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PRIME NONASSOCIATIVE ALGEBRAS

THEODORE S. ERICKSON WALLACE S. MARTINDALE, 3RD, AND
J. MARSHALL OSBORN

An arbitrary algebra (not necessarily associative or unital)
is said to be prime if the product of any two nonzero ideals is
nonzero. The hypothesis that an algebra is prime has now been
used in the study of several different varieties of nonassociative
algebras, and the need for an understanding of the basic
properties of prime nonassociative algebras has become
apparent. If I is the centroid of a prime algebra A and A is the
field of fractions of I' then (under mild hypotheses) A QrA is
shown to have A as its centroid. The extended centroid C of a
prime algebra A can be defined, the central closure Q of A can
be constructed, and Q is shown to be closed in the sense that it is
its own central closure. Tensor products are studied and
among other results the following are obtained: (1) if A is a
closed prime algebra over ® and F is an extension field of @,
then A QoF is a closed prime algebra over F, (2) the tensor
product of closed prime algebras is closed. Finally, the results
on prime algebras are specialized to obtain results on the tensor
products of simple algebras.

We remark ‘that this paper generalizes results proved for the
associative case in [1]. Furthermore some of the results of the present
paper are needed in [2].

I. The centroid of a prime algebra. Let A be an
arbitrary linear nonassociative algebra over ®, where ® is a commuta-
tive associative ring with 1. Throughout this paper no associativity
conditions will be assumed on A: neither is it supposed that A
necessarily have an identity element. If 1 € A we shall call A a unital
algebra. Subrings of ® are assumed to contain the identity of ®, and
la = a for all a € A. For emphasis we shall frequently refer to the
ideals of A as ®-ideals.

For a € A the mapping a,: x —>xa of A into itself is called the
right multiplication of A determined by the element a; similarly one
- defines the left multiplication a,: x — ax of A into itself. A, and A,
will denote respectively the sets {a,|a € A} and {a, |a € A} of left and
right multiplications of A.

The centroid T of A is by definition the set of all ®-
endomorphisms of A which commute with all the left and right
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multiplications. T is an associative ring with 1. The center Z of A is
the set of all elements of A which commute and associate with the
elements of A. Specifically, z € Z if and only if zx = xz, z(xy) = (zx)y,
x(yz) =(xz)y) and hence (xy)z = x(yz)) for all x,y EA. Z is a com-
mutative associative subalgebra of A and the mapping z —>z is a
®-algebra homomorphism of Z intoI'.  We claim that if @, = a, €T for
some a € A, then a € Z. To see this, we first note that ¢, = a, implies
ax = xa for all x € A. Next, for x,y € A, a(xy) = ay.(x)=ya((x)=
(ax)y. Finally, x(ay)=xa(y)=ax(y)=a(xy)=ay.(x)=ya(x)=
(ax)y. Incase A is unital it is clear that z — z is an isomorphism of Z
ontoI'. Here one makes use of the fact that if « €T and z = a(1) then
z=a.

For a E® define a: A—>A by a:x—ax. a—a is a ring
homomorphism of @ into I" and the image ® is a commutative subring of
I'. We shall call this mapping the canonical homomorphism of ® into
I'. A will be called central over ® in case @ — & is an isomorphism of
3 onto I The ®-multiplication algebra Mq(A) is the subring of
Ends(A) generated by @, A, and A, For a € A (a) will denote the
®-ideal of A generated by a; note that (a) ={p(a)|p € M+(A)}.

If A and B are ®-algebras the tensor product A Q4B is formed in
the usual fashion and is itself a ®-algebra, with multiplication given by
the rule (a®b) (c®d) = ac@bd and its extension by linearity. In
particular, if A is an algebra over a field ® and F is an extension field of
® then the tensor product A ®sF can be formed and becomes an
algebra over the field F.

An algebra A over @ is said to be prime if, for any two ®-ideals U
and V of A, UV =0 implies U=0 or V=0. It follows that if
UNV=0then U=00r V=0, since UVCUNV.

THEOREM 1.1. Let A be a prime algebra over ® with centroid
I'. Then

(@) T is a commutative integral domain with 1 and A is T'-torsion
free.

(b) If Q is a commutative ring with 1 and a —>a is a ring
homomorphism of Q into U then A is a prime Q-algebra (with ax
defined to be ax, a €EQ, x € A).

(c) For Q as in (b), I' coincides with the centroid of A as an
Q-algebra (i.e., I is independent of the ring of scalars).

(d) A has a characteristic.

Proof. (a) Suppose Apn =0 for some A,u €ET. AA and uA are
ideals of A and (AA) (uA)=0. Therefore AA =0 or uA =0 since A
is prime, i.e., A =0 or w =0. Next suppose Aa =0 and set U = \A
and V={x|Ax =0}. Then UV =0, implying U =0or V=0i.e,A =0
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or « =0. Thus A is I'-torsion free. Finally let A,u €. A?#0
since A is prime; pick a,b € A such that ab#0. Now Au(ab)=
A(na)b]=(pa) (Ab) = pnla(Ab)] = uA(ab). It follows that Ap = A
since A is I'-torsion free.

(b) Itis clear that A is an Q-algebra by defining ax = ax, a € Q,
x €A. Let U and V be Q-ideals such that UV =0. Then ®U and
&V are ®-ideals such that (®U) (®V)=0. Hence PU =00or ®V =0
and in particular U =0 or V =0, since 1 € ®.

(c) LetI, bethe centroid of A as aring, i.e., as an algebra over the
integers, and let I'y be the centroid of A as an (-algebra. Clearly
I'aCT,. Let fET, w €Q (and thus @ ET CTIy). Then fo = of by
part (a) applied to I, i.e., f(wx) = wf(x) for all x € A. Hence f €T,
and so I’y =T, In particular, taking ) = ®, we see that I'=T,.

(d) Regard A as an algebra over the integers A. Let¢: a — @ be
the ring homomorphism of A intoI'.  Since ¢(A) is an integral domain,
ker ¢ = pA for some prime p, or ker ¢ =0. In the former case pA =0
(i.e., A is of characteristic p). In the latter case, if mx =0,0# m €A,
x € A, then rmix =0, where m#0. Since A is I'-torsion free, x =0.

Let A be a prime algebra over ® with center Z. Suppose z, = 0 for
some z €Z. Then (z)A =0and so (z), and hence z,is 0. Thus z >z
is an injection of Z intoI". As remarked earlier, if 1 € A then z — z, is
in isomorphism of Z onto I'.

Let A’ be the I'-space 'PA. With multiplication in A’ defined by

(A, a)(u,b) = (A, Ab + pa +ab), A, u €T, a,b €A

A’ becomes a unital I'-algebra. Let T={(—-2z,2)|z € Z}. From
(AMa)(—z,a)=(—Az,Az —za +az)=(—(A2),Az) and a similar cal-
culation for (—2z,2z) (A,a), it is clear that T is a I'-ideal of A’.

THEOREM 1.2. Let A be a prime algebra over its centroid T" and let
A*=A'[T. Then: L

(@) A*isa unital central prime algebra over I" and o: a — (0, a) is
a T-injection of A into A*.

(b) If B is any unital algebra over I and ¢ is a T-injection of A
into B, then there exists a I'-homomorphism ¥ of A* into B such that

¢ = yo.

Proof. (a) If (0,a)=(—2z,z) forsome a €A, z& Z then z, =0
and hence a =z =0. Thus o is an injection of A into A*. Denote
the image of A under o by A. We claim that if U is a nonzero ideal of
A*then UNA#0. Suppose UNA =0. Pick (A,a) #0€ U. Then
(A,a) (0,x)=(0,Ax +ax)EUNA for all xEA. Thus Ax +ax =0
for all x € A. Similarly Ax +xa =0 for all x €A, and so a, =a, =
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— . Consequently aE”Z and ANa)=(—a,a)ET, a
contradiction. The primeness of A* now follows from the primeness
of A.

Now let A — A denote the canonical homomorphism of T into (2,
the centroid of A*. If A =0, then in particular A(1,0) = (1,0) =0, i.e.,
A0)=(~2z,z) for some z€Z. Thus z=0 and hence A = —z =
0. A — A is therefore an injection. _To show that A — A is surjective it
suffices to show that any element (A, a) in the center of A* can be
written in the form (B8,0), 8 €EI'. By commuting and associating (A, a)
with elements (0,x) and (0,y) in A, it follows that a €Z Then
(A, a)=(@QA +a,0)=(B,0), where B = +q, €T.

(b) Define a mapping ¢: A’—> B by ¢: (A,a)—=> A1+ ¢(a). ¢ is
clearly a I'-algebra homomorphism, and we show that its kernel K is
contained in T. If (A,a)€ K and x € A then from (A,a) (0,x)EK
one obtains ¢(Ax +ax) =0 for all x € A. Since ¢ is an injection we
havea,= —AElandsoa €Z and (A,a)=(—a,a)ET. As aresult
the map ¢: (A, a)— Y(A, a) is well-defined and clearly satisfies ¢ = Jo.

THEOREM 1.3. Let A be a central prime algebra over T and let A
be the field of fractions of I'. Then:

(@) AQrA is a prime algebra over A.

(b) If A is finitely generated as an ideal, then A @rA is central over
A.

(c) If the center Z of A is nonzero then 1€ AQA and a@A is
central over A.

Proof. (a) It is clear that every element of A @A is of the form
aRQ ', A€ETl,a€A. Let A denote the (isomorphic) image of A in
ARA under the mappmg a—>a®l. If U is a nonzero I'-ideal of
A®A choose a@A'#0€ U. Then a®1€ U and UN A is a non-
zero ideal of A. The primeness of A ®A then follows from the
primeness of A.

(b) Write A ={aa,--,a,), the TI-ideal generated by a,
a, -+, a, €A. If Qis the centroid of A A we must show that the
canonical homomorphism a —a of A into Q is surjective. Let f € Q,
write f(a;®@1)=b,®A7', i =1,2,---,n, and set A =A,A,- A, For
XEA, x =2, pi(a), where pi €E M(A). Then pi =
p:®1 € M(ARA), and we have

fa@n =2 p(@)®1) = T fpa)®N
=2 fi(@®D =3 pf(a®1) =2 pi(b@AT)
= ZP:’(&')@A?'-
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Therefore, if g = Af, then g(x 1) = Af(x Q1) = ACP(b)RAT) =yR1,
since A;'€I'. One then defines o: A —> A according to o(x) =Yy,
where g(x®1) = y®1 as indicated above. Since g € Q it is easily seen
that o €T, and therefore g(x@1)=oc(x)QR1=0(x®1). Thus g =4
and so f =, where y =oA 'EA.

(c) If z is a nonzero element of Z, then z, = B for some B €T,
since A is central. One easily checksthat zQB'=1in AQrA. Asin
(b) we let Q be the centroid of AQA and let fEQ. We write
f(H=a®A7', i.e.,, Af(1)=a@®]1. This implies that a € Z, whence
a, =vy €T,since A is central. Asaresult f =85, where 8 = yA '€ A.

Theorem 1.3 suggests the following open question: is A @rA central
over A without the additional hypothesis of either condition (b) or
condition (c)?

Another natural question which arises is the following: if A is
central prime over I' and F is a field containing I', does there exist an
F-algebra B containing A as a I'-subalgebra such that AF is prime? By
using the notion of extended centroid, which is developed in §1I, we
settle this question in the affirmative in §III.

II. The extended centroid of a prime algebra. LetA
be a prime algebra over @ and let U be a nonzero ®-ideal of A. An
element f € Home(U, A) is said to be ®-permissible if f commutes with
all the left and right multiplications of A, i.e., f commutes with the
elements of #M+(A). Such an element will be denoted by (f, U). ker
f={u€U|f(u)=0} and im f ={f(u)|u € U} are ideals of A and (ker
f) (im f)=0. Hence by the primeness of A either f =0 or f is an
injection.

Let %, be the set of all nonzero ®-ideals of A and let €, be the set
of all ®-permissible maps (f, U), where U € U,. We define (f, U) ~
(g, V) if there exists W € U, such that WCUNYV and f=g on
W. This is easily shown to be an equivalence relation on €,. We
remark that (f, U) ~ (gV) if and only if there exists 0 #x € U N V such
that f(x)=g(x). This follows from our observation above that a
®-permissible map is either 0 or an injection. We let (f, U) denote the
equivalence class determined by (f, U), and we let C, be the set of all
equivalence classes. Addition in C, is defined by

O+ WV=>F+gUNYV)

and it is easy to check that this definition is independent of the

representatives.
For (g, V)E%s, and U E U,, let g '(U)={v € V|g(v)E U}
g7 '(U) is clearly an ideal of A and we shall show that it is nonzero. If
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g(V)=0,then0#V Cg™'(U). If g(V)#0then g(V)NU#0. Pick
v €V such that 0#Zg(v)EU. Hence v#0 and v €Eg'(U). Now
define multiplication in Cy by

., U)(g, V) =(fg,.g"'(U))

where fg is the composite of f and g. To see that multiplication is
well-defined, suppose (f,, U,)~ (f,, U,) and (g, V)) ~ (g5 V2. Then
fi=f, on W,cUNU, and g,=g, on W,CV,NV, Set W=
W,Ng3'(W)). For all x €W, fi(g,(x)) = fi(gAx)) = fxgAx)) and so
multiplication is well-defined. It is then straightforward to verify that
C, is an associative ring with 1.

In particular we let % = 9 be the set of all nonzero I'-ideals of A
and call C = C; the extended centroid of A. We justify this change of
scalars from ® to I" by showing that (f, U)— (f, U) is an isomorphism of
Cronto C,. This is easily seen to be a welldefined ring homomorphism
which is an injection. To show it is surjective, let (f, U) € Co, set
V =TU and define f: V— A according to f(ZAu;)=3Af(u), A, ET,
u, € U. We show that f is well-defined. Suppose Au; =0. For
acaA,

(S afw))a =2 fayna) = 3 flutan = (S uina)
(3 awr)-o

Similarly a(ZAf(u;)) =0 for all a € A. It follows that, if (x) is the
d-ideal generated by the element x = ZA,f(u;), then (x)>*=0. Since A
is prime (x) =0 and in particular x = 3A,f(%;) = 0.

THEOREM 2.1. The extended centroid C of a prime algebra A over
® is a field.

Proof. We first show that C is commutative. Let A =(f, U) and
p=(g V) bein C. Set W=g(U)Nf'(V), note that W?# 0, and
pick x,y € W such that xy#0. Then fg(xy) = flg(x)yl=gx)f(y) =
glxf(y)l1=gf(xy). Thus (fg,g”'U)~(gf,f(V)) and so Au=
uA. Next let (f, U) # 0, and note that f(U) # 0 but ker f =0. Define
g:f(U)y>A byg(f(u))=u forall u € U. g is well-defined since f is
an injection and in fact g is a I'-permissible mapping. Clearly (g, f(U))
is the inverse of (f, U).

We have already noted (in §I) that there is a canonical homomorph-
ism o« >a of ® into the centroid I'' Now, for a €®, define ¢ =
(@, A). a — a is clearly a ring homomorphism of ® into the extended
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centroid C. We define a prime algebra A over ® to be closed over ® if
the map a — & is an isomorphism of ® onto C. We remark that if we
regard A as an algebra over its centroid I' then A — A is always an
injection of I" into C. To show that a prime algebra A is closed over ®
it suffices (besides showing that « — & is an injection) to show that,
given any I'-permissible map (f, U), there exists 0Z#u € U and a« € P
such that f(u) = au.

Let A be a prime algebra over @ with extended centroid C. We
form A®-C and note that a —»a®1 is a I'-isomorphism of A onto
A=ARQICARC. We set

I= {Z [u; @Aip; _fi(ui)®pi”Ai9pi eEC,U)EMN u € U.}
LemMmA 2.2. (a) Iis a I'-ideal of A QC
b INA=0.
Proof. (a) Letx€A, u, AEC, A =(f,_U), u € U. From
w@rp — f(U)Qp) (xRu) = ux QApu — f(ux)Qpu € 1, etc.,
it follows that I is a I'-ideal of A.
(b) Suppose
(1) 0£a®1=2 [ @rp — () DplEINA.
Letting p € #M(A) and applying p =p Q1 € M(A Q C) to (1) yields

@ p(@)®1 =72 [pu)Q@kp: — fi(p(u)Qp] € I N A.

By intersecting a finite number of I'-ideals there is a W € % such that
(g, W)Ep and (fg, W)EAp. We let Cw ={A EC|A=(f,W) for
some f}. Cw, and hence AQCy is a I'-space, as is also Homy
(W,A). We claim that the map (x,A)—>xf of A XCy into
Homy(W, A) is I'-bilinear (where A = (f, W)). It is well-defined since
(f, W)~ (g, W) implies f =g on W. Hence there is a I'-linear map
m: AQCy — Hom (W, A) such that w(x @A) = xf. Applying = to (2)
yields:

3) p(a) =2 [p(uw)(fg) - fi(p(u))gl on W
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For w € W one applies (3) to w to obtain

p(a)w =2 [p(w) [(fg:) (W)]~ [f:(p (u:)]gi(w)]
)
=2 [p(u)fi(g:(w)) — p (u)f:(g:(w)] = 0.

From (4) we have (a)W =0 and so the ideal (a) = 0 by the primeness of
A. In particular a =0, a contradiction.

In view of Lemma 2.2 there exists a I'-ideal M of A ®C maximal
with respect to the property that ICM and M N A =0.

LEmMma 23. Let Q = AQRC/M.
(@) Q is a prime algebra over C.
(b) a—a®l is a I'-injection of A into Q.

Proof. (a) Let U be the preimage in A ®C of a nonzero ideal of
Q. Then U N A #0 since U properly contains M. The primeness of
Q then follows from the primeness of A. (b) follows fromM N A =0.

The question of uniqueness in the choice of M has been resolved
by McCrimmon and we give his results here. To this end, for x €
AR®C, define (x), ={p(x)|p € M(A)} and let M, denote the set of all
elements x in AQC for which there exists V €4 such that

(VRD(x)s C L
LeEmMMma 2.4 (McCrimmon). M = M,.

Proof. Letx =23Xa, @A € M, where A; = (f,, U),andset V= N,;U.
Let vEV and p € M(A). Then

(@DP(x) = (@D p(a)®\ = 2 vp(a)®A,

1

= 3[vp (a)QA: — f:(vp (a;)))R1] + Zf.(vp (a:))R1.

Therefore 3f (vp(a;))QIEMNA =0, since I CM. It follows that
(VRDp(x) eI and so (VR1){(x)s CI. Conversely let x EM,. By
definition there exists V € U such that (VRDx), CICM. VRC
and (x),C are ideals of Q with VRC#0 and VRC (x).C=
0. Therefore (x),C=0 since Q is prime, and in particular x € M.

THEOREM 2.5. If A is a prime algebra over ®, then Q = AQC/M
is a closed prime algebra over C.
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Proof. 1t suffices to show that if (f i1) is a C-permissable map in Q
then there exists 0 # x € U such that f(x) = Ax for some A €C. Let
V={x€EA |x®1 EARINU and f(x®1)€(A®l)} Since f com-
mutes with the elements of #-(Q), and in particular with elements of
the form (y®1), and (y®1),, V is a I'-ideal of A. We now show that V
is nonzero. By the definition of M thereis 0 # x®1 € AR1 RINU. We
write ix ®1) = Z.a;QA;in Q. There exists W € AU such that (f, W) € A,
for all i. For w € W we have

faw @D =[x @DI(w1) = S @@ w1

= Z a,-w®/\,~= Z f;(aiw)®l

making use of the fact that I C M. Hence fxw®1) € A®]1 for all
wE W. Next let p EM(A) and let p be the element of M(Q)
induced by pEM(ARQC). Then fpx)wRD={flp(xw)R1) =
Pwx®1) =pfaw R EARL. (x)W#0 since A is prime and so
there exists p(x) €(x) and w € W such that p(x) #0. Thus p(x)w €
V and so V#O.

We now define a mapping f: V— A according to the rule

f(v)=y, where fr®1=yR1

f is clearly a well-defined I'-permissible map and so (f, V) is a represen-
tative of some A € C. Now pick v#0€ V. Using the factthat [ C M
again we see that A(v@1)=v®A = f(v)R1 = f(v®1). It follows that
Q is closed over C.

In view of Theorem 2.5 we shall refer to Q = AQC/M as the
central closure of the prime algebra A.

III. Tensor product of closed prime algebras.

THEOREM 3.1. Let A be a closed prime algebra over ®, and let
a,, a,---,a, be ®-independent elements of A. Then there exists p €
M(A) such that p(a,) #0 and p(a;)=0,i=2,3,---,n

Proof. The proof is by induction on n. For n =1 the theorem is
trivially true since a,#0. Now assume that for all p € #(A), if
p(a))=0 for i=2,3,---,n, then p(a;)=0. Define J=
{peMA)|p(a)=0fori=23,---,n—1}. (In case n =2 we define
J =M(A)). Since J is a left ideal of #M(A), Ja, ={p(a,)|p €T} is an



58 T. S. ERICKSON, W. S. MARTINDALE, 3RD, AND J. M. OSBORN

ideal of A. Furthermore by the induction assumption Ja, is
nonzero. The mapping f: Ja, —> A given by p(a,)—>p(a), p €J, is
well-defined because of our supposition above that p(a;)=0 for all
p EM(A) such that p(a;))=0, i =2,3,---,n. (f,Ja,) is clearly a ®-
permissable mapping. Since A is closed there exists A € @ such that
f(p(a,)) = Ap(a,)forallp € J,ie.,p(a,— Aa,) =0forallp €J. By the
induction assumption applied to a,, as, -, a,-,, a,— Aa, there exists
p €EM(A) such that p(a;)=0, i=2,3,---,n—1 (i.e, p€J) but
p(a,— Aa,) #0, a contradiction.

LeMMA 3.2. Let A be a closed prime algebra over ® and suppose
a and b are elements of A such that p(a)q(b)=p(b)q(a) for all
p,q EM(A). Then a and b are ®-independent.

Proof. We may assume that a#0. Let J=
{p € M(A)|p(a)=0}; Jb is then an ideal of A. Since 0=p(a)q(b)=
p(b)q(a) forall p €J and q € M(A) we have (Jb){a)=0. It follows
that Jb = 0 since A is prime. Hence the mapping f: (a)— A given by
f:pa)=»pm), peMA), is a well-defined D-permissable
homomorphism. Since A is closed there exists A €® such that
f(p(a))=Ap(a) forall p € M(A). In particular b = f(a) = Aa, and so
a and b are ®-dependent.

THEOREM 3.3. Let B be an algebra over a commutative ring F, let
® be a subfield of F, and let A be a closed prime ®-subalgebra of B Then
the mapping o: Z.a; QA — Z:Aa;, a; € A, A; € F, is an injection of A QoF
into B.

Proof. It is clear that o 1is a well-defined ®-algebra
homomorphism. If the kernel K of o is nonzero choose a nonzero
element w = 2, a;®A; in K of minimal “length’” n. Both {a;} and {A;}
are then necessarily ®-independent sets. If n =1 then A,a, =0 and so
A;=0 or a,=0, a contradiction. Therefore we may assume that
n>1. For any p,q EM(A) we have p(w)=2p(a;)®A € K and
dw)=24q(a)R\ € K. Furthermore Zq(a,)p(a)@®\ €K and
3q(a)p(a)RA; € K. Subtraction yields

ZZ [q(a)p(a;)—q(a)p(a)IR@r EK.

By the minimality of n and the ®-independence of {\;} we have
q(a)p(a;)—q(a)p(a) =0 for all p,q € M(A), i =2,3,---,n. In par-
ticular, by Lemma 3.2, a, and a, are &-dependent, a
contradiction. Therefore K =0 and o is an injection.



PRIME NONASSOCIATIVE ALGEBRAS 59

LemMA 3.4. Let A be a closed prime algebra over ® and let F be
an extension field of ®. Then any nonzero F-ideal of A®oF has a
nonzero intersection with A Q1.

Proof. Suppose N is a nonzero F-ideal of AQF such that
NN(AR1=0. Choose a nonzero element 2'_, u; @A; in N of mini-
mal “‘length” n; the set {&;} is necessarily ®-independent. Since N isa
F-ideal we may assume without loss of generality that A,=1. By
Theorem 3.1 there exists p € M+(A) such that p(u,) #0 but p(u;) =0
for i>1. Now pPp=pRIEMS(ARF)CM(ARF) and so
PEL u®r) =Zp ()R =pu)Q1EN. Since NN(AR!) =0 we
have p(u,) =0, a contradiction.

THEOREM 3.5. If A is a closed prime algebra over ® and F is an
extension field of ®, then A RoF is a closed prime algebra over F.

Proof. In view of Lemma 3.4 the primeness of AX®F follows
from the primeness of A@1=A. Next let ( f, U) be an F-permissable
map of U into AQF. By Lemma 3.4 UN(A®1)#0, and we pick
0ZAu€A such that uQIEUNARI). We write fu®l)=
2%, 0:®A;, with {\;} ®-independent. For p € #o(A) we have p =
pRLEM(ARF), so consequently f(p(u)R1)=FfPHu)=
PEviQA) =2Zp(v,))QA. By the ®-independence of the {A;}, for each i
the map f.: p(u)— p(v;) is a well-defined map from {u) into A. It is
evident that each (f,(u)) is ®-permissable. Since A is closed there
exists a; €E® such that fi(u)=au, i=1,2,---,n. Consequently
f@D=2au QAL =uQCEiari)=B(u 1), where 8 =ZaA; €EF.
It follows that A Qs F is F-closed.

We are now in a position to settle in the affirmative the question
posed at the end of §II.

THEOREM 3.6. Let A be a central prime algebra over T" and let F be
a field containing T'. Then there exists an F-algebra B containing a
I-isomorphic image A of A such that AF is a prime algebra.

Proof. We recall from Lemma 2.3 that A is I'-isomorphic to a
I'-subalgebra A of the central closure Q of A. From the construction
of Q it is clear that AC = Q (where C is the extended centroid of
A). Let K be the composite field of C and F and form the F-algebra
B =Q®cK. A is then I'-isomorphic to the I'-subalgebra A=ARlof
B. Furthermore it follows from Q = AC that B = AK. We complete
the proof by showing that the F-subalgebra AF of B is a prime
F-algebra. Let U and B be F-ideals of AF such that UV =0. Then
UK (and similarly VK) are K-ideals of B since (UK)B =(UK)
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(AK)C(UA)K C UK. But (UK)(VK)C(UV)K =0. We conclude
that either UK =0 or VK =0, since B is prime by Theorem 3.5. In
particular, U =0 or V =0 and so AF is prime.

We now study the structure of the tensor product of a closed prime
algebra A over @ and a unital algebra B over ®@. If W is an ideal of
A®B and v € B we let Uw,,={u €A |u®@v € W}. In the following
discussion W remains fixed and so we denote Uy, by U,. U, is clearly
closed under addition. For u € U, and x € A we see that ux®1=
(u®v) (xQ1) € W, using the fact that B is unital.

Thus ux € U, and similarly xu € U,. Therefore U, is an ideal of
A. We next let V, ={v EB|U,#0}. V, is nonempty since U,=
A. We claim that V, is an ideal of B. If v, v,€V,, then U,.,,C
U,NU,#0 since A is prime. Thus v,+v,EV,. Nextlet vE YV,
and y € B. Again using the primeness of A, we choose u € U, and
x € A such that ux# 0. It follows that ux @vy = (u@v) xRQy) E W,
andso U,, #0,i.e., vy € V,. Similarly yo € V, and so V, is anideal.

LeEMMA 3.7. Let A be a closed prime algebra over ®, let B be a
unital algebra over ®, and let W be a nonzero ideal of AQ.B. Then
vV, #0.

Proof. Choose a nonzero element w =3, q;Qb; in W, with {a;}
and {b;} ®-independent sets. By Theorem 3.1 there exists p € M(A)
such that p(a;)#0 and p(a;)=0 for i >1. Since 1€ B we have
P=pR1EMARB). Thus p(w)=p(a)R®b,E W so b, is a nonzero
element of V,.

REMARK. If in Lemma 3.7 A is also assumed to be unital then we
claim that W contains a nonzero ideal of the form UXV, where U is a
nonzero ideal of A and V is a nonzero ideal of B. Indeed, by Lemma
3.7 there exists a nonzero element of the form u®v in W. If
pEM(A)and q € M(B)thenpRq = (pR1) (1Qq) € M(ARB), since
both A and B are unital. Thus (p®q) (URv)=pwU)Rq(v) E W,
showing that (u)X{(v)C W.

THEOREM 3.8. Let A be a closed prime algebra over ® and let B be
a unital algebra over ®. Then

(1) AQB is a prime algebra, if B is a prime algebra.

(2) AQ®B is a closed prime algebra over ®, if B is a closed prime

algebra over ®.

Proof. (1) Let W, and W, be nonzero ideals of A®B. By
Lemma 3.7 Vy, and Vy, are nonzero ideals of B. By the primeness of B
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there exists v, € Vy, and v, € Vy, such that v,v,#0. Since A is prime
there exist u, € Uw,., and a, € Uw,., such that u,u,#0. Therefore
(U, Qv) (UQv,) = uu,Qv,v, is a nonzero element of W, W,, and so
A @B is prime.

(2) Let (f, W) be a ®-permissable map in AQB. For b € B we
denote Uy, by U,. By Lemma 3.7 V), is a nonzero ideal of B. Let
v € Vy, choose u#0€ Uy, and write f(u@v) =2 ,a:Qb,, with {b;}
®-independent. For p e M(A) p=pRIEMARB) since B is
unital. Because f is ®P-permissable we then have f(p(u)Qv)=
P uRv)=pEa;®b;) =Zp(a;)Rb. The independence of the {b;}
shows that the mapping g:(u)—>A given by pu)—p(a), i=
1,2,---,n, is well-defined. It is clear that each (g,(u)) is &-
permissable, i = 1,2,---,n. Since A is closed over ®, for each i there
exists A; € ® such that g(u) = Au. As a result f(u@v) =ZAuQb; =
u@(EAb;). We have thus far shown that for v € Vy, and u#0€ U,
f(u@v)=u®y for some y € B.

We next show that y is independent of the choice of u. To this
end suppose f(u;,Qv) = u,Qy, and f(u,Qv) = u,Qy, for u,, u, nonzero
elements of U, Since A is prime (u,)N{u,) #0 and so p(u,)=
q(uy) #0 for suitable p,q € #M(A). Again using the fact that f is
®-permissable and that B is unital we see that p(u,)Qy, =
flpm)@v) = f(q(u)Qv) = q(u)Qy: = p(u)®y,. In other words the
mapping g: Vy— B given by g(w)=y (where f(u®@v)=uy,
u#0€ U,) is well-defined.

We claim that (g, Vi) is ®-permissable. Let v,, v, € V,, and pick
u#0eU,NU,CU,,, Then u®g (v, +v)) = f(u@(v, +vy)) =
f(u@uv)+fu@uv,) = u@g(v)+uRg(v,), whence g is additive. Next
let v E Vy, y € B, and pick u € U,, x € A such that ux #0. We note
that ux € U,,, since ux @vy = (u@v) (x ®y) € W. Therefore

ux @gy) = f(ux Quy) =fl(u Qv)(x QY =[fu Qv)I(x R y)
=(UR®gW))xQy)=ux Qg)y.

This shows that g commutes with all right multiplications y, and it is
similarly proved that g commutes with all left multiplications. This
completes the verification that (g, Vi) is ®-permissable.

To complete the proof we note that there exists 8 € ® such that
g(v)=pv for v € Vy. In particular, for vZ0€ V,, and for u#0€ U,
we see that f(uQv) = u®g () =u@Bv = B(uRv), proving finally that
A QB is a closed prime algebra over ®.

For the remainder of the paper we turn our attention to the study of
tensor products of simple algebras. An algebra A over @ is said to be
simple if A># 0 and A contains no ideals other than 0 and A. Clearly
any simple algebra is prime. It is also evident that the extended
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centroid of a simple algebra is isomorphic to its centroid, and so any
central simple algebra over ® is automatically closed. The preceding
results on tensor products of prime algebras yield corresponding results
on simple algebras which we now give.

THEOREM 3.9. Let A be a central simple algebra over ® and let B
be a unital algebra over ®. Then:

(1) ¢: W— Vyis a lattice isomorphism of the lattice of ideals of
A ®oeB onto the lattice of ideals of B.

(2) If B is simple, then A XoB is simple.

(3) If B is central simple over ®, then A @B is central simple over
d.

Proof. (1) We let ¢ by the map I - A®I, I an ideal of B, and
show that ¢ =1 and ¢¢p =1. This is equivalent to showing (a)
W =AQVy for each ideal W of A®B and (b) I = V,g, for each ideal
of B. To prove (a) we first note that A®Vy, C W because of the
simplicity of A. Next let w=3"_,aQb;€W with {a} &-
independent. By Theorem 3.1 for each i there exists p; € #(A) such
that p(a)#0 and p;(q))=0 for j#i. Since B is unital p; =
pRANEMARB) and we have for each i pi(w)=
pi( a)®b; € W. This puts each b, in Vy, and so w E AQVy. To
establish (b) it is first of all obvious that I C V,g;.. Next suppose there
exists b € V,g; such that bZ I. Choose a ®-basis {b;} of I and pick
a#0€A. Then a®b € ARI and so a®b = Z.a;Xb; for suitable
a, €EA. A contradiction results due to the ®-independence of b,
buby -+,

(2) follows immediately from (1) and (3) is implied by Theorem
3.8.

For the case of simple algebras Theorem 3.1 can be sharpened as
follows.

THEOREM 3.10. Let A be a central simple algebra over ®, let
a,a,---,a, be ®-independent elements of A, and let x,,x,, -, X, be
arbitrary elements of A. Then there exists p € M(A) such that p(a;) =
Xis i= 1,2," , n.

Proof. By Theorem 3.1 for each i there exists p; € #(A) such
that p;(a;) = b;# 0 and p;(a;) =0 for j#i. For each i (b;)= A since A
is simple. Therefore for each i there exists q; € #(A) such that
q:(b;) =x;. The element p =3}, qp;: € M(A) then has the required
property.

Finally we consider the structure of the tensor product of two
arbitrary simple unital algebras over ®.

THEOREM 3.11. Let A and B be simple unital algebras over ®,
with centers Z and F respectively. Then
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(1) AQeB is a free ZQsF module, with basis {a;®b;}, where {a;}
is a Z-basis for A and {b;} is an F-basis of B.

2) ZQF is the center of AXB.

3) ¢: U—>U(AQB) is a lattice isomorphism of the ideals of
ZQF onto the ideals of A XB.

Proof. (1) It is clear that {a;®b;} generates A B as a ZXF-
module. Suppose now that Z,y;(a;®b;) =0, y; €EZQF. For any
fixed i and j, by Theorem 3.10 there exists p € #(A) such that
p(a)=1,p(a)=0for k#i, and q € M(B) such that q(b;) =1, q(b)) =
0 for [#j. Since A and B are unital algebras p ®q € M (A XB) and
thus p&®q is a ZQF-module mapping. Application of p®q to the
above equation thus yields y;(1®1) =0, or y; =0. Hence {a,®b;} is
ZQF-independent and forms a Z & F-basis for A ®B.

(2) By part (1) we may select a Z&Q F-basis {a;®b;} for A®B in
which a,=1 and b,=1. Let w=2y,(a;®b;), v; €EZXRQF, be an
element of the center E of AQB. Choose p € #M(A) such that
p(l)=1,p(a)=0for i#1and g € M(B) such that q(1)=1, q(b;)=0
for j#1. As in (1) pRq € Mo(ARB). Therefore w=w(1Q1)=
wl(p®q) 1QDI=(pRq) (w) =y, E ZRF.

(3) For W an ideal of A QB we define WY = WN(ZRF). We
first show that W** = W for any ideal W of A ®B. It is obvious that
W CW. Now let we W and, according to (1), write w=
2@ b)), vi € ZQF. For any fixed i, j pick p € #(A) such that
p(a)=1,p(a)=0for k#i, and g € M(B) such that q(b;) =1, q(b)) =
Oforl#j. Asbefore p@®q € M(ARB)and (pRq) (w)=y;, EW. It
follows that w € W*(A®B). Finally we show that U* = U for every
ideal U of ZQF. Clearly UC U®*. By (1) there is a ZQF basis
{a,@b,},witha,=1and b, =1,for AQB. If x € U%, thenitis evident
that x can be written in the form Z,;u;(a;®b,), where u; € U. On the
other hand x = y € Z®QF and so by the Z& F-independence of {a; ®b;}
we see that w; =0 for (i,j)#(1,1) and x = u,, € U.
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