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SET APPROXIMATION BY LEMNISCATES AND THE

SPECTRUM OF AN OPERATOR ON AN

INTERPOLATION SPACE

JAMES D. STAFNEY

Let Bo, Bι be an interpolation pair of Banach spaces and Ts

a bounded linear operator on the corresponding interpolation
space [Bo, Bt]s, 0 ^ 5 ^ 1, such that the operators Ts all agree on
BOΠBX. In this paper we extend our previous work by giving a
general upper bound for the spectrum of Ts constructed from the
spectra of To and TΊ using a set interpolation formula which we
introduce in §1 for compact sets in the plane. In §3 we show
that this upper bound is essentially best possible. This requires
a theorem about approximating sets with lemniscates, which we
prove in §2. Finally, we show in §4 that under certain con-
ditions the operators Ts, O^ks ̂  1, all have the same spectrum.

1. Upper bound for spectrum. In this section we intro-
duce the notion of interpolating between two sets in the complex plane
(see 1.3) and then we obtain an upper bound for the spectrum of an
operator on an interpolation space by "interpolating its extreme spectra
(see 1.9)."

Basic situation 1.1. BO,BX are two Banach spaces continuously
embedded in a topological vector space V so that Bo D Bt is dense in
both Bo and Bx. The corresponding spaces [Bo, J5J,, 0 ^ s ^ 1, are the
spaces defined in [2, p. 114]. By [2, §9.3], B, = [J50, Bx]h y =
0,1. Ts, 0 ^ s ^ 1, is a bounded linear operator on [Bo, B^ and all the
operators Ts agree on Bo Π Bx.

General notation. For a normed linear space B, \\ \\B will denote
the norm of B. We will sometimes use || || to denote || ||B if no
confusion results. The space of bounded linear operators on a normed
linear space B with the operator norm will be denoted O(B). We will
call bounded linear operators, operators. If T is an operator, sρ(T) will
denote the spectrum of T and r(T) the spectral radius of T, the smallest
number r such that sρ(T)C{z:\z\^r}. If F is analytic on sp(T), then

F(T) will denote the operator (2τri)~Ί ( A J - Γ ) " 1 ^ where y is an
Jγ

envelope of sp(T) in the domain of F. If E is a subset of the complex
plane, R(E) will denote the rational functions with poles in the comple-
ment of E. The following is proved in [2].
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LEMMA 1.2. If Ts, O^s S 1, w as m 1.1

//JB0 ««^ Bi are as in 1.1 and 7} is an operator on Bh /=0,1, swcfi tfiaί To

and 71 agree on Bo Ω B,, fften ίΛerβ w an operator Ts on [Bo, Bi]s, O g ί g l ,
swc/i Λaί all the operators Ts agree on Bo Π Bx.

We next introduce the notion of interpolation sets Is (Eo, Ex) corres-
ponding to two given compact sets Eθ9 Ex in the plane. These interpola-
tion sets will be used to provide an upper bound for the spectrum of
operators Ts.

If F is a complex valued function and t is a positive real number, let
L(t,F) denote the set of elements x in the domain of F such that

DEFINITION 1.3. Let JB0, E1 be compact nonempty sets in the plane
such that EOCEX. For O g s ^ l we define the set IS(EO,EX) to be
Π L(r% F) where the intersection is taken over all pairs (r, F) such that:
(a) r is a real number > 1, (b) F is an analytic function on an open set in
the plane, (c) L(r, F) is a compact subset of the domain of F and (d) Ej is
a subset of the interior of L(rj, F), / = 0,1.

The following lemma is an immediate consequence of the preceding
definition.

LEMMA 1.4. Suppose that Eθ9 Eu Fo and Fx are compact subsets of
the plane and that EOCEU FOCFU E0CF0 and EXCFX. Then,

I,(Eo,E1)Cl,(Fo,F1) O g s S l .

For a complex number z and a positive real number t let D(z, t)
denote the set of complex numbers w such that | z — w | < t. Let D(z, t]
denote the closure of D(z, t). For a set A in a topological space int A
will denote the interior of A.

LEMMA 1.5. Let K be a compact subset ofD(0,1). To each e>0
and s, 0 < s < l , there corresponds a δ > 0 such that for each ζ in
KyD(ζ,δ]CD(0,l)and

Is(D(ζ,δ], D(09l])CK + D(0,e).

Proof For ζ injί, let λ̂  denote the anajytic function defined by
λζ(z) = (z - ζ)/(l - zζ) on the complement of {£"*}. Choose u such that
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1< u < 1l/ζ I for each ζ in K. Since K is compact in D(0, 1) it is clear
that

(1) corresponding to K, e, s there is an r > 1 such that if
z ) | ^ r ' , then | z - f | < c .

It is clear that we can choose δ so that D(ζ, δ] Cint L(l, (r/u)λζ) and
D(£S]CD(0, 1) for each f in K Let ζ be in K Let F(z) =
(r/u)λζ(z). From what we have observed and Definition 1.3 it follows
that

(2) Is(D(ζ,δ], D(0, 1]CL(r%F).

It follows from (1) that L(r% F)CK + D(0,e); and, this together with (2)
proves the lemma.

LEMMA 1.6. LetB0, Bλ and Ts, O^s S 1, be as in 1.1. Suppose that
E is a compact set in the plane such that sp(T0), sp(Ti)Cf? and for each

, (A-To)"1 and (A - Tj)"1 agree on B0(ΛBλ. Then sp(Γs)CE,
^ 5 ^ 1 ; and, if F is analytic on E, then the operators F(TS) all agree on

Proof. Fix an 5 in the interval [0, 1]. We will first show that

(3) sp(Γ s)C£.

If λ&E, then by the restrictions on E the operators (λ - To)"1 and
(λ - Ti)'1 agree on the space Bo Π Bu From 1.2 it follows that there is
an operator Q on Bs such that Q and (λ - To)"1 agree on Bo ΠBύ in
particular, Q(λ - Ts) and (λ - TS)Q are equal to the identity on B0Γ)
Bι. Since both Q and Ts are bounded on Bs, we see that Q is the
inverse of A - Ts; hence, λ£sp(T s). Our argument establishes (3).

We next observe that if λ k E, then the operators (λ - Ts)'\ 0 g s ^
1, and agree on Bo Π Bx. To see this we first note that since (A - To)"1

and {λ-Tx)~ι agree on J B 0 Π B I , these two operators leave BoΠBi
invariant. If y eB0Π Bu then y = (λ - T0)JC where x = (A - To)"1^
which is an element in Bo Π Bu Thus,

(A - T ^ y = (A - Ty(λ - T0)x = (A - T,yι(λ - Ts)x = x.

Since y was chosen arbitrarily in Bo Π Bx and x does not depend on 5, we
have shown that the operators (A - Ts), O g s ^ l , all agree on
BoΠBi. Consequently, the operators G(TS), O S s S l , all agree on
Bo Π Bx if G E R(E). Let Gn be a sequence of elements in R(E) such
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that Gn converges uniformly to F on some neighborhood of E. Then
Gn(Γ0) converges to F(T0) in O(B 0) and Gn{Tx) converges to F(TX) in
O(Bι). If x E Bo Π Bu then Gn(T0)x = Gn(Tλ)x for n = 1,2, . Since
Gπ(T0)jt converges to F(T0)x in B o and F(Ti)x in Bt and since B o and Bx

are continuously embedded in V, it follows that F(T0)x = F(TI)JC. This
completes the proof.

Comment. In view of Lemma 1.6 it is natural to ask whether the set
E in 1.6 can always be taken to be sρ(T0) U sp(Ti). We have not been
able to answer this question. The best that we have done is the content
of the next lemma.

LEMMA 1.7. Let BO,BUTO and Tλ be as in 1.1. Then the set
H = {λ: λ fέ sp(Γ0) U sp(TO and (λ - To)"1, (λ - TO"1 agree on Bo Π B J
contains the unbounded component of the complement of sp(T0) U sp(TΊ);
and, the set H is a union of components of the complement of sp(T0) U

Proof Suppose λ is in the unbounded component of the comple-
ment of E = sρ(T0)Usρ(Ti). There is a sequence pn of polynomials
which converges uniformly to (λ - z)" 1 for z in a neighborhood of E. It
follows that pn(T/) converges to (λ - 7})"1 in the operator norm of Bh

/ = 0,l. If x&BoΠBu then pn{T)x converges to (A - 7})"1* in
Bj. Therefore, pn(Tj)x converges to (λ - T)~ιx in the topology of V,
/ = 0,1. Since To and Tx agree on BoΠ Bu pn(T0)x = pn{Tx)x for each
n. Thus, (λ - To)"1* = (λ - Ti)"1*. If λ is a point in some bounded
component V of the complement of E such that (λ - To)"1 and (λ - Ti)'1

agree on BQPIBX and if A i is also in V, then there is a sequence of
polynomials pn(n = 1,2, •) such that pπ(l/(λ — z)) converges uni-
formly to l/(Ax-z) for z in some neighborhood of E. The same
reasoning as above shows that (λi-To)" 1 and (λi-TΊ)" 1 agree on
JB0 Π JBi. This completes the proof.

LEMMA 1.8. Let £ 0 , Bx and Γs, O^s ^ 1, be as in 1.1. Then

Proof. If e > 0, then there corresponds on n0 such that

€)- 7 = 0 , 1 ; n δ no.

Since the operators (Ts)
n, 0 ^ s g 1, all agree on Bo Π J3i, it follows from

1.2 that
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Since e was chosen arbitrarily, the conclusion of the lemma follows from
our observations and the fact that r(Γs) = lim||(Γs)

n||1/n.

THEOREM 1.9. Suppose that Bo, Bx and Ts, O^s ^ 1, are as in 1.1
and that sp(T0) Csp(Tj). Let E denote the complement of {λ: λ £ sρ(T0
and (λ - To)'\ (λ - TO"1 agree on Bo Π BJ. Then

sp(Ts)Cls(sp(T0),£).

Proo/. Suppose that the theorem is false; that is, suppose that there
is a λ in sp(Ts) which is not in I5(sρ(T0), E). In particular, there is a pair
(r, F) corresponding to the sets sp(T0) and E as in 1.3 such that
λ& L(r\ F). However, since E Cdomain of F and 1.6 implies that
A G E, we conclude that

(4)

Define the operators Ut = F{T), O S ί ^ l , in the usual manner of
spectral theory. Since λ G sρ(Ts) it follows from the spectral mapping
theorem that

(5) F(λ)esp(l/.).

From 1.6 it follows that the operators Uh 0 S t g 1, all agree on Bo Π Bx;
consequently, we conclude from 1.8 that

(6) r{U.)£r(UQy-r(ViY.

By the choice of F, sρ(7])C{z: \F(z)\ ^ r'}, / = 0,1. From this and the
spectral mapping theorem we obtain

(7) sp(ί/,)C{z: |z |Sr'}, ; = 0 , l .

If we combine (5) thru (7) we get | F(λ) | ̂  rs, which contradicts (4). This
completes the proof.

2. Set approximation by lemniscates. The main purpose
of this section is the proof of the approximation theorem, Theorem 2.6.

By a simple set we mean a compact set with dense interior and with a
boundary consisting of a finite number of disjoint simple closed curves
which are also regular analytic curves (see [1, p. 226]). For notation we
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use dE and int E to denote the boundary and the interior, respectively,
of a set E in the plane.

REMARK 2.1. By a harmonic triple in this paper we mean what is
defined in [4, 5.1] except that we do not require that the interior of Ex be
connected. The main result about harmonic triples that we will need is
[4,5.3]; and this result is still valid because it can be applied to the closure
of each component of the interior of Eλ.

LEMMA 2.2. Let Eo and Ex be compact subsets of the plane such that
EOCEX and each component of the complement of Eo intersects the
complement of Ex. To each e > 0 there corresponds a harmonic triple
(Do, Du ω) such that: (a) D o and Dx are simple sets and (b) Ef Cint D} C
£ ; + D ( 0 , e ) , / = 0,l.

In order to prove this lemma we will use the following topological
lemma.

LEMMA 2.3. Let Eo and E1 be sets which satisfy the conditions of
Lemma 2.2. To each e > 0 there corresponds a pair of sets Do, Dx which
satisfy (a) and (b) of Lemma 2.2, D0Cint Dx and each component of the
complement of Do intersects the complement of Du

Given sets Eo, Ex as in Lemma 2.1 let Do, Dλ be the sets correspond-
ing to 6 in Lemma 2.3. To complete the proof of Lemma 2.2 we need
only show that there is an ω such that (Do, Du ω) is a harmonic
triple. Let U be a component of the set int Dι\D0. The set U is a
subset of a component V of the complement of Do. If <?[/CD0, then
dUCdV; however, this would imply that U = V, since V is
connected. But, W U because V contains a point in the complement
of Dλ. Let JC be a point in dU that is not in Do. In particular,
x E V. Since U is a component of int Dι\D0, it follows that x is not in
int Di. Thus x E dDλ. The boundary of U is the union of two disjoint
subsets A and B where A C dD0 and B CdDu We have argued above
that B is nonempty; however, it is possible that A = 0 . If y is in A or
JB, then y must be contained in an arc that lies in A or B since U is a
component of int D^Do. It follows from the general theory on the
Dirichlet problem that there is a continuous function ω0 on the closure of
U which is identically 1 on B, identically 0 on A and harmonic on
U. We will now define ω on Dλ: Let ω be defined on the closure of each
component of int DADo in the same way that ω0 was defined on the
closure of U and define ω on Do to be identically 0. We claim that
(Do, Du ω) is harmonic triple (see 2.1); in fact, this is clear except,
possibly for (iii) of [4, 5.1]. Suppose x E Dι\D0. If x E dDu then
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ω(jc) = 1. Since each component of int Dχ\D0 has a boundary point in
dDλ (We showed this above.) It follows from the minimum principle
that ω does not assume the value 0 on int DX\DO. These observations
verify that condition (iii) of [4, 5.1] is met.

LEMMA 2.4. Suppose that (Do, Du ω) is a harmonic triple and that
Do, Dλ are simple sets. Then to each e, η > 0, there corresponds an f in
R (DO and a positive real number b such that

| ω ( z ) - M o g | / ( z ) | | < e , if ω(z)*V.

Proof. Because of Runge's theorem it clearly suffices to prove
Lemma 2.4 for the case where Dx is a connected simple set, so we will
assume that Dx is a connected simple set. Let ωn, n = 1,2, , be the
function defined on the domain of ω as follows: ωn(z) = 1/n if ω(z) g 1/n
and ωn(z) = ω(z) if ω(z)> 1/n. Locally, each ωn is either a harmonic
function or the maximum of two harmonic functions. Thus, each ωn is
subharmonic; and, since the sequence ωn decreases pointwise to α>, we
see that ω is also subharmonic. Let U denote the interior of Eu Since
ω is subharmonic on the domain [/, the Riesz theorem [5, p. 48] implies
that

(1) ω ( z ) = u ( z ) + [\og\z-a\dμ{a\ zEU

where u is harmonic on U and μ is a positive Borel measure, supported
on Do. One can easily show that there is a positive integer n and a finite
number of points a, in Do such that

(2) If log|z-αμμ(α)-n-'Σlog|z-α/|
Do /

We will now establish the following.

< 6, for

2.5. There is a continuous function uλ on Dι such that: ux is
harmonic on (7, | u(z)- ux{z)\ < e for z in D1 and all the periods of the
harmonic conjugate of uλ are rational multiples of 2π.

We may assume that the boundary of Dx has at least two
components. Let γn+1 denote the boundary component of D1 which also
forms the boundary of the unbounded component of the complement of
Di and let γu - - , yn denote the other boundary components of Du Let
ω; denote the harmonic measure of γh j = 1, , n, with respect to the
region U [1, p. 245]. Let aKj denote the period of the harmonic
conjugate of ωι corresponding to the curve γk (see [1, p. 162]). We
define ux by:
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w1 = w+X€ /ω/ (j = 1,2, - ,n)

for an appropriate choice of the numbers e;. Since the matrix (akJ),
0 ̂  /c, 7'^ rc, is a nonsingular matrix [1, p. 246] and since the period of the
harmonic conjugate of uλ corresponding to the curve yk is pk +Σy€/αjy,
where pk is the period of the harmonic conjugate of u corresponding to
γk, it follows that we can choose the numbers e, in such a way that
- β <βj <e for each / and the numbers pk + Σ ; e^,, fe = 1, , n, are all
rational multiples of 2 .̂ The conclusion of (2.5) follows from the above
remarks and the maximum principle.

We now return to the proof of Lemma 2.4. Since the boundary
curves of Dx are analytic curves and ω is constant on each component of
the boundary of D1 it follows from the reflection principle that ω has an
extension to a function which is harmonic on a neighborhood of
£>!. Since the integral in (1) is clearly harmonic on a neighborhood of
the boundary of Du it follows that u has an extension which is harmonic
on a neighborhood of Dt. Consequently, ux also has an extension which
is harmonic on a neighborhood of Όx. By 2.5 we can choose an integer
m such that the periods of the harmonic conjugate h of mux are all
multiples of 2n. Let g = emUl+ih. From what we have noted above we
conclude that g has an extension which is analytic on a neighborhood of
Dτ. Since g has no zeros in Dx we can use Runge's theorem to choose
an element gx in R{DX) such that

(3) \m-*log\g1(z)\-u1(z)\<e, zeDt.

Let p(z) = Πj (z - cij) where the α7 are the numbers that appear in
(2). From (1), (2), 2.5, and (3) we obtain

\ω(z)-(mnyιlog\p(zrgl(zy\\<3e, ω(z)^η.

This completes the proof of Lemma 2.4.

THEOREM 2.6. Suppose that Eo, Ex are two compact sets in the plane,
that Eo C EX and that each component of the complement of Eo intersects
the complement of Eu To each ex > 0 there corresponds an F in l?(£i)
and an r > 1 such that

E} Cint L{r\ F)CEi+Dψ, €ι), j =0,1 .

Proof. First choose a harmonic triple (Do, Du ω) corresponding to
€ι as in Lemma 2.2. In particular,

(4) D y C ^ + D ( 0 , C l ) , y = 0 , l .
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Choose e, η > 0 so that

(6) e + 7/ < 1 - € and

(7) ExCintfz: ω(z)S

Corresponding to e and η we choose b and / as in Lemma 2.4. For
convenience, let h = b log | / | . Let H0 = {z:/i(z)§e-fη}. Since /ι is
subharmonic on {z: ω(z)< η}and h ^ 6 + η on the set {z: ω(z)= η}, it
follows that h g e + η on {z: ω (z) g η}. In particular, Do C Ho. Thus,

Since Λ is superharmonic on the complement of Dλ and h ^ 1 - e on
{z: ω(z)= 1}, we have

(9) fι(z)gl-e, z^Dt.

Suppose z E /ί0, so h(z)^€ + η. Since β + η < 1
least. Thus either ω(z)^= η or ω(z)^2β 4- η. Consequently, auu. v̂ y
we obtain

(10) Ho C £0+0(0,60.

Let Hι = {z: H(z)^ 1 - e}. We have already noted that if ω(z) g
η, then h ( z ) ^ e + η. From this and (6) it follows that h{z)^\-e if
ω ( z ) ^ l - 2 e . Thus

We conclude from (7) that

(11) E1CintH1.

From (9) and the definition of Hλ we have HλCDλ\ consequently,

(12) H ^ E x + D (0,60.

We define F and r as follows: F = e~ie+ri)/bf and r =

eκi-.H«+Ί»tf Evidently, r > l , FGRiEJ and H^Lir^F) for / =
0,1. The conclusion of the theorem now follows from (8), (10), (11), and
(12).
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3. The upper bound is best possible. The purpose of this
section is to establish Theorem 3.1. This theorem gives a class of
operators for which the upper bound given in Theorem 1.9 is attained;
therefore, it shows, in particular, that an upper bound for sp(Ts) which
depends only on sp(T0) and sp(7i) can be no better than the one given in
Theorem 1.9 provided that sρ(Γ0) and sρ(Ti) satisfy the one further
condition imposed in Theorem 3.1.

If E is a compact set in the plane, then CR(E) will denote all
functions which are the uniform limit of sequences in R(E).

THEOREM 3.1. Suppose that Eo, Ex are compact subsets of the plane,
EOCEU the complement of Ex meets each component of the complement of
Eo and that the zero function is the only function in CR (£Ί) which vanishes
identically on Eo, Let Bk = Ck(Ek), k = 0,1, V = Bo and identify Bo, Bx

with their natural embeddings in V. Let Ts be the bounded linear
operators on [Bo, B^, OS 5 S I , such that Tsf (z) = z/(z), zE JE0,
/ E Bx. Then

sp(T,) = J,(J50,J5i), O S s S l .

Proof. It is clear in this case that the set E of Theorem 1.9 is Ex and
that Eo = sp(Γo). Thus, sp(Γ5) C Is (Eo, Eλ).

Now suppose that z E IS(EO, Ex). Since the conclusion of the
theorem is obvious in case s = 0 or 1, we assume 0 < s < 1. To show
that z Esp(Ts) we first show that

(1) \x(z)\^\\x\\B., xGR(Eί).

Let e > 0. Since Bo Π B, = Bu it follows from [4, 2.5] that there is an /
in 9 = &(B0, Bι) (see [2] for definition of &) such that f(s) = x,

(2) | |χ | |* + € iM|/||,

and f(ξ) = Σc;(£)*/ where the sum is finite, each JC; E Bλ and each q is
continuous on O g R e ^ g l , vanishes at oo and is analytic on 0 < Re ξ <
1. It is clear from the definition of CuiE^ that each x] can be replaced
by a y} in R (Et) such that for the corresponding function ft(ξ) = Σ cj(ξ)yί

we have

(3) ll/(£)-/.(£)«*<€, O ^ R e ^ l .

From (3) and the fact that the norm of Bx dominates the norm of Bo

on Bx we have
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(4) ll/-/ill*<€.

Given a pair (r, F) which satisfies (a) through (c) of 1.3 let &γ denote
the space

^ ( C R ( L ( 1 , F ) ) , C R (L(r,F))).

From Theorem 2.6 and the fact that each of the functions yy (there are
only a finite number of functions yy) is in R{EX) it is clear that (r, F) can
be chosen so that fx E &x and

(5) (1 +eJll/JI, ^IIΛIU-

If we let £ fc in [4, 5.3] (see 2.1 above) be L(r\ F), fc = 0,1 and define ω
by: ω(z) = 0, z G Eo and ω(z) = log | F ( z ) | for z E E1\E0\ then we can
conclude from [4, 5.3] that

(6) 11/ilUs |/!(z,s)|.

From Theorem 2.6 it is clear that Eι D Is (Eθ9 Eλ). In particular, z E
JBi. From this and (3) we obtain

(7) | jc(z)- / 1(z ,s) |g | |x- / 1(s) |U<€.

Since e is arbitrary, (1) now follows by combining (2), (4), (5), (6) and (7).
Now suppose that x E R{EX) such that JC(Z)^O. From (1) we

obtain

\x(z)\ = \x(z)-(z - Ts)y(z)\ S ||x - (z - Ts)y ||β$, y E

Since Λ(£i) is dense in Bs, this last inequality shows that the range of
(z - Ts) is ^ J3S. Thus, x E sp(Ts), which completes the proof.

4. A criterion for constant spectra. This section is de-
voted to Theorem 4.1, which gives a criterion for sp(Ts) = sp(Γ0),

THEOREM 4.1. Suppose that Tf is a bounded linear operator on
B}, / = 0,1, that To and Tx agree on Bo Π Bλ and that to each e > 0 there
correspond subspaces Qhh , Q^ of Bh j = 0,1 with the following proper-
ties : (a) each space Qkj is Tj invariant (b) B, is the direct sum of the spaces
Qkj, / = 0 , 1 ; (c) O k , 0 n θ M is dense in both Qκo and QkΛ for all /•; (d)
sp(Γ0 | QM>)Csp(Γ!I Qkl) for each k (e) sp(Γ 0 | Qk,0) is contained inD{z,e)
for some z in sp(Γ0) depending on k, k = 1,2, , n. 77ιen
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sp(Γs) = sp(T0) for O S s < l .

Proof. Since sρ(αT5) = sp(Ts) for any complex number α, it clearly
suffices to prove the theorem assuming || To\\ S 1/2 and || Tl|| ̂  1/2. Fix 5
and let € > 0. Choose δ corresponding to e, s and K =
sρ(To)(sp(To)CD(0,1/2]) in Lemma 1.5. Let Qkj be the spaces corres-
ponding to δ as in the theorem. Let UKj be the restriction of the
operator 7} to the space QM. Let QKs denote the space [Qk& QkΛ]s,
where Q M and Qkί are regarded as embedded in V (see 1.1) in the
natural manner. If x E QkfiΠ Qku then T$JC = ΓOJC = Txx\ consequently,
TsxEQkβΠ Qkί. This shows that Qks is an invariant subspace of
Ts. Let UKs denote the restriction of Ts to Qks. For each k it is clear
from (d) that the hypotheses of Theorem 1.9 are satisfied in the case of
the operators Ukφ / =0,1 ; thus, we conclude that

sp([/M)C/s(sp(t/k,0),JBfc)

where Ek is the set corresponding to UKj as in Theorem 1.9. Because of
the choice of subspaces Qkyj we have sp(t/k>0)CD(zk, δ) for some zk E
sp(To). Since | |T k | |^l/2, sp(Tk)CD(0, 1]; this together with Theorem
1.7 implies that Ek CD(0, 1]. From these observations, Lemma 1.4,
Lemma 1.5 and the way in which δ was chosen it follows that

sp([Λ,s)Csp(To)

Since sρ(Ts) = U sρ(l/fc,s), k = 1,2, , n, it follows that

sp(Ts)Csp(Γ0)-fD(0,6).

The conclusion of the theorem follows from this and the fact that e
was chosen arbitrarily.

REMARK. A special case of Theorem 4.1 can be proved by slightly
extending a method used by Hirschman [3] for determining the spectrum
of certain multipliers. The special case occurs if, in addition to the
assumptions in Theorem 4.1, we assume that each operator Uk, which is
obtained by restricting To to QM, has the property that the norm of
βl - Uk is equal to its spectral radius for each complex number
β. Suppose Agzsp(To). Let d be the distance from A to sp(T0). Let
0< 5 < 1 and choose e so that €1"s(2||T1||/rf)

s ^ 1/2. Choose the sub-
spaces QkJ corresponding to β. Fix k and let S; be the operator
obtained by restricting 7} to QKj and let Ss be the corresponding
operators on the interpolation spaces. Let β E sp(S0). Then XI - Ss =
(A - β )I + βl - Ss = (λ - β)(/ - As) where, in general, A, =



SET APPROXIMATION BY LEMNISCATES 265

(β - λ)-\βl - St). Now l lAj.gl lAoΓlAjI '^l^. Thus, λI-Ss

has an inverse. Since k was arbitrary, we see that λ£-sp(Ts).
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