
PACIFIC JOURNAL OF MATHEMATICS
Vol. 60, No 2, 1975

COUNTABLY GENERATED MODULES OVER
COMMUTATIVE ARTINIAN RINGS

R. B. WARFIELD, JR.

A general method is given for constructing countably
generated modules with a number of bizarre properties over any
commutative Artinian ring which is not a principal ideal
ring. The main result shows that if R is a commutative local
Artinian ring which is not a principal ideal ring, and the residue
class field of R is k, then any pathological property that holds for
some k[t]-module also holds for a suitable l?-module. This
method gives easy and uniform proofs of many known results
(and some new ones) concerning modules over these rings. A
theorem of A. L. S Corner's, concerning countable endomor-
phism rings of torsion-free Abelian groups, is generalized to
algebras over suitable discrete valuation rings, and applied to
obtain further pathological results for modules over Artinian
rings.

If i? is a commutative Artinian principal ideal ring, then all
jR-modules are direct sums of cyclic modules. If R is a commutative
Artinian ring which is not a principal ideal ring, then it is well known
that R has indecomposable finitely generated modules requiring arbi-
trarily many generators. (J. P. Jans assures me that this result was
known for algebras in antiquity. For Artinian commutative rings, it is
implicit in Colby [4], and explicit (in more general contexts) in Griffith
[8] and Warfield [12].) Actually, if R is not a principal ideal ring, R has
indecomposable modules which are not finitely generated [8], and, even,
not countably generated, [13]. Recent work on noncommutative Artin-
ian rings suggests that an equally sharp distinction may exist between
rings of finite module type and other Artinian rings in general. (R has
finite module type if there are only a finite number of isomorphism
classes of finitely generated indecomposable modules.) We mention
Roiter's theorem [11] that a finite dimensional algebra which is not of
finite module type has indecomposable finitely generated modules
requiring arbitrarily large numbers of generators, and Ringel and
Tachikawa's theorem [10], that if R has finite module type then every
R~ module is a direct sum of finitely generated indecomposable modules.

There is clearly a temptation to hope that even if a ring is not of
finite module type, one still might be able to prove some general
theorems about the good behavior of its infinitely generated
modules. In the commutative case, we give a general method for
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disillusioning oneself of such hopes. As an application of the method,
we prove the following theorem:

THEOREM A. Let Rbe a commutative Artinian ring which is not a
principal ideal ring. Then

(i) R has a countably generated indecomposable module which
has a monic endomorphism which is not epic.

(ii) R has a countably generated indecomposable module which
has an epic endomorphism which is not monic,

(iii) R has 2*° nonisomorphic indecomposable countably gener-
ated modules,

(iv) R has a set of three countably generated indecomposable
modules, A, B, C, such that B and C are not isomorphic and such that
A 0 B = A φ C (i.e. the Krull-Schmidt and cancellation properties
fail).

(v) R has a countably generated module with no indecomposable
summands.

(vi) For any cardinal n, R has a module which is not a summand
of a direct sum of modules which can be generated by n elements.

We recall that any commutative Artinian ring is a direct sum of
local rings, so it is enough to prove our results for a local Artinian
commutative ring which is not a principal ideal ring. If R is such a
ring, and k is its residue class field, we will show that properties such as
the above hold for modules over R if they hold for modules over
k[t]. Over the ring k[t] of polynomials over a field k, examples of
modules satisfying (i), (ii), (iii) and (vi) are quite elementary. This will
give easy proofs of (i), (ii), (iii), (vi), and of some other results which are
weaker than (iv) and (v). This also gives essentially trivial proofs of
the existence of finitely generated indecomposable R- modules requiring
arbitrarily many generators, indecomposable I?-modules which are
countably, but not finitely, generated, and indecomposable I?-modules
requiring an uncountable number of generators. (There last results
were previously known, and are in the above references, (vi) was
proved in [13].)

The results (iv), and (v) are more difficult, and require an extension
of methods of A.L.S. Corner's, first used to prove similar results for
Abelian groups. A somewhat different adaptation of Corner's methods
is used by Brenner in [3], to prove these same results for a large class of
rings, including many noncommutative rings, but not including all
commutative Artinian artinian rings which are not principal ideal
rings. In particular, Brenner's results in [2], on group rings, omit the
group (Z/2Z)0(Z/2Z), which is not in any way excluded by our
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methods (i.e. if k is a field of characteristic 2, k [(Z/2Z)φ(Z/2Z)] is a
ring for which our results hold.)

There are a number of other pathological results known for Abelian
groups that one might expect to generalize to modules over the rings
k[t], and, therefore, (by our results) to modules over commutative
Artinian rings which are not principal ideal rings. We refer to Fuchs [7,
§§88-91], and the references there, for some such results, some of
which have recently been extended to large cardinals by Shelah (not yet
published). The proofs of such pathological results tend to depend on
various arithmetic properties of the ring of integers, and, hence, tend
not to generalize immediately to the rings k[t]. It is probably true,
however, that with some ingenuity, most of these results can be
extended, if one happens to wish to do so.

1. Translatable modules over an Artinian ring. We
recall (e.g. from [13, Lemma 1]) that if R is a commutative Artinian ring
which is not a principal ideal ring, then R contains an ideal / such that
RII is a local ring with maximal ideal m, such that m2 = 0 and m has
Rim —dimension 2. We may assume, therefore, that R is originally a
ring of this sort, and that m is generated by the two elements a and
b. An example of such a ring is/c [JC, y]l(x2,xy, y2). We let k =R/m.

If Λί is any R- module, multiplication by a and b respectively
induce k- linear transformations a and β, from M/mM to mM. We will
say that M is a-translatable if a is an isomorphism of M/mM onto mM.

If M is a-translatable, we define a translation (linear transforma-
tion) of MlmM as follows: if x E M/mM, there is a unique y E M/mM
such that a(y) = β(x). Let tx = y. This defines a linear transforma-
tion of MlmM into itself, and gives M/mM a natural fc[f]-module
structure.

We note that if M and N are a- translatable R- modules, and
f:M->N is a homomorphism, then / induces a k[t]-module
homomorphism MlmM-^N/mN. (f(M), however, need not be an
a- translatable submodule of N.) We have therefore defined a functor
from the category of a- translatable R- modules (a full subcategory of
the category of all I?-modules) to the category of k[t]-modules.

THEOREM B. Let Φ be the functor associating to each a-
translatable module M, the k[t}-module MlmM. Then for any k[t]
module N, there is an a-translatable R-module M such that Φ(M) =
N. Further, if A and B are k[t]-modules, and f: A-*B a homomor-
phism, and if M and N are a-translatable R-modules such that Φ(M) =
A, Φ(N) = B, then there is an R-homomorphism g: M-+N such that

= /• Iff is monic, so is g, and if f is epic, so is g. If Φ(M) = A,
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then any direct sum decomposition of M gives rise to a decomposition of
A, and any decomposition of A arises from a decomposition of M.

This theorem is proved by a series of lemmas. We first write down
an example of an a- translatable module. Let M be the module defined
by taking elements JC,(1 ̂  i" <°o) as generators, and imposing the rela-
tions bXi = axi+ι(ί ^i <oo). M is clearly a-translatable, and Φ(M) =
k[t] (regarded as a module over itself). Taking sums of copies of this
M, we see that any free k [t]- module is a value of the functor Φ. To go
further, we naturally consider a -translatable submodules of a-
translatable modules.

LEMMA 1. If M is a-translatable, and K a submodule, then K is
a-translatable if and only if for every x E M such that ax EK,x E mM +
K. In this case, aK = K Π mM, K/mK is a k[t]-submodule of M/mM,
and M/K is a-translatable.

Proof. If K is a-translatable then mK = aK. Also, if y E K and
ay = 0, then y E mK. Hence, mK = aK = K Π mM. Also, if x E M,
and ax E K, then ax E aK, whence x E K + mM. To show the con-
verse, suppose that K is a submodule of M with the property that if
x EM and ax E K, then x E mM + K. If z E K Π mM, z = ax for
some x EM, so for some x' E mM, x -x' E K. Clearly, a(x -x') =
ax, so z E aK. This shows that K Π mM = aK. The map
a: K/mK-^mK is therefore onto, and it is also one-to-one, since
JC E K, x £ mK implies x 0. mM (since K Π mM = aK), so ax ̂  0.

It is clear that if K is an a- translatable submodule of M, then
K/mK can be regarded as a k[t]-submodule of M/mM, so all that
remains is to show that M/K is also a- translatable.

If x E M/K, αx = 0, and x = y + K, then ay E K, so y E mM + K,
which implies that x Em (M/K). To show that M/K is a- translatable,
therefore, we need only show that m(M/K) = a(M/K), which follows
from the fact that m(M/K) = (mM + K)/K = (aM + K)/K.

LEMMA 2. // M is a-translatable, and L a k[t]-submodule of
M/mM, then there is an a-translatable submodule K of M such that
K/mK = L.

Proof. Choose a set X in M such that the natural map
φ: M —»M/mM takes X bijectively onto a basis for M/mM as a
A:-vector space, and such that φ(X) Π L is a basis for L. Let K be the
submodule of M generated by those xEX such that φ(x)E
L. Clearly K/(K Π mM) = L. Suppose x e M and αx E K. It is
clear by construction that mK = K Π mM, so ax = ay + bz, for suitable
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y and z in K. If we choose w such that aw = bz (w E M) then
t(z +mM) — w -f mM, and, since L is a fc[ί]-submodule of M/mM,
there is a w>ΈK and a w'ΈmM such that w = w' + w". Hence
bz = aw = aw' E aK, so αx = α(y -f wf). Since M is a-translatable,
this means x - y - wf E mM, so x E K 4- mM as required.

LEMMA 3. If M is a-translatable, and M/mM = 0 / E J A ,

decomposition is a k[t]-module decomposition, then M = 0 , e Λ
ίfte JBi αr̂  a-translatable submodules, and (Bt + mM)lmM = A /or α//
iEί.

Proof. Choose a subset X of Af such that the natural map
φ: M —» M/mM takes X bijectively onto a basis of M/mM, with the
property that φ(X) Γϊ A is a basis for A (as a fc-vector-space) for all
i E /. Let Bi be the JR- submodule of M generated by those x EX such
that φ(jc)EA. By the previous lemma, the modules JB, are a-
translatable. By construction, Bj Π ΣJV/JB, C mM, and, by the argument
of the previous lemma, Bj Π wM = αBy = α(A)> s o the sum of the B, is
a direct sum. If B = 0lG/Bi, then M = J5, since, by construction,
M = JB + mM, and mMC J5, since mM = mB + m2M = mB.

LEMMA 4. // M αnrf N are a-translatable R-modules and
f: MlmM-*NlmN a k[t]-module homomorphism, then there is an
R-homomorphism g: M -»JV SMC/I f/iaί g induces the map /. Further, if
fis a monomorphism, then any such g is a monomorphism, and iffis an
epimorphism, then any such g is an epimorphism. In particular, iff is
an isomorphism, so is g.

Proof. Choose subsets X and Y of M and N such that if
φ: M/mM and ψ: N-*N/mN are the natural maps, then φ and ψ take
X and Y bijectively onto k- bases of MjmM and N/mM, φ(X)Γ)
Ker(/) spans Ker(/) over k, and fφ(X)Q ψ(Y). If xEX, define

= y, where y E Y and y is chosen so that ψ(y) = fφ(x)

We would like to extend g to M as a module homomorphism
(which can be done in at most one way, since X generates M over
R). To show this is possible, we need to show that if {x,: i = 1, , n}
are distinct elements of X, and y, = g(jc,), and there are elements η and
Si in R such that

rxxx +••• + /•„*„= s,*, + + S Λ ,

then, also

r,y, + + rπyπ = sιyι + + snyn.
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It suffices to consider the special case Γ,JC, + h rnxn = 0, with the x,
distinct, which clearly implies that η Em for all /. We write r, =
aui - bVi. The equation then can be written

We want this to imply that

Since ψ(yt) = fφ(xι), if x = υλxx + + ι>nχn, and z = H ^ + + unxn,
then the first equation says z = tx, and the second says f(z) =
tf(x). The first, therefore, implies the second, since / is a k[t]-
homomorphism.

Suppose, now, that / is a monomorphism. Since aM is essential in
M, it is enough to show that Ker(g) Π aM = 0. On aM, an easy
computation shows that g = afa~\ a composite of monomorphisms,
which proves the result. If / is an epimorphism, then N = g(M) + mN,
and mN Qg(M), since mN = mg(M) + m2N and m2 = θ.

These various lemmas prove Theorem B. In particular, we know
that for any free module F, there is an a- translatable module M such
that Φ(M) = F. By Lemma 2, if L is a submodule of F, there is an
a-translatable submodule K of M such that Φ(K) = L. In this case,
Lemma 1 implies that M/K is an α- translatable module, and Φ(M/K) =
F/L. Hence, every k[t]-module is of the form Φ(N). The remainder
of the theorem is contained in Lemmas 3 and 4.

2. Elementary applications of Theorem B. In this
section, we write down some completely elementary facts about mod-
ules over the ring fc[ί], and derive examples by using Theorem B. We
give elementary proofs of the following facts: If R is a commutative
Artinian ring which is not a principal ideal ring, then

(a) R has finitely generated indecomposable modules requiring
arbitrarily large numbers of generators,

(b) R has a countably generated indecomposable module which
has a monic epimorphism which is not epic,

(c) R has a countably generated indecomposable module which
has an epic endomorphism which is not monic,

(d) R has a set of 2* nonisomorphic indecomposable countably
generated modules,

(e) R has a countably generated module with two direct sum
decompositions which do not have isomorphic refinements,

(f) R has a countably generated module which is not a direct sum
of indecomposable modules,



COUNTABLY GENERATED MODULES 295

(g) For any cardinal n, R has a module requiring more than n
generators, all of whose direct sum decompositions are finite.

In particular, when this has been done, we will have proved parts
(i), (ii), and (iii) of Theorem A. Also, (g) easily implies (vi), since, by
the higher cardinal form of Kaplansky's lemma [9], a summand of a
direct sum of modules with n generators is again a direct sum of
modules with n generators, for any infinite cardinal n.

We first note that k[t] as a module over itself is an indecomposable
module of countably infinite k- dimension, which admits a monic
endomorphism which is not epic. This example proves (b). (We
notice that if Φ(M) = A, then the nunber of generators required for M is
the fc- dimension of A.) If Mn is an a- translatable R- module such that
Φ(Mn) = k[t]l(tn), Mn is an indecomposable jR-module requiring ex-
actly n generators. This proves (a).

The set N of k- rational functions in t of the form tnf, where
/ E k[t] and n is any integer, is a k[t]-submodule of the quotient field of
k[t]. N/k[t] is an indecomposable k[t]-modu\t with the descending
chain condition which admits an epic endomorphism which is not
monic. (This is the analogue over k[t] of the Abelian group Zφ0 0), [7,
vol. I, p. 15].) This proves (c).

Choose a countably infinite set C of inequivalent irreducible
nonconstant polynomials in k[t]. For every subset D of C, let M(D)
be the set of rational functions of the form glf, where g Ek[t] and / is
an element of k [t ] all of whose irreducible factors are in the set D. The
modules M(D) are all indecomposable torsion-free k[t]-modules of
rank one, and all countably generated. They are pairwise
nonisomorphic. (See [7, sections 85 and 86] for the Abelian group
analogue.) This proves (d).

An indecomposable k[t]~module is either torsion or torsion-free,
and the indecomposable torsion modules are either divisible or cyclic [7,
3.1 and 27.4]. Following Prϋfer, (or [7, I, p. 150]), we consider the
torsion module M given by generators and relations as follows: the
generators are xh / =0,1, ,π, , and the relations fXo^O, tnxn =
xo(n > 0). M is clearly not a direct sum of indecomposable modules,
which proves (f). In any decomposition of M, M = B@C, one of the
summands is a direct sum of cyclic modules while the other is
not. Using Ulm's theorem, it is easy to show (Baer, [1]) that M has two
direct sum decompositions which do not have isomorphic
refinements. This proves (e).

For any index set J, the k[t]-module ΠιG/fc[[f]] is a module all of
whose direct sum decompositions have only a finite number of sum-
mands, [13]. This proves (g).
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3. An adaptation of Corner's theorem. We prove the
following theorem:

THEOREM C. Let Rbea discrete valuation ring, R * its completion,
and suppose that JR* has uncountable transcendence degree over
R. Then if A is any countably generated R-algebra which is torsion-free
and reduced (no injective summands) as an R-module, there is a
countably generated torsion-free R-module M such that End (M) = A.

The proof is a straightforward application of the method used to
prove the corresponding result for Abelian groups in [5]. The details
appear later in this section. We first give the applications to modules
over commutative Artinian rings. To show that Theorem C is applic-
able, we need the following lemma.

LEMMA 5. Ifk is a field, the power series ring k[[t]] has transcen-
dence degree at least 2*° over k.

Proof. We first note that if ft is a prime field (ZIpZ or the field of
rational numbers), then k[[t]] has cardinality 2*°, while any countably
generated extension of k is countable, so the result is clear for such
fields. We now let K be an arbitrary field, and k a prime field in K, and
regard k[[t]] as a subring of JK"[[*]]. We claim that if pXi Gl) are
elements of k[[t]] which are algebraically independent over k, then, as
elements of K [[*]], they are algebraically independent over
K. Suppose, then, that there were elements pt{i = 1, , n) algebrai-
cally independent over k, and an equation Σrap

a = 0, where the index a
ranges over a finite set of lattice points (au * * ,flB), &i =0, and pa =
pϊ - - Pnn For every a, pa is a power series over k with coefficients
q(a,i), 0Ss/<α>, and the equation would say Σraq(a,i):=0 for all
i. We regard these equations as a set of equations in the variables ra,
with coefficients q(a, /). Our hypothesis says that these equations do
not have a simultaneous solution over the field k. An infinite set of
linear equations in m variables (m constant) has a solution if and only if
every finite subset has a solution, and a finite subset has a solution in K
if and only if it has a solution in k, so the insolubility of these equations
over k implies their insolubility over X. This implies that the elements
Pι(i = 1, ,n) remain algebraically independent over K, as desired.

To prove parts (iv) and (v) of Theorem A, it suffices to prove them
for modules over the ring k[t], (by Theorem B). For each of these
properties, it is possible to write down a property of a ring E such that if
End(M) = £, then M has the indicated property. In [5, pp. 708-9],
Corner constructs an algebra E over the ring of integers such that for
any nonzero idempotent a of E, there is a nonzero idempotent β of E,
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distinct from α, such that aβ = β. His construction is completely valid
over any commutative integral domain. In particular, we let R =
k[t\th the localization of k[t] at the prime ideal (ί), and let E be an
R- algebra constructed in this way. By Theorem C, there is a countably
generated R- module N with E as its endomorphism ring. If R is
countably generated as a k[t]-module (which is true if k is countable),
then N is already a module of our desired sort, and the proof of (v) is
completed by an application of Theorem B. If R is not countably
generated over k[t], we can construct a /c[ί]-submodule of N with the
desired properties. We note that from Corner's construction, E only
has a countable number of idempotents. We let Yλ be a countable
subset of N that generates N over R. Define Yπ+1 inductively to the set
of elements of N of the form ax, where x E Yn and a is an idempotent
of JB. Let Y be the ascending union of the sets Yn, and let M be the
ίc[ί]-submodule of N generated by Y. M is clearly countably gener-
ated over fc[ί], and, by construction, it has no indecomposable
summands. Applying Theorem B, we now obtain a proof Qf (v) in
complete generality.

The proof of (iv) involves a minor adaptation of a construction
given by Corner and Crawley in [6]. Again, by Theorem B, it is enough
to prove that the pathology can occur for modules over the ring
k[t]. We first let R = k[t\t) as before, and construct an algebra S over
R. Let S be the ring of matrices of the form

(fn d-S2)fn \
\f2] α + ( l - s 2 ) / 2 2 ;

where the fή are elements of the ring R[s], and α £ J ί . 5 is clearly a
countably generated algebra over R. This ring has idempotents a and
β such that a and β are equivalent, but 1 - a and 1-/3 are not
equivalent, and such that if M is an a R- module with S as endomor-
phism ring, then aM, βM, ( l - α ) M , and (l-β)M are all
indecomposable. The proof of these facts is contained in [6], though
there is a possibility of confusion arising from the fact that in that paper,
S is only a subring of the endomorphism of an Abelian p-group, and
there are a number of other things that the authors have to keep track of
in the course of their argument. Briefly, one defines

l-s2

0
0\

and a = θφ, β = φθ. Noting that θφθ = θ and φθφ = φ, we see that a
and β are equivalent idempotents. If 1 - a and 1 - β were equivalent,
then there would be matrices in 5, μ and v, such that μv = 1 - α,
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vμ = 1 - β, μvμ = μ, and vμv = p. Ignoring the statement about re-
ducing modulo p in [6], the last paragraph in [6] provides a proof of the
impossibility of the existence of μ and v. Hence, if M is an R- module
with S as its endormorphism ring, we have M = aM@{\-a)M-
βM 0 ( 1 - j8)M, with αM = βM, (1 - a)M^ (1 - |8)M. The summands
appearing here are all indecomposable, since 5 is a subring of a
two-by-two matrix ring over a field, so that there cannot be a set of three
orthogonal idempotents in S.

This establishes all that is needed (using Theorem B) to prove (iv),
except for the fact that if R is not countably generated over k[t], then
M will not be countably generated. In this case, as before, we
construct a countably generated /c[ί]-submodule of M which still has
the same pathology, using exactly the same technique as before (which
is easier in this case, since we do not need to consider all idempotents of
5, but only the idempotents 1, α, and β.)

We now prove Theorem C. Let R be a discrete valuation ring, R *
its completion, p a prime element, and we assume that the quotient field
of R * has uncountable transcendence degree over the quotient field of
R. We recall that if Q is the quotient field of R, then Q ®RR* is the
quotient field of JR*.

Let A be a countably generated, reduced, torsion-free R- algebra,
and let X be a maximal R-independent subset of A, such that I E
X. We must find a countably generated, torsion-free module M whose
endomorphism ring E(M) is isomorphic with A.

The p- adic completion A * of A is a torsion-free R *- module. We
regard A as an l?-submodule of A*, and choose a family f t(i E/) of
elements of A which is a maximal set of elements which are indepen-
dent over.l? *. For any JC E X, there are elements r(x), r(x, ί) (ί E /) of
R * such that

where r(x, ί) = 0 for all but a finite number of indices /. Multiplying by
a suitable unit of 1?*, we obtain

pkx =Σs(x,i)fi

where the elements S(JC, i) are determined uniquely up to a factor of a
power of p. Let S be the pure R- subalgebra of R * generated by the
elements s(x, i) (x EX,i E /). S is a countably generated JR-algebra,
from which it follows that the transcendence degree of I?* over S is
uncountable.

LEMMA 6. 7/ Σ/e/gyα, = 0, where gi ELR*, the elements g, are inde-
pendent over S, Uj E A, and J is a finite set, then the a} are all zero.
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Proof. For some fixed n, pna^ =Σr(x,j)x (x EX,r(x,j)ER).

We recall that there is a fixed k such that for all JC (a finite number) that
appear in the above equations,

Ux)i\ s(i,x)ES.

The equation becomes

Σgjr(x,j)s(i,x)fi = 0

(the summation being over /, x, and i —the Einstein convention). Since
the ft are independent over 1?*, we obtain

(summed over / and x.) Since the gs are independent over 5,

for each ί and /. Since

and A is torsion-free, we conclude that α, = 0, for all /.
We now return to the proof of the theorem. Choose elements

α(x), b(x) (x E X) of R * that are algebraically independent over 5, and
define elements e(x) (x EX) of A* by setting

Let M be the pure R-sutonodule of A* generated by A and e(x)A,
x EX. M is clearly countably generated, reduced, and torsion-free
over R.

Since A2 C A, it is clear that MA C M, so A operates on the right of
M. Since 1 E M, the map A -> End (M) obtained in this way is
one-to-one. To show that this map is an isomorphism, we must show
that every endomorphism of M coincides with right multiplication by
some element of A.

If θ is an endomorphism of M (acting on the right), then θ extends
to an R *- endomorphism θ * of A *, (since A* = M*). IfxEX, then
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Since 10, e(x)θ, and xθ are all in M, we can write

(1) pk(lθ) = Σ r,(y)y + Σ ' ifew)e(z)w
v ε^c w ε^v

(2) pke(x)θ = Σ r2(y)y + Σ Uz, w)e(z)w
ySX wtΞX

(3) pkxθ = Σ r>(y)y + Σ ti(z, w)e(z)W
y E X

where there are only a finite number of nonzero terms, and all of the /'s
and r's are elements of R.

Substituting all this in the previous equation, we obtain

Σ r2(y)y + Σ f2(z, w)e(z)w = a(JC) [Σ r,(y)y + Σ ί,(z,
(4)

+ b(x) [Σ r3(y)y + Σ f3(z,

(Here, and in all that follows, the element x is fixed, and the summation
is over the elements z and w of X. In every case, you sum over z or w
if and only if it appears twice in the given expression.) The elements 1,
α(x), bOO, a(x)b(z), etc. arc elements of R* independent over S. By
Lemma 6, the coefficients of each of these terms in the above equation
m ust be zero. Immediately we see that Σr2(y)y =0, and since the
elements y are independent over JR, we obtain

(5) r2(y) = 0, y G X

Looking at the coefficient of a(x)a(z) (for all z) we see that
Σ ί,(z, w)w =0, whence

(6) ί,(z,w) = 0, z(=X9w(ΞX.

Looking at the coefficient of b{x)a{z), z^Jt, we obtain

(7) ί3(z, w) = 0, ( z ^ JC, z G X, w E X).

From the coefficient of α(z), Z^JC, we obtain

(8) ί2(z, w) = 0, ( z ^ JC, z G X, w E X),
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and the coefficient of a(x) gives us

(9) r,(y) = i2(x,y),(yeX).

The equations (1), (2) and (3) now become (using (5)-(9)),

(1') pk(lθ) = Σrι(y)y

(2f) pke(x)θ=Σn(y)e(x)y

(3') pkxθ = Σr3(y)y + Σt3(x, w)e(x)w.

Now expand pke(x)θ, using the definition and (Γ) and (3'), to obtain

pke(x)θ = pk[a(x)(lθ) + b(x)(xθ)] = a(x)Σn(y)y +b(x)Σr3(y)y

+ b(x)a(x)Σt3(x, w)w + b(x)2Σt3(x, w)xw.

Setting this equal to (2'), and using Lemma 6 again, we obtain from the
coefficient of b(x)

(10) Σrι(y)xy=Σr3(y)y>

and from the coefficient of b(x)a(x)

(11) Σt3(x,w)w=0.

Substituting these in (3'), and comparing with (Γ), we obtain

(12) x(lθ) = xθ.

This shows that the endomorphism θ is given by right multiplication by
an element (Iθ) of A. Hence, A is exactly the endomorphism ring of
M, as required.

REFERENCES

1. R. Baer, The decomposition of enumerable, primary, Abelian groups into direct summands,
Quart. J. Math., 6 (1935), 217-221.

2. S. Brenner, Modular representations of p-groups, J. Algebra, 15 (1970), 89-102.

3 , Some modules with nearly prescribed endomorphism rings, J. Algebra, 23 (1972),

250-262.

4. R. R. Colby, On indecomposable modules over rings with minimum condition, Pacific J. Math.,
19 (1966), 23-33.

5. A. L. S. Corner, Every countable torsion-free ring is an endomorphism ring, Proc. London
Math. Soc, 13 (1963), 687-710.



302 R. B. WARFIELD, JR.

6. A. L. S. Corner and P. Crawley, An Abelian p-group without the isomorphic refinement
property, Bull. Amer. Math. Soc , 75 (1968), 743-745.
7. L. Fuchs, Infinite Abelian Groups, 2 vol., Academic Press, New York, 1970 and 1973.
8. P. Griffith, On the decomposition of modules and generalized left uniserial rings, Math. Ann.,
184 (1970), 300-308.
9. I. Kaplansky, Projective modules, Ann. Math., 68 (1958), 373-377.
10. C. M. Ringel and H Tachikawa, QF-3> rings, to appear in J. Reine Angew. Math.
11. A. V. Roiter, Unboundedness of the dimensions of indecomposable representations of algebras
having infinitely many indecomposable representations, Izvestija Akad. Nauk S.S.S.R. Ser. Math.,
32 (1968), 1275-1282.
12. R. B. Warfield, Jr., Decomposability of finitely presented modules, Proc. Amer. Math. Soc , 25
(1970), 167-172.
13. , Rings whose modules have nice decompositions, Math. Z. 125 (1972), 187-192.

Received May 30, 1974.

UNIVERSITY OF WASHINGTON




