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MONOTONE OPERATORS AND NONLINEAR
BIHARMONIC BOUNDARY VALUE PROBLEMS

D. R. DUNNINGER AND JOHN LOCKER

The nonlinear boundary value problem Lu + Nu = 0 is
considered, where L is the biharmonic operator and N is a
nonlinear monotone operator. By factoring the operator L as
TT*, where T is the maximal operator associated with the
Laplacian, the theory of monotone operators is utilized to obtain
an existence and uniqueness theorem for the operator
equation. Several examples are given to illustrate the ap-
plicability of the result.

1. Introduction. In some recent works, Gustafson and Sather [6,
7] and Cesari and Kannan [4] have utilized the theory of monotone
operators in order to prove the existence of solutions of the nonlinear
differential equation Lu + Nu = 0. Here L is a linear differential
operator with domain in a Hubert space S and N is a nonlinear
monotone operator, either defined on all of S as in [4] or only on a
subspace of 5 as in [6, 7]. In this paper we consider a similar problem
in which N is defined on a subspace of S and where the differential
operator is the biharmonic operator. The techniques of this paper are a
modification of those used in [6, 7]. In particular, whereas Gustafson
and Sather make essential use of the square root decomposition of a
positive self-adjoint operator, we use the fact that the biharmonic
operator has a factorization of the form TT* where T is the maximal
operator of the Laplacian.

Let Ω be a bounded domain in Rn. For simplicity we assume that
the boundary 3 Ω of Ω is of class C", although this condition can be
relaxed somewhat (see [1, p. 28]). We consider the boundary value
problem

(1)
u=f

dn

ΔΔw + Nu = 0 in Ω,

^ on <9Ω,

where Δ denotes the n- dimensional Laplacian, N is a nonlinear
monotone operator, and d/dn denotes the derivative in the direction of
the inner normal to <9Ω. Our objective is to establish an existence and
uniqueness theorem for problem (1).
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Let S be the real Hubert space L2(Ω) with the standard inner
product (w, v) and norm \\u\\. For each integer m ^ 0 let Wm (Ω) denote
the subspace of all functions u E S such that the distribution deriva-
tives Dau E S for \a | ^ m. Here and throughout x = (JC,, , x n ) £ / ? " ,
Da = D°' Dnn where Dj = d/dx}, α = ( α , , ,α n ) is an n-tuple of
nonnegative integers, and the order of Da is \a \ = Σn

i=ι α,. The space
Wm(Ω) is a Hubert space under the inner product and norm

(u,υ)m = Σ (Dau,Dav), \\u\\m = ( M , M Γ
|α|^m

We refer to this structure for Wm(Ω) as its Sobolev structure. Let
W5(Ω) denote the closure in Wm{Ω), under the norm || ||m, of the
subspace Co(Ω) of infinitely differentiate functions with compact
support in Ω.

Let L be the differential operator in S defined by

®(L) = W\ίϊ) Π WJ(Ω), Lw = ΔΔw.

In operator form equation (1) can be rewritten as

(2) Lu+Nu= 0,

where N is a monotone operator with domain and range in 5.
As has been pointed out by Kato [8], many operators of mathemati-

cal physics have the form TT*. However, to the best knowledge of the
authors, this decomposition has not been carried out for the biharmonic
operator within the framework of Sobolev spaces. Consequently, in §2
we discuss the structure of the linear operator L and obtain the desired
decomposition. In §3 we present the nonlinear theory and prove our
main existence and uniqueness theorem. We illustrate our main result
in §4 for a large class of nonlinear boundary value problems of type (1),
and in §5 analogous results are sketched for the corresponding Riquier
problem [9], i.e., where u = Δw = 0 on

2. Linear theory. We begin with a brief survey of the structure
of the differential operator L. Important references in this regard are
the two fundamental papers of Browder [1, 2], to which we will be
constantly referring. The essential features of our results in this
section are summarized in Figure 1 at the end of this section.

The differential operator L has the following properties:
(a) Q)(L) is a closed subspace in H^Ω) under its Sobolev

structure.
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(b) L is continuous from 3) (L) under the W4-toρology to 5 under
the ίΛtopology.

(c) L is a self-adjoint (L = L*) linear operator in S (Theorem 16
[1, P 76]).

(d) The null space N(L) = {0}, and the range ^ ( L ) = 5.
From (d) it follows that

exists. Clearly H is a 1-1 linear operator from S onto ®(L). By the
closed graph theorem H is continuous from 5 under the L2-topology
onto 3){L) under the W4-topology. Since L=L*, we also have
H = H*.

Next we want to establish a decomposition of L in the form
ΓΓ*. Let T be the differential operator in 5 defined by

®(Γ) = {u E 51 on every open subset Ωi CΩ with
distance d{ίϊuR

n -Ω) >0, u E W2(Ω0,
Δw E 5}, Γw = Δw.

Then the adjoint operator Γ* is characterized by

3 ( Γ * ) = W2

0(Ω), Γ*M =Δw.

The operators T and Γ* are called the maximal and minimal operators,
respectively, of the Laplacian Δ in 5 (see [2, pp. 88-89 and Theorem 2.1,
p. 129]). They are both closed operators in 5.

These two operators have the following properties:
(a) #(Γ*) = {0}.
(b) Jf(T) is a closed subspace in 5 under the ZΛtopology.
(c) £%(T*) is a closed subspace in 5 under the L2-topology (see [2,

Theorem 1.2, p. 97]).
(d) mT) = S.
Next, we introduce an inner product and norm for 3)(T*) = Wl(Ω)

by

(w, v)τ* = (u, v) + (Γ*iι, T*v), u,vG 3>(T*),

a n d

| w | τ * = (w, u)ι

τ% u

Since Γ* is a closed operator in 5, 3)(T*) is a Hubert space under this
structure and Γ* is continuous from this Hubert space to ί%(T*) under
the ίΛtopology. Some elementary estimates together with Schwarz's
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inequality yield the inequality \u \τ* = c ||w ||2, where c is a positive
constant, and we conclude that T* is continuous from 3)(T*) under the
W2-topology onto ί%(T*) under the L2-topology. By the closed graph
theorem ( Γ * ) 1 is continuous from £%(T*) under the ZΛtopology onto
®(Γ*) under the W2- topology.

For the space Q){T) we introduce the inner product and norm

(ii, υ)τ = (u,Ό) + (Tu, Tυ), u, v G 3)(Γ),
and

As above ®(Γ) is a Hubert space under this structure, and T is
continuous from this Hubert space to 0ί{T) = S under the L2-
topology. From the definition of T it is clear that Jί(T)^{fy. Conse-
quently, we consider the restriction of T to the subspace 3)(T) Π
Jf(TY, where the orthogonal complement is in the L 2 sense. It is
easily seen that 3)(T) Π N(T)1 is a closed subspace in the above Hubert
space, and T\3)(T) Γ) Jί(T)1 is a 1-1 linear operator from 3)(T) Π

onto S.
Let

Then / is a 1-1 linear operator from S?(T) = S onto 2>(Γ) Π ̂ ( Γ ) 1 , and
by the closed graph theorem / is continuous from 5 under the
ίΛtopology onto 3)(Γ) Π ̂ ( Γ ) x under the | |τ-topology. This implies
that / is continuous from 5 under the L2-topology onto Q)(Γ) Π Jΐ(TY
under the L2-topology. Now the adjoint /* exists as an operator
between N{TY = έ%(Γ*) and 5 under their L2-structures, and it is easy
to show that /* = (Γ*)'1.

We now show that the operators T and T* yield the desired
factorization of L.

LEMMA 1. L = ΓΓ*.

Proof. Consider the product operator TΓ*, which is defined by

25(ΓΓ*) = {u G 3J(T*) I T*w G 2>(T)}

= {u G H ô(Ω) I on every open subset Ω, of Ω

with d(ΩuR
n - Ω) > 0, Δw G W2(Ω,), and

ΔΔw G 5}, TΓ*M = ΔΔw.

Clearly L C TT*. Hence, the lemma will be established if we can show
that S(ΓΓ*)C®(L). Towards this end let u G®(ΓΓ*) and set / =
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TT*u = ΔΔw E S. Since &(L) = S, there exists av E3)(L) such that
Lv = ΔΔv = /. Hence the difference w = u - v E S(7T*) and
ΓT*w=0, which implies that Γ*H> GJV(Γ). On the other hand,
T*wG9t(T*)Jί(Ty. Thus, Γ*κ>=0 and w EJί(T*) = {0}, and we
have that u = v E3)(L), completing the proof of the lemma.

Since 3)(TT*) C®(Γ*), we can consider the restriction TR =
Γ* 12)(7T*). It is easily verified that Γ* is a 1 - 1 linear operator from
3)(TT*) onto 2)(T) Π ̂ ( Γ ) 1 .

Finally, we are able to conclude that

The preceding observations are depicted in Figure 1 below. Note
that all operators involved are 1-1 and onto their respective
spaces. Moreover, the topologies under which these operators are
continuous are also indicated.

L(W\L2)=TT*

H(L\ W4) = /*/

FIGURE 1

3. Existence and uniqueness. We now consider the boundary
value problem

(2) Lu+Nu = 0,

where L is the linear operator in §2 and N is a single-valued nonlinear
operator with domain 3)(N) D 3l(T*) = W2

0(Ω) and range contained in
5. Since 3(L)CS(Γ*)C3(AΓ), equation (2) is defined for all uE
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Let u E 2>(L) be a solution of (2). Applying H to equation (2), we
arrive at the so called "auxiliary equation"

(3) u + HNu = 0.

If we set v = Γ*w, then clearly i; e 2(T) Π ̂ ( Γ ^ C ^ Γ ) 1 and J*ι> =
M. Thus (3) becomes

and since J* is 1 - 1 we must have

(4) v+JN(J*υ) = 0.

Equation (4) is an equation for v in the Hubert space N(T)λ.

REMARK 1. In equation (4) the operators / and /* play the role of
Km as defined in [7].

We now state our main result.

THEOREM 1. Let 2(N) D Wl(Ω) and assume that the operator N
from 3)(N) into S satisfies the following conditions:

i) N is monotone on W&Ω), i.e., (Nu -Nυ, u - D ) § 0 for all

(N2) N is continuous from W2

0(Ω) under the W2-topology to S under
the L2-topology.
Then the boundary value problem (2) has a unique solution u E
W\ίϊ) Π

Proof. (Existence). Consider the operator F mapping
into ^V(Γ)1 which is defined by

Fv = v

From condition (N2) and the continuity properties of / and /*, it follows
that F is continuous on Jί(T)L under the L2-topology. Also, for
u,v ELN{T)L we have

(Fu - Fv, u - v) = ||u - v ||2 + (JN(J*u)-JN(J*υ), u - v)

^ 1 1 " "HP,
where we have used condition (NΊ) in the last step. Thus, F is strongly
monotone on Jί(T)L. By the Browder-Minty theorem [3] and the
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strong monotonicity there exists a unique v E N(T)1 such that Fv = 0,
that is,

(5) v+JN{J*v) = 0.

Equation (5) implies that v E$fc(J) = 3}(T)Π Jf(T)1, and hence, we may
define u = J*υ E 3)(L). Then Γ*M = v and equation (5) becomes

Γ*w+JNw = 0 .

Applying J* yields

and applying L yields

Lu+Nu= 0,

which is the desired conclusion.

(Uniqueness). Suppose uu u2E2(L) are both solutions of
(2). Let vx=T*uu v2=T*u2. Clearly υu v2EJί(T)± and F(vι) =
F(v2) = 0. Since F(v) = 0 has a unique solution, we see that Vι = v29

and hence, ux = J*υx = J*t>2 = w2. This completes the proof.

REMARK 2. Condition (iV2) can be replaced by the condition that N
be hemicontinuous, i. e., N is continuous from each line segment in
2(N) to the weak L2-topology on 5.

4. Examples. Let n = 1,2, or 3 and let Ω be a bounded domain in
Rn with a C00 boundary 5 Ω. We consider the boundary value problem

, ΔΔw +g(x, u) = f(x) in Ω,
(6) ί « = ^ = o on an,

where / E S and g is a continuous function from Ωx R to R such that
for each JC EΩ the function g(jc, •) is monotone increasing on R.

Let L be the differential operator defined by

2(L) = W\Ω) Π Wl(Ω), Lu = ΔΔw.

By the Sobolev imbedding theorem it follows that under our restrictions
on n we have W2(Ω)CC(Ω) and

(7) || M||C(Ω)^ const. | |u| |2
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for all u e W2(Ω). Let N be the operator defined by

= g(x,u)-f(x).

Equation (6) becomes Lu + Nu = 0.
We assert that N has properties (JVΊ) and (N2).
(NO Monotone. For M, U E @(N) we clearly have

[NU(X)-NΌ(X)][U{X)-Ό(X)] = [g(x, u(x))-g(x,

for all x & Ω, from which it follows that N is monotone.
(N2) Continuity. Suppose || ux - u ||2-*0 as i -*». Then in view of

(7) the functions w, converge uniformly to u on Ω, and hence, we can
choose M > 0 such that | nf(jc)| ^ M (i = 1,2, 0 and | M(X)| ^ M for all
x E Ω . Since g is uniformly continuous on Ω x [ - M , M ] , it readily
follows that the functions g(x, M,(JC)) converge uniformly to g(x,u(x))
on Ω, which implies that \\Nui - N α | | - » 0 as i-»<». Thus N satisfies
property (JV2).

By Theorem 1 equation (6) has a unique solution u E w4(Ω) Π
WQ(Ω). Moreover, by well-known regularity theorems [5], it is readily
seen that if /GC 2(Ω) and g 6C 2 (Ωxi?) , then the solution u is a
classical solution in the sense that w e C4(Ω)Π C!(Ω), u satisfies
ΔΔM + g(x, u) = /(x) at each point of Ω, and u = du/dn =0 on dΩ.

As a specific example of equation (6) we can choose

g(x, u) = a(x)u + fe(x)M3 + cOOe",

where α(x), b(jc), and c(x) are nonnegative continuous real-valued
functions on Ω.

5. The Riquier problem. Consider the boundary value problem

/ Q v rΔΔw + Nu = 0 in Ω,

I M = Δ M = 0 on <9Ω.

The structure of the linear operator associated with this problem is
considerably simpler than in the preceding case, and therefore the
following discussion will be brief.

Let T be the differential operator in S defined by

2)(T) = W2(ίϊ) Π WJ(Ω), Tu = Δw.
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As in §2 it can be verified that T is a 1-1 continuous linear operator
from 3)(T) under the W2-topology onto S under the ZΛ
topology. Hence, / = T~ι is a 1 - 1 continuous linear operator from 5
under the L2-topology onto 3)(T) under the W2-topology. Moreover
T = Γ* (see Theorem 16 [1, p. 75]), and consequently, J = J*.

The product operator L = TT is the differential operator in 5 given
by

W\a)\u G WJ(Ω), Δw E WJ(Ω)}, LU = ΔΔM.

It is easily seen that L is a 1 - 1 self-adjoint linear operator in 5 which is
continuous from 3){L) under the W4-topology onto S under the
L2-topology. The inverse H - L~ι = JJ is continuous from S under
the ίΛtopology onto 3)(L) under the W4-topology.

With L given as above equation (8) can be written as

Lu+Nu = 0,

where N is a nonlinear operator with domain 3)(N) D 3)(T) and range
contained in 5. If N satisfies condition (NΊ) and (N2), then a proof
similar to the proof of Theorem 1 yields the existence of a unique
solution ME3(L)of(8). Once again if Nu is sufficiently smooth, then
the solution u is a classical solution in the sense that u €Ξ C4(Ω) Π
C2(Ω), u satisfies ΔΔM + NU = 0 at each point of Ω, and u = ΔM = 0 on
dΩ.

REMARK 3. In this last problem we have actually factored L by
finding its square root T. This method of attack has been carried out
quite successfully in connection with other partial differential operators
in the recent works of Gustafson and Sather [6, 7],

REMARK 4. Clearly the techniques of this paper can be extended to
higher order elliptic problems in which the operator L admits a
factoring of the form 7T*. In particular, we cite the nonlinear
polyharmonic problem:

itfku +Nu=0 in Ω,

on

w h e r e / = 0 , 1 , •• -,2k - 1.
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