty and E(S) is a disjoint union of maximal rectangular subbands $E_{\alpha}(\alpha \in \Gamma)$ of S, that is, if M is a rectangular subband of S and $M \cap E_{\alpha} \neq \emptyset$ for $\alpha \in \Gamma$, then $M \subseteq E_{\alpha}$.

In this case, each $E_{\alpha}(\alpha \in \Gamma)$ will be called a (D)-component of E.

PROPOSITION 3. Let S be a semigroup such that E is nonempty. Then the following are equivalent.

- (1) $I(x) \cap I(y) \subseteq I(xy)$ for every $x, y \in S$.
- (2) S has the decomposition (D).
- **Proof.** (1) \Rightarrow (2). Let τ be the relation on E defined by $u \tau v$ if and only if u = uvu and v = vuv. We shall prove that if (1) holds then τ is an equivalence relation on E. The reflexive law and the symmetric law hold evidently. We prove that the transitive law holds. Let $u\tau v$ and $v\tau w$. Then v = vuv = vwv. Since $v \in I(u) \cap I(w) \subseteq I(uwu)$, v = v(uwu)v. Therefore $u = uvu = u\{v(uwu)v\}u = (uvu)w(uvu) = uwu$. Similarly w = wuw. Hence $u\tau w$. The decomposition of E by τ shows that E has the decomposition (D).
- $(2) \Rightarrow (1)$. Let $e \in E$ and $x, y \in S$ such that $e \in I(x) \cap I(y)$. Since e = exe = eye, $\{e, ex\}$ and $\{e, ye\}$ are rectangular subbands of S. On the other hand, there exists a (D)-component E_{α} such that $e \in E_{\alpha}$. Then $\{e, ex\} \cap E_{\alpha} \neq \emptyset$ and $\{e, ye\} \cap E_{\alpha} \neq \emptyset$. Hence $e, ex, ye \in E_{\alpha}$ by (2). Thus $exye = (ex)(ye) \in E_{\alpha}$. Hence e = e(exye)e = exye. This shows that (1) holds.

REMARK. It is well known that any band has the decomposition (D) where the set Γ of suffixes is a semilattice and $E_{\alpha}E_{\beta} \subseteq E_{\gamma}$ if $\alpha\beta = \gamma$ for $\alpha, \beta, \gamma \in \Gamma$ ([2] and [3]). But, even if a semigroup S satisfies $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$ and E is nonempty, E need not be a subsemigroup of S. The following example shows it.

$$x \quad y \quad z \quad u$$
, where $I(x) = \{x, u\}$, $I(y) = \{y, u\}$,

 $x \quad x \quad z \quad z \quad u$
 $I(z) = \{u\}$ and $I(u) = \{u\}$.

 $y \quad u \quad y \quad u \quad u$
 $z \quad u \quad z \quad u \quad u$
 $u \quad u \quad u \quad u \quad u$

Proposition 4. The following are equivalent.

- (1) $I(xy) \subseteq I(x) \cap I(y)$ for every $x, y \in S$.
- (2) For any $x, y \in S$, e = exe whenever $e = xy \in E$.
- (3) For any $x, y \in S$, e = eye whenever $e = xy \in E$.
- (4) (i) For any $x, y \in S$, if $xy, yx \in E$ then $\{xy, yx\}$ is contained in a rectangular subband of S,
 - (ii) for any $x, y \in S$, e = ex = ey whenever $e = xy = yx \in E$.

Proof. (1) \Rightarrow (2) follows from $e \in I(e) = I(xy) \subseteq I(x) \cap I(y) \subseteq I(x)$.

- $(2) \Rightarrow (1)$. Let $e \in I(xy)$. Then e = exye and hence e = e(ex)e = exe. Set u = yex. Then $u \in E$ and hence u = uyeu by (2). Thus yex = yexyeyex. Hence ex(yex)e = ex(yexyeyex)e. Therefore e = (exye)(exe) = exyexe = exyexyeyexe = (exyexye)y(exe) = eye. Hence $e \in I(x) \cap I(y)$. Thus $I(xy) \subseteq I(x) \cap I(y)$.
- $(1) \Leftrightarrow (3)$ is proved by the same way as used in the proof of $(1) \Leftrightarrow (2)$.
- (1) \Rightarrow (4) (i). Since $xy \in I(xy) = I(xyxy) \subseteq I(yx)$ by (1), xy = xy(yx)xy. Similarly yx = yx(xy)yx. Hence (4) (i) holds.
- (1) \Rightarrow (4) (ii). If $e = xy = yx \in E$ for $x, y \in S$, then $e \in I(xy) \subseteq I(x) \cap I(y)$. Hence e = exe = eye and so e = ex = ey.
- $(4) \Rightarrow (1)$. Let $e \in I(xy)$. Then e = exye = (ex)(ye). Set u = (ye)(ex). Then $u \in E$. Hence e = eue and u = ueu by (4) (i), that is, e = eyexe and yex = yexeyex. Hence ex(yex)ye = ex(yexeyex)ye, that is, (exye)(exye) = (exye)xey(exye). Hence e = exeye. Thus e = (eye)(exe) = (exe)(eye). Hence, by (4) (ii), e = e(exe) = exe and e = e(eye) = eye. This shows that $I(xy) \subseteq I(x) \cap I(y)$.

PROPOSITION 5. Let S be a semigroup such that E is a left (right) ideal of S. Then $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$.

Proof. Let E be a left ideal of S. Since E is a band, S has the decomposition (D). Now let $e = xy \in E$. Then $ye \in E$. Hence ye = yeye and so xye = xyeye. Thus e = eye. Therefore the condition (3) in Proposition 4 holds. Hence, by Proposition 3 and Proposition 4,

 $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$. In the case that E is a right ideal of S, we can prove it by the same way.

THEOREM 3. The following are equivalent.

- (1) $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$.
- (2) Every \mathcal{J} -class of S is either idempotent free or a rectangular subband of S.
- (3) Every \mathcal{D} -class of S is either idempotent free or a rectangular subband of S.
- *Proof.* (1) ⇒ (2). Let $x, y \in S$. Suppose that $x \not \in Y$. Then there exist $a, b, c, d \in S^1$ such that x = ayb and y = cxd. Hence $I(x) = I(ayb) \subseteq I(y)$ and $I(y) = I(cxd) \subseteq I(x)$. Thus I(x) = I(y). This shows that $x \not \in Y$ implies $x \sigma y$. Now suppose that $e \not \in X$ and $e \not \in Y$ for $e \in E(S)$ and $x, y \in S$. We shall prove $e \not \in X$ since I(e) = I(x) = I(y), $e \in I(e) = I(x) \cap I(y) = I(xy)$. Hence e = exye and so $S^1eS^1 \subseteq S^1xyS^1$. On the other hand, $S^1xyS^1 \subseteq S^1xS^1 = S^1eS^1$. Therefore $S^1eS^1 = S^1xyS^1$. Hence $e \not \in X$. This shows that any y-class containing an idempotent is a subsemigroup of S. Next let $e \in E(S)$ and $e \in S$ such that $e \not \in X$. Then $e \in X$ is an ideal of $e \in X$. Therefore any $e \in X$ is an ideal of $e \in X$. For, by [1, Lemma 2.39], $e \in X$ is 0-simple, so $e \in X$ is simple. Hence (2) holds.
- (2) \Rightarrow (3). Let D and J be a \mathscr{D} -class and a \mathscr{J} -class containing the same idempotent, respectively. Since a rectangular subband of S is contained in a \mathscr{D} -class of S, $J \subseteq D$. Thus, D = J follows from $\mathscr{D} \subseteq \mathscr{I}$. Hence (3) holds.
- $(3) \Rightarrow (1)$. Suppose $e \in I(x) \cap I(y)$. Then e = exe = eye. Hence $ex \mathcal{D} e \mathcal{D}$ ye and so $e \mathcal{D}$ (ex)(ye). Therefore $e = e\{(ex)(ye)\}e = exye$, that is, $e \in I(xy)$. Conversely, suppose $e \in I(xy)$. Then e = exye and so ex = (ex)y(ex). Hence $(ex)y \in E$ and $ex \mathcal{D}$ (ex)y. Thus $ex \in E$. Hence e = exye = (exex)ye = ex(exye) = exe. Similarly e = eye. Hence $e \in I(x) \cap I(y)$. Thus (1) holds.

Proposition 6. The following are equivalent.

- (1) (i) S is a regular semigroup,
 - (ii) $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$.
- (2) S is a band.
- *Proof.* (1) \Rightarrow (2). Let $x \in S$. Then there exists $y \in S$ such that x = xyx, i.e., $x \in \overline{I}(y)$. On the other hand, $\overline{I}(y) = I(y)$ by Proposition 1. Hence $x \in I(y)$ and so x is an idempotent. Thus S is a band.
 - $(2) \Rightarrow (1)$ (i) Obvious.
 - $(2) \Rightarrow (1)$ (ii) follows from Proposition 5.

A semigroup is called *viable* if for any $x, y \in S$, xy = yx whenever xy, $yx \in E$. The following lemma is due to M. S. Putcha and J. Weissglass ([4]).

LEMMA 2. The following are equivalent.

- (1) S is viable.
- (2) S is a semilattice of semigroups having at most one idempotent.
- (3) S is a semilattice of s-indecomposable semigroups having at most one idempotent.
 - (4) Every \mathcal{J} -class of S has at most one idempotent.
 - (5) Every \mathcal{D} -class of S has at most one idempotent.

Now let N be the set-valued function on S defined by $N(x) = \{e \mid e \in E, e = ex = xe\}.$

THEOREM 4. The following are equivalent.

- (1) S is viable and $I(x) \cap I(y) = I(xy)$ for every $x, y \in S$.
- (2) $N(x) \cap N(y) = N(xy)$ for every $x, y \in S$.
- (3) S is a semilattice of semigroups each of which is either idempotent free or contains only one idempotent as zero element.
- (4) S is a semilattice of s-indecomposable semigroups each of which is either idempotent free or contains only one idempotent as zero element.
 - (5) For any $x, y \in S$, xy = yxy = xyx whenever $xy \in E$.
 - (6) For any $x, y \in S$, $xy = yx = x^2y = y^2x$ whenever $xy, yx \in E$.
- (7) Every \mathcal{J} -class of S is either idempotent free or consists of a single idempotent.
- (8) Every \mathcal{D} -class of S is either idempotent free or consists of a single idempotent.
- Proof. (1) \Rightarrow (2). Clearly $N(x) \cap N(y) \subseteq N(xy)$. Let $e \in N(xy)$. Then e = exy = exye. Hence $e \in I(xy) = I(x) \cap I(y)$. Therefore e = exe and e = eye. Hence e(ex), (ex)e, e(ey), $(ey)e \in E$. Since S is viable, e = ex = ey. Similarly e = xe = ye and hence $e \in N(x) \cap N(y)$. Thus $N(xy) \subset N(x) \cap N(y)$ and so (2) holds.
- (2) \Rightarrow (3). Let τ be the relation on S defined by $x \tau y$ if and only if N(x) = N(y). Then τ is a semilattice congruence on S. If we consider the decomposition of S by τ then it is easy to see that (3) holds.
 - $(3) \Rightarrow (1)$. follows from Theorem 2 and Lemma 2.
- (1) \Leftrightarrow (4). For any semigroup, there exists the smallest semilattice congruence and every component in the decomposition by this congruence is s-indecomposable ([5]). Hence it follows from Theorem 2 and Lemma 2 that (1) and (4) are mutually equivalent.

- $(2) \Rightarrow (5)$. Let x and y be elements of S such that $xy \in E$. Then $xy \in N(xy) = N(x) \cap N(y)$. Hence $xy \in N(x)$ and $xy \in N(y)$. Therefore xy = xyx = yxy.
 - $(5) \Rightarrow (6)$ obvious.
- $(6) \Rightarrow (1)$. In this case, S is viable. Since any rectangular subband of a viable semigroup consists of a single element, S has the decomposition (D). Moreover, Proposition 4 (4) (i) and (ii) hold. Hence (1) follows from Proposition 3 and Proposition 4.
 - $(1) \Leftrightarrow (7)$ and $(1) \Leftrightarrow (8)$ follow from Theorem 3 and Lemma 2.

Proposition 7. The following are equivalent.

- (1) (i) S is a regular semigroup,
 - (ii) $N(x) \cap N(y) = N(xy)$ for every $x, y \in S$.
- (2) S is a semilattice.

Proof. This follows from Proposition 6 and Theorem 4.

ACKNOWLEDGEMENT. I wish to acknowledge my sincere thanks to the referee for his valuable advice.

REFERENCES

- 1. A. H. Clifford and G. B. Preston, Algebraic theory of semigroups, Amer. Math. Soc., Providence, Rhode Island, 1961.
- 2. N. Kimura, The structure of idempotent semigroups. (1), Pacific J. Math., 8 (1958), 257-275.
- 3. D. McLean, Idempotent semigroups, Amer. Math. Monthly, 61 (1954), 110-113.
- 4. M. S. Putcha and J. Weissglass, A semilattice decomposition into semigroups having at most one idempotent, Pacific J. Math., 38 (1971), 225-228.
- 5. T. Tamura, Another proof of a theorem concerning the greatest semilattice decomposition of a semigroup, Proc. Japan Academy, 40 (10) (1964), 777-780.

Received May 17, 1974.

GUNMA UNIVERSITY, MAEBASHI, JAPAN