
PACIFIC JOURNAL OF MATHEMATICS

Vol. 60, No 2, 1975

SPAN AND STABLY TRIVIAL BUNDLES

K. VARADARAJAN

E. Thomas [19] introduced the notion of span of a differenti-
able manifold (or of a vector bundle). The notion of span can
be extended in an obvious way to PL- microbundles, topological
microbundles and spherical fibrations. In the case of a vector
bundle or a microbundle the dimension of the fibre will be
referred to as its rank. A spherical fibration with fibre homoto-
pically equivalent to Sk] will be said to be of rank k. In this
paper we study stably trivial objects of rank k over a CW-com-
plex of dimension ^ k from each of the above collections. Then
we determine the span of such stably trivial objects over
CW-complexes of a "special type" yielding generalizations of the
Bredon-Kosinski, Thomas theorem on the span of a closed
differentiate π-manifold [3], [19]. Though originally PL-
microbundles were defined only over simplicial complexes, in
this paper by a PL- microbundle of rank k over a CW-complex
X we mean an element of the set [X, BPL(k)] of homotopy
classes of maps of X into BPL(k).

Throughout this paper X will denote a CW-complex and Xk will
denote the &-skeleton of X. We write ξ G Vect(X) {PL mic(X), Top-
mic(X) or Sph(X)} to denote that ξ is a vector bundle a PL-
microbundle, a topological microbundle or a spherical fibration over
X. We write ξk to denote that ξ is of rank k. We write R (X) for any
one of Vect(X), PL mic(X), Topmic(X) or Sph(X). The trivial object
of rank k in R(X) will be denoted by 6JU We write ξER+(X) to
denote that ξ is orientable. We write Ox,θχ,ex and kx respectively
for the trivial vector bundle, PL -microbundle, topological microbundle
and spherical fibration of rank k over X.

Section 2 is concerned with stably trivial elements ξk ER(X) when
dim X ^ k. In Section 3 we introduce the notion of a Gauss map for a
ξ ER(X). If ξk <ER(X) is stably trivial, dimX ^ k and R^ Topmic
we prove the existence of a Gauss map for ξ. If R = Topmic the same
result is true whenever k ̂  4. In Section 4 we prove the main result of
this paper (Theorem 4.3). An an immediate consequence of this
theorem the analogue of Bredon-Kosinski, Thomas theorem could be
derived in all the categories Diff, PL, Top or Poincare Complexes with
"obvious" exceptions.

1. The kernel of τrk(Bk)—* τrk(Bk+ι). We write Bk for any
one of BSO(k), BPL+(k), BΎop+(k) or BSH(k). For our later results
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we need information about the kernel of πk(Bk)-*k(Bk+ί). When
Bk^ BTop+(/c) the kernel of πk(Bk)-*πk(Bk+ί) is well-known. Using
the results of Kirby-Siebenmann [13] and Lashof-Rothenberg [16] we
get information about the kernel when Bk = 2?Top+(fc), for k/ 4. Let
Tsk,ts

k,τsk and λs* denote the tangent vector bundle, tangent PL-
microbundle, tangent microbundle and the tangent spherical fibration of
Sk. Let

Kk = kerπk(BSP(k))-*τrk(BSO(k)),

Ck = ker πk (BPL +(k)) -* πk (BPL \k + 1)),

Kk = ker πk(BTop+(k))^ πk(BΎop+(k + 1))

and

K"k = kerπk(BSH(k))-*πk(BSH(k + 1)).

It is well-known that the obvious map πk(BSO(k)-+ πk(BSH(k))
carries Kk isomorphically onto Kf

k and that

(1) Kk — Kf

k —

Z if k is even

O if k = 1,3 or 7

Z2if k is odd and ^ 1,3,7.

with Ts

k (respy λs

k) as generator.
According to a result of W. M. Hirsch the map

TΓfe (BSO (k)) -» TΓ/c (BPL +(fc)) carries Kk onto C*. A reference for this is
[7]. Since the composite map Kk -*Ck -»KJ is an isomorphism, it
follows that

(2) Kk — Ck and that ts

k generates Ck.

PROPOSITION 1.1. For k^A, K'k is cyclic and is generated by τs*.

(3) Moreover

Z if k is even and ^ 4

O ifk = 1,3 or 7

Z 2 if k is odd and 7* 1,3,7.

JV00/. Since the composite map Xfc -* Xί-^XΪ is an isomorph-
ism it follows that Kk -+ K'k is an injection for all fc.

Let k ^ 5. In the following commutative diagram where the
horizontal rows are exact and the vertical maps are the obvious ones,



onto i

ck

i
κk

i
—> iτk (BPL +(k)) —>

| onto

-^7rk(BTop+(k))-

DIAGRAM 1

1
τrk(BPL+(k +

1
*7rk(£Top+(fc

D)

+ D)

SPAN AND STABLY TRIVIAL BUNDLES 279

O -> K* -» ττk(BSO(k)) -». πk(BSO(k + 1))

o

o

the map πk (BPL +(k)) -> πk (B Top+(fc)) is onto and πk (BPL +(fc +
l))-> πk(BΎop+(k + 1)) for it ̂  5 by [13] or [16]. As already observed
Kk -» Ck is onto according to a result of M. W. Hirsch [7]. Standard
diagram chasing using Diagram 1 yields Kk ->Kf

k is onto for k ^ 5 .
For k ̂  3 it is known that SO(/c)—>Top+(fc) is a homotopy equival-

ence [15]. Hence for k g 2 we have Xfc — Xί. When k = 3 we have
O = τr2(5O(3)) - 7Γ3(B5O(3)) - τr3(J5Top+(3)). Hence K3 = O = KJ.
This completes the proof of 1.1.

2. Stably trivial elements £ e JR (X). Suppose dim X g
A: and ^ k + 1 e R (X) is stably trivial. Then for R φ Topmic it is known
that fk+1 —€j£J. This is actually a consequence of

(4) 7rf(JBfc+1,Bfc) = 0 for / g fc

whenever Bk = BSO(k), BPL+(k) or BSH(k). For B* = BSH(k), 4 is
due to I. M. James [10]. When Bk = BPL+(k) it is due to Haefliger and
Wall [7]. We write Bx to denote one of BSO, BPL\ J5Top+ or BSH.

LEMMA 2.1. Let dimX^k and £k+1ETopmic(X) be stably
trivial. Then ξk+ι =* ekχγ whenever

Proof. From Kirby-Siebenmann [13] or Lashof-Rothenberg [16]
we have τr,tBTop+(/ + 1), BTop+(/)) = 0 for i^l and 1^5. As an
immediate consequence of this and obstruction theory one gets
[X, JBToρ+(A: + 1)]-* [X, jBTop+] to be an isomorphism for k ̂  4.

Now let it g 2. Since TΓ, (BTop+, BPL +) - TΓ,_,(Top+, PL +) = 0 for
ιV4, we see that [X,BPL*]-*[X,BTop+] is an isomorphism. Also
SO(/c + l)-*PL+(fc + l) and PL +(k + l)-^Top+(fc + 1) are homotopy
equivalences for / c ^ 2 . Hence each of the maps [X, BSO(k +
l)]^[X,BPL + (ik + l)], [X,BPL+(fc + l ) ]^[X,BTop + ( i t + l)] is an
isomorphism. From 4 we see that [X, BPL +(fc + 1)] -»[X, JBPL +] is an
isomorphism. Now Diagram 2 below immediately gives [X, BTop+(fc +
1)]->[X, BTop+] an isomorphism.
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[X, BPL+(k + 1)] —*[X,BPL+]

— 1 — i

[X, BΎop+(k + 1)] —* [X, BTop+]

DIAGRAM 2

This completes the proof of Lemma 2.1.

PROPOSITION 2.2. Let X be a CW-complex of dimension ^ k where
k=3 or 7. Lei ξk e 1?+(JC) foe swc/t that ξk \Xk-χ - βJU*". Then ξ ^

whenever R ̂  Sph.

Proof. We have

(5) O = π3(BSO(3)) - π3(BPL +(3)) - 7r3(BTop+(3))

From results in Section 1 we see that ker τr7(J37) ~> 7Γ7(JB8) is zero. From
TTi{Bk+u Bk) = 0 for / S k and fc g 5 it now follows that π7(B7)-*π7(Bs)
and π7(Bs)-+π7(Boo) are isomorphisms. From Bott [2] ττ6(SO) =
0. From Hirsch and Mazur [8], [9] π7(BPL+, BSO) - Γ6 the group of
concordance classes of smooth structures on S6. It is known [12] that
Γ6 = 0. Combining these with the result τr7(BTop+,BPL+) = 0 of
Kirby-Siebenmann we get

(6) O = τr7(BSO (7)) - π7(BPL +(7)) - π7(B Top+(7))

Let μ: Xkι-*X denote the inclusion. If X = Xk~ιUiEJe
k we have a

cofibration μ: Xk~x-±X with cofibre V ί€JSί. Let c: X-* V ie/S? be
got by collapsing Xk~ι to a point. In the Puppe exact sequence

f V Sk

hBk]Z[X,Bk]£[Xk-l

9Bk]

we have μ*(ζk) - 0, since ξk\Xk ι is trivial. Hence 3 an jc[v ί€/5ί, BJ
such that c *(JC) = ξk. By 5 and 6, TΓ̂  (J3*) = 0 for k = 3 and 7, whenever
Bk^BSH(k). Hence x = 0, which in turn yields £* = 0 in [X, Bk].

REMARKS.

2.3. If F(k) denotes the subspace of SH(k + 1) consisting of base
point preserving maps it is known [10] that
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π3(BSH(3)) - τr2(5H(3)) - τr2(F(3)) - ττ5(S3) - Z2

and that

7τΊ{BSH{Ί)) - τr6(SH(7)) - τr6(F(7)) - ττ13(57) - Z2.

Let k = 3 or 7. We have a CW structure X on S* such that Xk~x = *
(base point). If ξk E Sρh(X) is represented by the nonzero element of
[X,BSH(k)]~πkι(SH(k))~Z2 then clearly ξk\Xk~x is trivial, but ξk

itself is not trivial.

2.4. Any £* G R+(X) is trivial whatever be the dimension of X.

PROPOSITION 2.5. Let ηkSR(X) be stably trivial and
k. Then

Proof. As commented already, this is well-known when
1? 7̂  Topmic. For R =Topmic and fc^3 this is an immediate conse-
quence of Lemma 2.1. Let now k = 3. Then η 3 |X 2 is stably
trivial. From Lemma 2.1 applied to η31X2 we get η31X3 ^ 6 JU*. NOW
proposition 2.2 yields η3^€RX. Hence η 0 e i , x —

3. Gauss maps.

DEFINITION 3.1. Let ξk e JR (X). A map f:X-*Sk will be called
a Gauss map for ξ if £ — f*(τRfS

k )inR (X), where τR,s* = T5*, ίs», τs

k or λ5*
according as R - Vect, PL mic, Topmic or Sph.

When £ E R (X) admits of a Gauss map then necessarily ξ is stably
trivial. The main result of this section is the following:

THEOREM 3.2. Let d imX^k and ξk GR(X) stably
trivial. There exists a Gauss map for ξ whatever bekifR^ Topmic and
for kέ 4 if R = Topmic.

Iα the proof of this theorem we will be making use of the following
lemma.

LEMMA 3.3. Let Y be a CW complex of dimension ^
k-\. Then [ΣY,Bk]^>[ΣY, Bk+ί] is onto whatever be k if
Bk^BTop+(k)y and for kέ 3,4 if Bk = BΎop+(k).

Proof. Let Y = Yk~2 U v^ek~\ i: Yk~2-+ Y, j : Bk-*Bk+x the in-
clusion maps and ft: Y—> Vv(ΞJS

k~ι got by collapsing Yk~2 to a
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point. Lemma 3.3 follows immediately by diagram chasing using the
following commutative diagram coming from Puppe exact sequences
where (Σ/ι)*, (Σi)* and all the /• are group homomorphisms.

] & [
vSJ J LvEJ

onto a I /* b i j* c j j* d j j*

\% v Sk-\Bk+l]™[XY9Bk+l]^[XYk-2)9Bk+l]F-*\v Sk'\BkJ

DIAGRAM 3

Here the maps j . marked by c and d are isomorphisms under the
conditions in Lemma 3.3 and the /• marked by a is onto.

Proof of Theorem 3.2. Let X = Xk~x U γeJe
k, μ:Xk~ι-^X the

inclusion and c:X—>V γ G /S
k the map collapsing Xk~x to a

point. Consider the following diagram where the horizontal rows are
part of Puppe exact sequences of the confibration μ.

[X{Xk~% Bk] -U [ v S\ Bk] X [X, B*] X [X^1, JBJ
Lye/ J

I /• I /• 1 /• I /•

V Sk, Bk + 1 l - ^ [X, Bk+1] X> [X*-1, Bk+1]
/ J

DIAGRAM 4

By Lemma 2.1 we have μ*(£*) = 0 in [Xkl,JBk] whenever
R ̂  Topmic and k -1 φ 3. By proposition 2.5, /•(£*) = 0 in
[X, JB*+,]. From μ*(^) = 0 we get an element u e[V γ G JS\B k] such
that c*(μ) = £ Then /*(μ) = x 6 [V γ G /S\ jBfc+1] satisfies c*(x) =
/•(£) = 0. Hence 3 b e [X(Xk l), Bk+i] such that JC" = 0 where xb is got
from x by the action of [^(X*"1), J3*+1] on [Vγ e /S

k,Bk + 1].
By Lemma 3.3, 3 α E [S(X*"!), Bfc] such that j*(a) = fc except when

R = Topmic and k = 3 or 4. Then the element μ' = μa E [Vγe/S\ Bk]
satisfies j (μ') = O and c*(μ') = £ Identifying [V γ e JS\B k] with the
direct product Π γ e J [Sk

9 Bk],μ' corresponds to an element (μ')γe/ where
μf

Ύekerj.: Ylk(Bk)-*nk(Bk+ι). Using 1, 2, 3 of §1 we see that μ'y =
dy τRjsk {for some dy E Z if k is even, dγ E Z2 if fc is odd}. Let
gγ: Sk -+Sk be a map of degree dγ and φ: Sk -*Bk a classifying map for
τR,s*. Then clearly the composite map
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V S k — ^ V S * — > S k J L » B k represents μ' = (μ'y)y(Ξj
γEJ yEJ

From c*(μ') = ξ it follows that f*(τR,s

k) — ξ where

To complete the proof of Theorem 3.2 we have still to consider the
case R = Topmic, k = 3. In this case ξ |X2 is stably trivial of rank 3
over a 2-dimensional complex. By Lemma 2.1, ξ \X2 = €χ*. By Prop-
osition 2.2, ξ^eχ. Since τs> — τs

3 we have f*(τsή — ξ. This completes
the proof of Theorem 3.2.

4. S p a n of a n y ξ €Ξ R (JHΓ). We now recall the definition of
span originally due to E. Thomas [19].

DEFINITION 4.1. Let ξ GΛ(X). The span of ξ is defined to be
the largest integer / with the property ξ — €R,X 0 η for some η ER(X).

In this section we will be interested in complexes of the form
X = L U ek where dim L ^ k - 1. It is easy to see using the exact
homology sequence of the pair (X, L) and the fact that Hk-X(L) is free
abelian that either Hk(X) = 0 or Hk(X) ^ Z. If we further assume that
Ext{Hk-λ(X),Z) = 0 it follows from the universal co-efficient theorem
that either Hk (X) = 0 or Hk (X) ^ Z. By Hopf's classification theorem
[ X , S k ] - H * ( X ) . When Hk(X) = 0 every m a p X ^ S * is homotopi-
cally trivial, when Hk(X) — Z the map[/]—»deg/ provides an
isomorphism of [X, Sk] with /. Let / ̂ k and 7r: Vfc+U+,—»S* denote
the map which carries any orthonormal (/ -I-1) frame (?,.., ΰι+ι) in Rk+ί to
the vector ϊ>ι+ί. We will be considering mainly complexes X = L U ek

with dim L ^ k — 1 and satisfying the following condition:

(**) Suppose 0:X—>S* is a map admitting of a lift
φ: X—» Vfe+U+1 (i.e. TΓ °<p = 0 ) and suppose deg θ =
1. Then / S σ*, where σ* = 2 c ( k ) + 8d(fc) - 1 with k + 1 =

I ^ 0 and fck odd.

DEFINITION 4.2. Let fc be an integer ^ 4 . A CW-complex X will
be referred to as a "special complex" of dimension k

(i) X = L U e* with dim L ^ fe - 1
(ii) Ext (H*_,(X), Z) = 0 and
(iii) condition (**) is valid whenever k is odd.

Observe that when Hk (X) = 0 condition (**) is emptily valid, since
there are no maps θ: X—»S k of degree 1 then.
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T H E O R E M 4.3.

(A) Let ξ2 e R+(X) with Xan arbitrary CW-complex. Then span
ξ = 0 or 2.

(B) Let k = 1,3 or 7 <md £* ER(X) stably trivial with dimX ^
/c. Then span ξ = fc.

(C) Lei /c ̂  4 and ^1, X a special complex of dimension k and
ξk ER(X) stably trivial. Then

(i) span ξ = σk or k whenever R = Vect
(ii) ifR = PL mic or Sph, span ξ = σkork whenever k^ 15
(iii) //i? = Topmic, span ξ — σkork whenever kj^ 4 and 15.

LEMMA 4.4. Let X be a CW-complex of dimension ^k,ξk a
vector bundle, a £R (X) the object in R (X) underlying ξ. Let I be any
integer ^(k- l)/2. Then a ^ β Φ * J U in R(X) if and only if ξ ^
ηΘOlcin Vect(X).

Proof. Immediate consequence of a classical result of I. M. James
[Proposition 1.2 in [10]] and obstruction theory.

LEMMA 4.5. The span of τRSk = σk.

For R = Vect this is a classical result of J. F. Adams [1]. For
R = Topmic this is Theorem 1.1 in [20]. For R = PL mic or Sph the
proof is exactly similar to that of Theorem 1.1 in [20].

LEMMA 4.6. Let I be any integer ^(k - l)/2, /: X-+Sk a Gauss
map forak ER(X) and dim X ^ k. Suppose a ^ β 0ei, x . Then 3 a
map φ: X-+ Vk+u+ι such that f = π°φ.

Proof. This is an immediate consequence of Lemma 4.4 applied to
the vector bundle ξk =/*(Γ s*).

LEMMA 4.7. Let X be a CW-complex of dimension k satisfying
conditions (i) and (ii) of Definition 4.2. Suppose k is odd, Hk(X)^0
and a Gauss map f: X-^Sk for ξk ER(X) has odd degree. Then any
map g: X-+Sk of degree 1 /s a Gauss map for ξ.

Proof. This is an immediate consequence of the fact that 2τ*,s

k = 0
in πk(Bk) whenever k is odd.

LEMMA 4.8. Let X be a CW-complex of dimension k^4 and
satisfying (i) and (ii) of Definition 4.2. Sup) ose k is even, a Gauss
mapf: X^>Sk for ξk ER(X) has deg/^0. Then span ξ = 0 = σk.
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Proof. Denote the span of ξ by σ(ξ). If σ(ξ) ^ 0 we can find a
ηk~ι ER(X) such that ξ^ηφ βJU Since 1 ̂  (ft - l)/2, by Lemma 4.6
3 a map φ:X-*Vk+ίa satisfying 7roφ=f Since /^(V^,^) — ^ it
follows that deg/ = 0, contradicting the assumption deg/y 0.

LEMMA 4.9. Let X be a CW-complex of dimension ft, satisfying
conditions (i) and (ii) of Definition 4.2. Suppose f: X-*Sk is a Gauss
map forξk &R(X). Then ξk — ej^ whenever one of the following holds
good.

(a) ft(X) = 0
(b) ft (X) ^ 0 (hence Hk (X) - Z) and deg / = 0
(c) Hk(X) ^ 0, k odd and deg/ is even.

Proof (a) and (b) are immediate consequences of Hopf's classifi-
cation theorem, (c) is immediate from 2τRtS

k = 0 in πk(Bk) whenever k
is odd.

Proof of Theorem 4.3. We write σ(ξ) for the span of ξ.
(A) If σ(ξ2) ^ 0 , f - τ ) φ elχ for some η ' E £+(X). By Remark

2.4, η > - €iχ. Hence ξ2 - β U Thus σ ( f ) = 2.
(B) Immediate consequence of Theorem 3.2 and the fact τR>s

k ~
€έ,sk for ft = 1,3,7.

(C) By Theorem 3.2,3 a Gauss map /: X -* 5" for ξ. lfHk (X) =
0, by Lemma 4.9 (a) we get σ(ξ) = ft. If f ί k (X)^ 0 and deg/ = 0, by
Lemma 4.9 (b) we get σ(£) = ft. If ft is odd and deg / is even by
Lemma 4.9 (c) we get σ(£) = ft. If ft ^ 4 is even and deg/^0, by
Lemma 4.8 we get σ(ξ) = 0 = σk.

Hence to complete the proof of (C) we have only to consider the
case ft § 5 odd and ^ 7 and deg / odd. The existence of a Gauss map
implies that σ(£) g σk. By Lemma 4.7, any map g: X -* Sk of deg 1 is
a Gauss map for ξ. If possible let σ(ξ) > σk. For R = Vect this means
that 3 a map φ: X-» Vk+u+ί satisfying τ τ ° φ = g for some l>σk,
contradicting the validity of condition (**). Now suppose
R -φ Vect. For ft g 5 odd, ft ̂  7 and 15 direct checking shows σk + 1 g
(fc-l)/2. If σ(f)>σ* then ξ^ηφe^x with / = α* + l. From
Lemma 4.6 we see that 3 ° φ : X - » Vfc+u+i such that τr°φ =g, again
contradicting (**).

5. Poincare complexes with vx = 0. For any Poincare
complex X let vxGJ(X) denote the spivak normal fibration of
X. From the results of C.T.C. Wall [21], it follows that any Poincare
complex X of formal dimension ft ^ 2 is of the homotopy type of a
CW-complex of dimension ft and that if k^3,X is homotopically
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equivalent t o L U ^ with dim L ^ k - 1. The methods employed in
[5], [6] allow one to define unstable tangent spherical fibration for
Poincare complexes of formal dimension φ 2.

LEMMA 5.1. Any connected Poincare complex X of formal dimen -
sion k ̂  4 with vx = 0 is of the homotopy type of a "special complex" of
dimension k (as given in Definition 4.2).

Proof. From Hk.λ(X) - H\X) - Uom(Hλ(X), Z) and finite gener-
ation of HX(X) we see that Hk^(X) is free abelian. Hence
Extίiϊk-ίίX), Z) = 0. As already commented X is of the homotopy
type of L U ek where dim L ^ k - 1. The Thorn space of the normal
fibration vk is reducible. Since vx = 0 it follows that the Thorn space of
the trivial vector bundle σk

x

+ί is reducible. Suppose k ̂  5 is odd. By
the Browder-Novikov theorem [4], [11] it now follows that 3 a closed
C00 manifold Mk of dimension k and a homotopy equivalence
/: Mk-+X such that /*(O$r+1) = Okux is the stable normal bundle of
M. This means M is a closed differentiable TΓ- manifold. Lemma 5.1
is now an immediate consequence of Lemma 3.2 in [3].

For any PL (respy topological) manifold M the PL (respy topologi-
cal) span of M is defined to be the span of the PL (respy topological)
tangent microbundle of M. For a Poincare complex X the spherical
span of X is defined to the span of the unstable tangent spherical
fibration of X. As an immediate consequence of Theorem 4.3 we get
all the following results at one stroke.

THEOREM 5.2. (1) Let Mk be a closed Diff, PL-or Top π-
manifold of dimension k, with kφ 15 in the case of a PL-manifold and
k^4 and 15 in the case of a topological manifold. Then the span
(respy PL- span or Top span) of M is either σk or k.

(2) If X is a Poincare complex of formal dimension k^2 and 15
with vx - 0 in J(X), then the spherical span of X = σk or k.
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