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ON REES LOCALITIES AND H,-LOCAL RINGS
L. J. RATLIFF, JR.

The main theorem gives a necessary and sufficient condition
for each Rees locality £ = R[th, u M. of a local ring (R, M)
with respect to a principal ideal bR in R to be either an H,-ring
(that is, for all prime ideals p in £ such that height p = i, depth
p = altitude £ — i) or a homogeneously H;-ring (same condition
holds for homogeneous p). Numerous corollaries follow con-
cerning the cases: R is complete; R is Henselian; and, £ is H,
for alli =0. A generalization to ideals generated by more than
one element is given, and we relate the results to two of the chain
conjectures on prime ideals.

1. Introduction. All rings in this paper are assumed to be
commutative rings with identity, and the undefined terminology is, in
general, the same as that in [5].

The results in this paper are related to problems concerning satu-
rated chains of prime ideals in a Noetherian ring (for example, the
Catenary Chain Conjecture and the H-Conjecture (see (3.22)-(3.23))).
These and other chain conjectures on prime ideals have remained
unsettled for quite some time. In the hope of shedding new light on
these conjectures, the concept of H;-local rings was introduced in [11],
and studied m [12], [6], [7], and [15], where a number of characterizations
of H;-local rings were given. These results are important, since the
condition of being an H;-local ring is more general than, for example, to
satisfy the first chain condition for prime ideals (f.c.c.), so results on
H;-local rings imply results on local rings which satisfy the f.c.c.

In the present paper, we use some of the results and characteriza-
tions of H;-local rings given in the above mentioned papers to determine
necessary and sufficient conditions on a local ring R for certain Rees
localities of R to be H;-rings (or, homogeneously H;). (See (2.1) and
(2.3) for the definitions, and see (2.10) for the theorem.) In studying
other properties of a local ring, Rees rings have, in the past, provided
either valuable auxiliary rings, or rings of interest in their own
right. (For example, we mention [16], [17], [18], [8], and [10, Section 3]
among many possible.) This is again true in this paper, as will now be
explained.

In Section 2 the main theorem is proved (2.10). The theorem is too
technical to state here, but, as already noted, it gives a necessary and
sufficient condition for certain Rees localities £ = Z%(R,bR)=
R[th, u)mw. of a local ring (R, M) to be H; (resp., homogeneously
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H;). The proof of (2.10) is quite long and deep, and it requires
considerable preliminary information (given in (2.1)-(2.9)). But, once
the theorem is proved, many corollaries (and closely related results)
follow, and these show some interesting things. For example, if R is
Henselian, then the rings &£ are H, if and only if they are homogeneously
H; (2.12); and, if R is complete, then the rings £ are H; if and only if they
are H,---, H,,, (a = altitude R) (2.13). Also, a number of other rings
related to the rings £ are easily shown to be H, (2.14).

In Section 3, a variation of (2.10) is first considered in (3.1)-(3.3).
Then, in (3.5)-(3.13), it is shown that from just knowing that at least one
of the rings & is H, considerable information about all the other such
rings can be proved. For example, if R is Henselian and one £ (R, bR)
is H, then every (R, cR)is H; (3.8). Next we consider the case that R
or one of the rings & satisfies the f.c.c. in (3.17)—(3.21). Finally, Section 3
is closed by asking two questions, showing that an affirmative answer to
either is equivalent to the fact that one of the chain conjectures
(previously studied in the literature) holds, and then showing that the
results in this paper lend a good deal of support for affirmative answers.

In Section 4, a generalization of (2.10.2) to ideals generated by more
than one element is given in (4.2), and then some corollaries of (4.2) are
proved. However, since the condition needed to generalize (2.10.2) is
quite strong, and since the main interest is in the principal ideal case (as is
partly indicated by (3.22)-(3.23)), Section 4 is kept fairly short.

Throughout the paper, a number of examples and/or remarks are
given to indicate that certain hypotheses are necessary, and a number of
open problems are mentioned.

Professor M. E. Pettit, Jr. has communicated to me that he has also
done some work on the subject of this paper.

2. Main theorem. In this section we prove the main theorem
concerning H;-rings and Rees rings of principal ideals. The proof is
quite lengthy and deep, and requires a number of preliminary definitions
and lemmas. We begin with the following definition.

DEeFINITION 2.1. Let B = (by,- -+, b, )R be an ideal in a local ring
(R, M), let t be an indeterminate, and let u =1/t. The Rees ring
R =R(R,B) of R with respect to B is defined to be the subring
R =R[th;," -, th,u] of R[t,u]. (In particular, R(R,(0))=R[u] .)
The Rees locality & = £(R, B) of R with respect to B is defined to be the
ring £=R, where M=(Mth, -, th,u)R (In particular,
2(R,(0)= R[ulow )

The known properties of # and of £ which are needed in this paper
are summarized in the following remark.
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REMARK 2.2. Let (R, M), B, ®, M, and £ be as in (2.1).

(2.2.1) The elements in & are finite sums 2", ct’, where ¢; € B’
(with the convention that B' = R, if i =0). Therefore & is a graded
Noetherian ring. Also, u isn’t a zero-divisor in ® and u'® N R = B/,
for all i =0 [16, p. 229].

(2.2.2) M is the (unique) maximal homogeneous (irrelevant) ideal
in R, so every homogeneous ideal in & is contained in . [18, Theorem
3.1 (step (ii))]. Also, altitude ® = altitude R + 1 = height # = altitude
£ [10, Remark 3.7].

(2.2.3) For an ideal I in R let I*=1IR[t, u]NR. Then I*is a
homogeneous ideal in # and R/I* = R(R/I,(B + I)/I)[17, Lemma 1.1],
hence £/1*¥ =%(R/I,(B+I)/I). Moreover, height I*=height I
and depth I+1=depth I'*=(by (2.2.2) and the isomorphism) height
M/T* [10, Remark 3.7]; and I* is prime (primary) if I is prime (primary)
[17, Theorem 1.5].

22.4) R/uR = F(R, B), where F(R, B) is the form ring of R with
respect to B [17, Theorem 2.1].

(2.2.5) Let P be a prime ideal in R.

(i) Assume uZ P. Then P=(P N R[u])R[t, u] N R, height P =
height PN R[u], and (P N R)* C P (see (2.2.3)). If P is homogeneous,
then P = (P N R)*, so height P =height PN R. If P isn’t homogene-
ous, then (P N R)* CP and height P =height PN R +1.

(i) Assume u€P. Then BCPNR and PNR[u]=
(PN R,u)R[u]. If P is homogeneous, then P C ((P N R)*, u)®.

(2.2.6) Let p be a prime ideal in R.

(i) Depth (p*, u)®R = height M/(p*, u)R = depth p.

(i) If BCp, then Rr-,y=R(R,, BR,), (p*, u)R is prime, and
height (p*, u)® = height p + 1.

Proof. (2.2.1)-(2.2.4) are proved in the cited references.

(2.2.5) (i) Since R[t, u] is a quotient ring of R[u] and of # and
uZ P, then P = (P N R[u])R[t, u] N R and height P = height PN R[u].
Also,(PNR)R[u]C PN R[u],so(PNRY*C(PNR[u])R(Lu]NR =
P. Now if P is homogeneous, then P C ((P N R)*, u)%, since if ct' € P
and i =0, then c = u'(ct')EP N R, so ct' €(P N R)*; and if i <0, then
ct' € uR. Therefore (PN R)*CPC((PNR)* u)R implies that P =
(PN R)* (since ugZ P), hence height P =height PN R (2.2.3). If P
isn’t homogeneous, then (PN R)*CP (since (PNR)*CP and
(PN R)* is homogeneous (2.2.3)), and height P = height PN R[u]=
height PN R +1 (since (P N R)R[u] CP N R[u] and both prime ideals
lie over PN R).

(2.2.5) (i) B=uRNRCPNR (since u €P), so

(PNR)R[k]C((PNR), u)R[u]C PN R[ul,
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hence, since all three of these prime ideals lie over PN R, PN Ru]=
(PN R, u)Rfu] [2, Theorem 37]. If P is homogeneous, then P C
(PN R)*, u)R as in the proof of (i).

(2.2.6) (i) By (2.2.3), height #/p* = depth p* =depth p +1, and
since R/p*=R(R/p, (B +p)/p) (2.2.3), height #M/p* = altitude R/p*
(2.2.2). Therefore depth (p*, u)R = altitude R/(p*, u)R = altitude
(RIp*((p*, u)R/p*)= altitude R /p* — 1= height M/p*—1=depthp;
and, likewise, height #/(p*, u)R = height M/p* — 1= depth p.

(2.2.6) (ii) The map sending (Z ¢it')/s into 2 (c./s)t' (c; € B' and
s ER, Zp) is readily seen to be an isomorphism from R, onto
% (R,, BR,). Therefore altitude R(R,, BR,)= height p+1= height
(p*,u)R, by (2.2.2), since (p*, u)Rx-, corresponds to the maximal
(irrelevant) homogeneous ideal in #(R,, BR,). Finally, /(p*, u)R =
R/p, hence (p*, u)R is prime, q.e.d.

We next define H;-rings and C;-rings and list some of their basic
properties.

DEerFNITION 2.3.  Let i be a non-negative integer. A ring R is said
to be an H;-ring (or, R is said to be H,) in case, for every height i prime
ideal p in R, depth p =altitude R —i (that is, height p +depth
p = altitude R). If R is a graded ring and P is a homogeneous prime
ideal in R, then it will be said that R, is homogeneously H; in case, for
every height i homogeneous prime ideal p in R such that p C P, height
P/p = height P —i (equivalently, depth pR, = altitude R, —i).

A number of properties of H;-local domains are given in [11] and
[12]. These have been generalized to H;-local domains and further
properties of H;-local domains are given in [6] and [7]. Most of these
latter results have, in turn, been generalized to local rings in [15]. The
reason these rings are of interest was mentioned in the introduction.

The properties of H;-local rings which are most frequently used in
the remainder of this paper are summarized in the following remark.

REMARK 2.4. Let (R, M) be a local ring, and let a = altitude R.

(2.4.1) Clearly, R is H,_, and H, for all i Z a; and R is H,, if R is
an integral domain.

(2.4.2) Fixj(0=j=i). ThenR is H; if and only if, for all height j
prime ideals p in R, R/p is H;_; and either depth p =a —j or depth
p=i-j[15, (2.4)].

(2.43) R is H, if and only if R(X) = R[X]urx; is H; [15, (2.7)].

(2.4.4) Let S be a local ring which contains and is integral over R
such that minimal prime ideals in S lie over minimal prime ideals in
R. Then R is H, if and only if S is H, [15, (2.17)].

In regard to (2.4.2), an example is given in [15, (2.5.1)] with R H,
height p =j <i, and altitude R/p =i —j.
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DEeFINITION 2.5. Let'i be a non-negative integer. A ring R is said
to be a C;-ring (or, R is said to be C) in case, R is H, H,.;, and, for all
height i prime ideals p in R and for all maximal ideals N in the integral
closure of R/p, height N = altitude R/p (= altitude R —i).

Properties of Ci-local domains were first given in [6] and in
[7]. These results were generalized to C;-local rings in [15], and some
additional properties of such rings are given there.

The properties of C -local rings which will be most frequently used
in this paper are summarized in the following remark.

REMARK 2.6. Let (R, M) be a local ring, and let a = altitude R.

(2.6.1) Clearly, R is C,-; and C, for all i = a.

(26.2) Fix j (0=j=1i). Then R is C if and only if, for each
height j prime ideal p in R, R/p is C._; and either depth p=a —j or
depth p =i —j [15, (3.3)].

(2.6.3) R is C if and only if R[X]mx) is Hi.y [15, (3.7)].

(2.6.4) R is G if and only if, for each height i prime ideal p in R,
D = (R/p)[X]mmx is H, and altitude D = altitude R —i +1 (= depth
p +1) (by (2.6.2) and (2.6.3)).

In regard to (2.6.2), an example is given in [15, (2.5.1)] with R C,
height p =j <i, and depth p =i —.

We now give two lemmas needed for the proof of (2.10). The
lemmas are of some interest in themselves, and should be useful in other
investigations. The first of these is similar to {10, Lemma 4.3}, but that
result doesn’t give the information that we need.

LEmmA 2.7. (cf. [10, Lemma 4.3].) Let p be a prime ideal in a
Noetherian ring R, and let b,, - - -, b, be elements in p such that (0): bR =
(0) and such that the b, are a subset of a system of parameters in R,. Then,
for each prime ideal P in R such that p C P, and foreachi =1,- -, k, (and
with A; = R[bi/bo, " - -, b,/b]), the residue classes modulo PA; of the b,/b,
are algebraically independent over R/P and PA,; is a prime ideal such that
depth PA; = depth P + i and height PA; = height P —i. Moreover, if the
b; are a subset of a system of parameters in Rp, then height PA; = height
P—i

Proof. Let ¢; be the image of b, in R, (j =0,---,k). Then, for
eachi =1, -+, k (and with G, = R,[c,/co, " * *, ¢i/ o)), pC, is a prime ideal
such that depth pC, = i, height pC; = height p — i, and the residue classes
modulo pC; of the ¢;/c, are algebraically independent over R,/pR, {10,
Lemma 4.3]. Let U(p)=R —(p U z,U---U z,), where the z, are the
maximal prime divisors of zero in R. Then pRy, is a maximal ideal
(since p contains the non-zero-divisor b,), and C; is a quotient ring of
B; = Ry,)[bi/bo, - * -, b./bo]. Therefore p* = pC; N B, is a prime ideal such
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that height p* = height p —i and depth p* =i (since, with K denoting
the quotient field of R/p, C/pC =K[X,, -, X.]=B;/p* (since
p*N Ryyy=pRy, Is maximal)). Now pB, Cp* and Bi/pB;=
K[y -+, y:], where y; is the residue class modulo pB; of b;/b,. But
since pB; C p*, Bi/p* is a homomorphic image of B:/pB; so i Z altitude
B:/pB; = altitude B;/p* =i, hence altitude B,/pB; =i, so the y, are
algebraically independent over K, hence B;/pB; = B;/p*, andso pB;, = p*
is prime. Therefore, since R C B; and the residue classes modulo pB; of
the b;/b, are algebraically independent over R/p, [10, Lemma 4.2] says
that, with A, = R[pi/b,, - - -, bi/bo}, pA; = pB; N A, is a prime ideal such
that depth pA; = depth p + i; and height pA; = height p — i, since B; is a
quotient ring of A, Therefore, if P is a prime ideal in R such that
p CP, then, since A,/pA=(R/p)[X,---,X;]] and PA/pA; =
(P/p)(Ai/pA;), the residue classes modulo PA; of the b;/b, are algebrai-
cally independent over R/P and PA; is a prime ideal such that depth
PA; =depth P+i. To see that height PA; =height P—i, let z be a
minimal prime ideal in A; such that z C PA, and height PA; = height
PA,/z. Let w=2zNR. Then, by the altitude inequality for PA;/z
over Pfw (19, (5), p. 326], height PA,/z + trd (A;/PA;)/(R/P) = height
P/w +trd (Ai/z)/(R/w), so height PA,+i=height P/w =height
P. The last statement follows as in the proof that height pA; = height
p—i, q.ed.

The following corollary to (2.7) gives somewhat more general
information than we need for (2.10). We give it in this form, since its
proof is essentially the same as the proof of the more specific result we
need.

COROLLARY 2.8. Let (R, M) be a local ring, and let b,,-- -, b, be
elements in M such that, with B = (b,,---,b,)R, height B=k. Let
R =R(R,B). Then, for each prime ideal P in R such that B C P,
P'= (P, u)R is a prime ideal such that height P’ = height P + 1 — k, depth
P'=depth P+k, and the residue classes modulo P' of the tb, are
algebraically independent over R/P. In particular, the minimal prime
divisors of uR are the ideals (p, u)R with p a minimal prime divisor of B.

Proof. Let P be a prime ideal in R such that BCP. Then
u, by, - -, b, are a subset of a system of parameters in R[u]s.). Therefore,
by (2.7) and since tb; = b,/u, P' = (P, u)?R is a prime ideal such that height
P'=height P+1—k and depth P'=depth P+k (since height
(P, u)R[u]=height P+1 and depth (P,u)R[u]=depth P), and the
residue classes modulo P’ of the th; are algebraically independent over
R/P. In particular, for each minimal prime divisor P of B, (P, u)?® is a
minimal prime divisor of u® ; and if Q is a minimal prime divisor of u®,
then B C Q N R, so there exists a minimal prime divisor q of B such that
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q C QO NR, and then (g, u)® C Q, so by what has already been shown,
Q =(g, )R, q.e.d.

In the proof of the following lemma we need to use a result of E. G.
Evans, Jr. concerning Zariski’s Main Theorem [1].

LEMMA 29. LetA = R|cy, -, c.] be a finitely generated ring over a
local ring (R, M) such that M =(M,c,,---,c,)A is a proper (hence
maximal) ideal. Let P be a prime ideal in A such that PC M, and
assume that PN R[¢]Z MR[c;] (i=1,---,n). Then A4/PA4= Sy
where S is the integral closure of R/(P N R) in A/P and N is a maximal
ideal in S.

Proof. Since p, =P N R[c]ZMR][c] (i =1,---, n), there exists a
polynomial f;(X)€ R[X] such that f,(c;) € p; and such that some coeffi-
cient r; of fi(X) is a unit in R (j>0, since p,C M NR[c]=
(M,c)R][c]). Let a,=c¢,+P &€ A/P. Then the a; are algebraic over
R/(P N R)=(say) D, so there exists a non-zero s; € D such that sa;
is integral over D, so if 0#Zm&M/(PNR), then U=
D[ms,ay, - -+, msa] is a local domain which is integral over D, U C
A/P, and U and A/P have the same quotient field. Therefore, since
the a; are roots of polynomials with coefficients in U such that some
coefficient is a unit in U, [19, Lemma, p. 19] says that, fori = 1,-- -, k and
for each maximal ideal Q in the integral closure U’ of U, a; or
1/a,€ U, Now A/P=Dlay,  ,a], so A/P=Ulay,  -,a&]C
U'la;,---,a] = (say) B. Hence, since B is integral over A/P, there
exists a maximal ideal Q' in B such that Q'N(A/P)=M/P. Now
N'= Q’'N U’ is maximal, since (#/P)N D is maximal and U’ is integral
over D. Thus, since, for i =1,:-,.k, a; or 1/a; € U}, it follows that
each a, € N'UY, so Uk = By D Au/PA4 = (say) L. Therefore Q' is
isolated over the maximal ideal M’ in U (that is, Q' is maximal and
minimal in the set of prime ideals in B which lie over M’), hence, since B
is integral over A/P and Q' was an arbitrary maximal ideal in B lying
over JM/P, M/P is isolated over M’ (by the Going-Up
Theorem). Therefore, by [1] L = Sy, where S is the integral closure of
D=R/(PNR)in A/P and N is a maximal ideal in S, g.e.d.

We are now able to prove the main theorem in this paper. Even
with the information we now have, its proof is quite lengthy.

It will be shown in (2.11.2) below that R is H, if and only if
Z(R, bR) is H,. For this reason, we restrict attention to the case i >0
in the theorem.

THEOREM 2.10. Let (R, M) be a local ring, let altitude R = a, and
let E={b& M; height bR =1}U{0}. Then the following statements
hold for i >0:
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(2.10.1) R is H., and H, if and only if, for all b € E, £(R, bR) is
homogeneously H,.
(2.10.2) R is G, if and only if, for all b € E, 4(R, bR) is H.

Proof. (2.10.1) Assume that R is H,, and H, let b€EE, let
R = R(R, bR), and let £ = #(R, bR). Let P be a height i homogene-
ous prime ideal in &, so P C #. Then to show that £ is homogeneously
H, it suffices to show that height /P =height M —i (=(2.2.2)
a+1—1i). For this, let p=PNR. We now consider the two cases:
u P; and, u € P.

If u P, then P = p* (2.2.5)(i), hence i = height P = height p (2.2.3),
so a — i = depth p (since R is H;), and so, by (2.2.3), height #/P = depth
P=depthp+1=a—-i+l.

If u€P, then bEp. If b =0, then P =(p,u)R[u], so i = height
P=height p+1 and M/P=(M,u)R[u]/(p,u)R[u]=M/p, hence
height /P =height M/p=a—i+1 (since R is H_;). Therefore
assume b# 0. Then since 0 # b € p N E, (2.8) says that p’' = (p, u)R is
prime, depth p’ = depth p + 1, and height p’ = height p. Also, p’'C P C
(2.2.5)(11) (p*, u)R, (p*,u)R is prime (2.2.6)(ii), and all three prime
ideals lie over (p, u)R[u], so either P = p' or P = (p*, u)® [2, Theorem
37]. If P=p’, then i=height P =height p'=height p, so depth
p=a—i (since R is H;), hence depth P =depth p’=depth p+1=
a —i+1, and depth p’'= height #M/p’ (since R/p’'=(R/p)[X] (2.8)). If
P=(p* u)R, then i=height P=(2.2.6)(ii) height p+1, so height
M/P =(2.2.6)(1)) depth p=a —i+1, since R is H_,.

Thus, in both cases, height #(/P = a —i + 1, so & is homogeneously
H.

For the converse, since 0€ E, D = R[u]u. is homogeneously
H,. Therefore, if p is a height i prime ideal in R, then p’ = pD is height
i, hence depth p =depth p’—1=a —i,so R is H. And, if q is a height
i — 1 prime ideal in R, then q' = (g, u)D is height i, so depth g = depth
q'=a+1—i,andso R is H_,.

(2.10.2) Assume that R is C_,, let b € E, let ® = R(R, bR), and
let £=%(R,bR). Let P be a height i prime ideal in £. Then, to
prove that £ is H, it must be shown that depth P = a + 1 — i, and for this
it may be assumed, by (2.10.1), that P'=PNR isn’t
homogeneous. Also, it may be assumed that b # 0, since if b = 0, then
&£ = R[u]mw is H; (2.6.3). We now consider the two cases: u € P; and,
uZ P.

If u € P, then p’ = P N R contains a minimal prime divisor q of u®
such that height P’/q=i—1 (since height P'/u® =i—1), and q =
(p, u)R, for some minimal prime divisor p of bR (2.8). Then R/q =
(R/p)[X] (2.8), and, by (2.6.2), R/p is C_, and either altitude R/p =
a—1or =i—2. Therefore £/q¥ = (R/p)[X])mpx is Hi-1 (2.6.3), and
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either altitude £/q¥ =a or =i—1. Now it may clearly be assumed
that i <a (2.4.1), so P'# M, and so altitude £/q<¥ = a (since height
P/q¥ =height P’/q =i—1). Therefore, since ¥£/q¥ is H,.,, depth
P =depth P/q¥ =a — i+ 1, as desired.

Therefore, assume uZ P. If p=P N R[u]C MR[u], then since
Rlu]mrpy is Hi (2:4.3), and since height p =i (2.2.5)(i), height MR
[u]/p =a —i. Therefore there exists a chain of prime ideals p =
poC- - Cpei = MR[u] in R[u] of length a—i, so P'=(2.2.5)(@)
pPR{Lu]NRC---CMR[t,u] N R CM, and so height #M/P'Za—i+1,
hence depth P =height #M/P'=a—i+1. Likewise, if PN R[th]C
MR{(1b], then height #/P'=a —i+1. Therefore, it may be assumed
that PN R([th]Z MR[tb] and PN R[u]Z MR[u]. Then, by (2.9),
Z|P = Sy, where S is the integral closure of D = R/(P N R)in ®/P’ and
N is a maximal ideal in S. Now height PN R =i —1(2.2.5) (i), so every
maximal ideal in the integral closure D' of D has height a —i +1 (by
hypothesis), hence, since S is integral over D, height N =
a—i+1. (For, let N’ be a maximal ideal in the integral closure of S
such that N'NS = N and height N’ = height N. Then, by [5, (10.14)]
height N’ ="height NN D’'=a —i+1.) Therefore depth P = altitude
Z/P =height N=a—i+1.

Hence in both cases, depth P=a —i+1, so £ is H.

For the converse, since 0 € E, R[u . is H; (by hypothesis), hence
R is G, (2.6.3), gq.e.d.

Before giving some corollaries to (2.10), we note that it will be shown
in (3.1) below that a strengthened form of the converses of (2.10.1) and
(2.10.2) holds (omitting the case b = 0).

Also, in (3.5) and its corollaries, it will be seen that if at least one
Z(R, bR) is known to be H,, then quite a lot can be said about the other
Z(R, cR).

We now make two brief remarks about (2.10) before giving some of
its corollaries.

REMARK 2.11. Let the notation be as in (2.10). Then the follow-
ing statements hold:

(2.11.1) (2.10) holds for i €E{a,a +1}.

(2.11.2) The following statements are equivalent: R is H,; there
exists b € E such that (R, bR) is H,; for all b € E, £(R, bR) is H,.

Proof. (2.11.1) follows from (2.4.1) and (2.6.1).

(2.11.2) Let b€ E. Then the minimal prime ideals in =
(R, bR) are the ideals z*<%, where z is a minimal prime ideal in R, by
(2.2.5)(i) and (2.2.3), and depth z*¥ =depth z+1 (2.2.3). (2.11.2)
follows from this, q.e.d.
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The first corollary to (2.10) shows that (2.10.1) and (2.10.2) are
equivalent for Henselian local rings.

COROLLARY 2.12. With the notation of (2.10), assume that R is
Henselian. Then the following statements are equivalent:

(2.12.1) R is H_, and H.

(2.122) Ris C_,.

(2.12.3) For all b€ E, £(R, bR) is homogeneously H..

(2.12.4) Forall b€ E, ¥(R,bR) is H.

Proof. If p is a prime ideal in R, then the integral closure of R/p is
quasi-local (since R/p is Henselian), hence (2.12.1) implies
(2.12.2). Therefore, since clearly (2.12.4) implies (2.12.3), all four state-
ments are equivalent by (2.10), g.e.d.

One reason (2.12) is of interest is that, to prove the Chain Conjec-
ture (that is, a Henselian local domain satisfies the f.c.c. (see (3.14) for the
definition)), it suffices to prove that every Henselian local domain is H,
[12, (2.4)].

Even more than (2.12) can be said when R is complete, as will now
be shown.

COROLLARY 2.13.  With the notation of (2.10), assume that R is
complete. Then R is H, if and only if, for all b€ E, £(R,bR) is
IIH-I, H+2, T Ha+1-

Proof. Assume that R is H; and let p be a height j prime ideal in R
with i <j=a. Then there exists a height i prime ideal q in R such that
q Cp and height p/q =j —i. Therefore, since R/q is a complete local
domain, R/q satisfies the f.c.c. (3.14), so height p/q +depth p/q =
altitude R/q; that is, depth p =depth q—j+i=a—j. Hence R is
H. Also, R is Henselian, so R is C,---,C, (2.12), hence every
Z(R,bR) with b € E is Hi,y, Hisy, -+ +, H,uy (2.10.2).

The converse follows from (2.10.2), q.e.d.

The next corollary shows that from knowing that certain Rees
localities are H,, a number of other rings can be shown to be H; (or, H,).

It should be mentioned that (2.14.4) is known [15, (3.14)]. Also, in
regard to (2.14.2), if B = (b, -+, b)R is an ideal in R, then the ring
R[th,,- - -, th] is called the restricted Rees ring of R with respect to B.

COROLLARY 2.14. With the notation of (2.10), assume that R is
C..i. Then the following statements hold, for all b € E:

(2.14.1) For all maximal ideals N in R = R(R,bR) such that
NNR =M, Ry is H; and altitude Ry = a + 1.
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(2.14.2) For all maximal ideals N in S = R[tb] such that NN R =
M, Sy is H; and altitude Sy = a + 1.

(2.14.3) For all maximal ideals N in ¥ = F(R,bR) such that
NN (R/bR)= M/bR, Fy is H,_, and either altitude ¥y = a or altitude
Fn=i—1.

(2.14.4)  For all non-zero-divisors ¢ € R and for all maximal ideals
N in A = R[b/c] such that NN R =M, Ay is H.., and either altitude
Ax = a or altitude Ay =i —1.

Proof. (2.14.1) By (2.10.2), it may be assumed that N# A, so either
u#N or th#&N. If uZN, then Ry=Rlulo, where Q=
NN R[u]. Then MR[u]CQ (since N# M*), so Q = (M, f)R[u], for
some monic polynomial f = f(u). Therefore f(u) is transcendental over
R, s0 D = R{f]mp= R[X]mxy, hence, by hypothesis and the isomorph-
ism (and (2.6.3)), D is H, and altitude D = a + 1. Further, R[u]j, is
integral over D (since R[u] is integral over R[f] and PR[u]= Q, where
P=(M,f)R[f]= O NR[f]). Therefore Ry = R[ul, is H; (2.4.4) and
altitude Ry =a +1. A similar proof holds if th& N.

(2.142) N =(M,f)S, for some monic polynomial f = f(tb), so,
since f(tb) is transcendental over R, the proof of (2.14.2) is similar to the
proof of (2.14.1).

(2.14.3) By (2.2.4), F=R/uR, where R =R(R,bR), so Fy=
Ro/uR,, where Q is the pre-image in R of N.  Also, the minimal prime
divisors of u%®, have height one, so it follows from (2.4.2) and (2.14.1)
that %y is H,, and either altitude ¥y =a or =i —1.

(2.14.4) If 1€ MA, then no such N exists, so the conclusion is
vacuously true. Therefore assume that MA is proper. Then A = R/I,
where R = R(R,bR) and I=(u—c)R[L,u]NR, so Ax = Ro/IR,,
where Q is the pre-image of N in &®. Therefore, since Rt u] is a
quotient ring of R, the minimal prime divisors of I have height
one. Hence the conclusion follows from (2.14.1) and (2.4.2), q.e.d.

By [15, (3.14)], the converse of (2.14.4) is true, if Rad R = (0). And,
of course, the converse of (2.14.2) is true (by (2.6.3)), and the converse of
(2.14.1) is true (by (2.10.2)). It will be shown in (2.15) below that the
converse of (2.14.3) is also true.

Using [5, Example 2, pp. 203-205], an example can be given to show
that altitude Ay =i — 1is possible in (2.14.4), and that altitude Fy =i — 1
is possible in (2.14.3).

As a final comment on (2.14), it should be noted that the proof of
(2.14.4) shows that if a given £(R, bR) is H, then, for all non-zero-
divisors ¢ in R, R[b/c)mps) is Hi-i (if (M, b/c) is proper).

We next show that a strong converse of (2.14.3) is true. In proving
(2.15), we will identify the form ring of R with respect to bR with
R(R, bR)/uR (R, bR) via the isomorphism given in (2.2.4).
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ProposITION 2.15. Let (R,M), a, E, and i>0 be as in
(2.10). Assume that, for each b € E —{0}, %y is H._, and either altitude
Fn=aor =i—1, where ¥ = F(R,bR) and N = M/uR (R, bR). Then
R is C,.

Proof. Let p be a height one prime ideal in R. Let 0#bE€pN
E. Then p’'=(p,u)Z is a height one prime divisor of uZ (2.8), where
Z=%(R,bR). Also, £/p'=2.8) (R/p)[ X]mpwx=2.2.4) Fn/(p'uf)
is, by (2.4.2), H._, and either altitude #/p’=altitude ¥y =a or =
i —1. Therefore, by (2.6.3), R/p is C._, and either depth p=a —1 or
=i—-2. Hence, by (2.6.2), R is C_;, q.e.d.

In the proof of (2.15), it may happen that altitude %y =a and
altitude Fy/(p'/uf)=i—1.

The next result gives some information related to (2.10.2). One of
the problems on H;-local rings is what can be said about R,, if R is
H,. (2.16) shows that at least some information about this can be given
for Rees rings. To prove (2.16), we need the following known result: If
alocal ring (R, M) is H; and b, ¢ are analytically independent elements in
R such that b isn’t a zero-divisor, then, with B = R[c/b] MB is prime
and By is Hi_; [15, (2.11)].

ProposITION 2.16. Let (R, M), a, E, and i >0 be as in (2.10), and
assume that R is C,_;. Letb € E, and let R = R(R, bR). Then, for all
non-maximal prime ideals Q in R such that QN R =M, R, is H._,.

Proof. Let Q be a non-maximal prime ideal in R such that
OQNR=M. Ifu€Q,then QN R[u]=(M,u)R[u],so Q=(M,u)R
(since Q isn’t maximal and (M, u)®R is prime (2.8)). Therefore R, =
Aoa, where A = R[u]mu[th]. Hence, since R[u . is Hi (2.6.3), R, is
H,_,, by the comment preceding this proposition. If uZ Q, then Q N
R[u]= MR[u]and Q = M* (since Q isn’t maximal and by (2.2.5) (i)), so
Ro = R[u]mrp is Hi-y (2.4.3), q.e.d.

It should be noted that both the prime ideals M* and (M, u)®R in
(2.16) have height=a. For M?*, this follows from (2.2.3); and for
(M, u)R, it follows from (2.8).

We close this section with a result which shows that if there exists
0# b € E such that R(R, bR )p.arsr) is H, then R is H. A related
(and more important) result will be considered in (3.5) below.

It should be noted, for (2.17), that height (M, u)® = a, by (2.8).

ProposITION 2.17. Let (R, M), a, E, and i >0 be as in (2.10). Let
0#bEE,let R=R(R,bR), and let A = Rpga- If A is H, then R is
H.
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Proof. Let p be a height i prime idealin R. If b € p, then (p, u)R
is a prime ideal of height i (2.8), so depth (p,u)A =a—i. Also,
R/(p,u)R =(R/p)[X] (2.8), so depth p=depth (p,u)A =a—i If
bZp, then pR =p*; for, clearly pR Cp* and if t‘c Ep* then
cEpNb*R =b*(p: b*R) = b*p, so there exists d € p such that t*c =
(tb)d € pR. Therefore p*=pR C(M,u)®R and height p*=1i, so
height (M, u)R/p* =a —i. Thusdepth p =depthp*—1=a — i, and so
depth p =a —i. Therefore R is H, q.e.d.

3. Related results. In this section we do four things related
to (2.10). First, in (3.1) we show that most of (2.10) holds using
E —{0}. Then we consider what can be said when it is known that at
least one Z(R,bR) is H; in (3.5)-(3.13). Next, some results on local
rings which are H,, for all i >0, are given in (3.17)-(3.21). Then we end
this section with two questions and some comments on them.

We begin with the following result. It will be shown in (3.3) below
that i >1 (instead of i >0) in (3.1.1) is necessary.

ProrosITION 3.1. Let (R, M) be a local ring, let a = altitude R, and
let E'={b € M; height bR =1}. Then the following statements hold:

(3.1.1) Leti>1. Then R is H_, and H, if and only if, for all
beE', £(R,bR) is homogeneously H,.

(3.1.2) Let i>0. Then R is C_, if and only if, for all b € E’,
Z4(R,bR) is H.

Proof. (3.1.1) Assume that, for each b € E', £ = %(R,bR) is
homogeneously H;, and let p be a prime ideal in R. If height p = i, then
p* is a height i homogeneous prime ideal in # = & (R, bR), so depth
p =(2.2.3) height #/p*—1=a —i; hence R is H,. If height p=1i—1,
then let bEp N E' (since i >1), and let £ = L(R,bR). Then & is
homogeneously H, (by hypothesis) and height (p*, u)£ =i (2.2.6) (ii), so
depth p = (2.2.6) (i) depth (p*,u)¥ =a +1—i; hence R is H._,.

The converse was proved in (2.10.1).

(3.1.2) Assume that, for each bE€EE'S £=%(RbR) is
H. Assume temporarily that i =1. Then R is H,, as in the proof of
(3.1.1). Also, R is H,, since if z is a minimal prime ideal in R, then
Z*CM*CUM, so depth z*£ >1 and &£ is H,, hence depth z*¥ =a +1
(2.4.2). Therefore depth z = (2.2.3) depth z*¥ -1=a.

Now let i be arbitrary (i >0). Then to prove that R is C_,, it
suffices, by (3.1.1) and the preceding paragraph, to prove that, for all
height i —1 prime ideals p in R, every maximal ideal in the integral
closure of R/p has height equal to altitude R/p. For this, fix a height
i —1 prime ideal p in R, and let N be a maximal ideal in the integral
closure S of R/p. Lety=c'/b’'(c’,b'E M/p) be an element in N such
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that y isn’t in any other maximal ideal in S, so the integral closure of
D = (R/p)[Y ]y 18 Sv. Let b, ¢ be pre-images in M of b’, ¢’ such that
height cR = height bR =1, and let £ = £(R,cR). Then £ is H; (by
hypothesis), so £/p*¥ =(2.2.3) Z(R/p,(cR +p)/p)=(ay &£ is H,
(2.4.2), and altitude &' =depthp +1=a — i +2 (since R is H,_;). Also,
q=w—b)YR/p)t,ulNR(R/p,(cR + p)/p) is a height one prime ideal
such that g N(R/p)=(0) and ¥'/q¥'= D. Therefore height N =
altitude D = depth q¥' = (&' is H;) a —i + 1= depth p = altitude R/p,
as desired.

The converse was proved in (2.10.2), q.e.d.

The condition i > 1 (instead of i > 0)in (3.1.1) is necessary, as will be
shown in (3.3) below. However, if R is a local domain, then the case
i =1 also holds (by the proof of (3.1.1) and since R is H).

REMARK 3.2. Let (R,M) and E’ be as in (3.1), assume that R is
Henselian, and let i >1. Then, by the same proof as (2.12) (only using
(3.1)), the following statements are equivalent: R is H,_, and H;; R is
C_; for all b€ E', Z(R,bR) is homogeneously H;; for all b € E’,
Z(R,bR) is H,.

The following example shows that the condition i > 1 is necessary in
(3.1) (thatis, all £ = Z(R, bR) (with b € E') homogeneously H; does not
imply that R is H,) and in (3.2) (that is, for R Henselian, all £ (as above)
homogeneously H, does not imply that all such &£ are H,).

ExaMpLE 3.3. There exists a complete local ring (L, N) which is H;
if and only if i >0 sugh that, for all b € E’'={b € N; height bL =1},
£ =%(L, bL) is homogeneously H; if and only if i >0 and such that £ is
H; if and only if i > 1.

Proof. Let (R, I) be as in [5, Example 2, pp. 203-205] in the case
m =0, so the completion (L, N) of (R, I) has exactly two minimal prime
ideals, say z and w, such that depth z =1<depth w = a = altitude
L. (Since the integral closure R’ of R is a finite R-algebra and is a
regular domain with two maximal ideals MR’ and NR' such that height
MR'=1 and height NR'=r+1=(say) a, L is as described by [9,
Proposition 3.5].) Then clearly L isn’t H,. Also, L is H, (0<i < a),
since if p is a height i prime ideal in L, then w is the only minimal prime
ideal in L which is contained in p, so since altitude L/w =a and L/w
satisfies the f.c.c. (3.14), depth p =a —i. Further L is H,. Now let
beEE' and let ¥£=%(L,bL). Then ¥ isn't H, (since L
isn’t). Further, &£ is H,,-- -, H,.; (2.13). Moreover, £ isn’t H,, since
depth z*¥£ =2 < altitude ¥, so, by [3, Theorem 1], there exists a height
one prime ideal p in £ such that depth p =1. Thus it remains to show
that £ is homogeneously H,.
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For this, let p be a height one homogeneous prime ideal in %, and
suppose z*¥£ Cp. If ugZp, then p=(p NL)*¥ (2.2.5)(i), so height
pNL=1 and zCpNL. But this contradicts the fact that depth
z=1<a. Therefore u €p, so (z,b)L CpNL. Hence, since depth
z=1landb€E',pNL=N. Therefore (N,u)¥ Cp, and (N,u)¥ is a
prime ideal such that height (N, u)¥ = a (2.8). But this contradicts
a >1. Therefore no height one homogeneous prime ideal in £ contains
z*%, so each height one homogeneous prime ideal p in £ contains w*%,
hence p/w*Z is a height one prime ideal in £/w*<¥. Therefore, since
LIiw*E=ZL(L/w,(bL + w)/w) and L/w is a complete local domain of
altitude = a, depth p =depth p/w*¥ =(2.13) a. Therefore £ is
homogeneously H,, q.e.d.

We now begin to consider what can be said if it is known that some
Z(R, bR) is either H; or homogeneously H.

By (2.10.1) together with the last paragraph of its proof, for each
non-zero b € E, #(R, bR) is homogeneously H, if £(R,(0)) is. The
following remark and (2.10.1) show that if some £(R, bR) is homogene-
ously H; and b # 0 has a certain property, then all £(R, cR) (with c EE)
are homogeneously H..

i

REMARK 3.4. With the notation of (3.1), assume that there exists
an element b € E’ such that height (p, b)R = height p + 1, for all height
i — 1 prime ideals p in R such that b& p. Then R is H,_, and H; if and
only if £ = %(R, bR) is homogeneously H.

Proof. If £ is homogeneously H, then R is H, as in the proof of
(3.1.1), so let p be a height i — 1 prime ideal in R. If b € p, then depth
p=a—i+1, as in the proof of (3.1.1). If b&Z p, then there exists a
height i prime ideal g in R such that (p,b)R C q (by hypothesis), so
a—i+1=depth p=depthq+1=a—i+1((since R is H;); hence R is
H_,.

The converse was proved in (2.10.1), q.e.d.

Concerning (3.4), the author conjectures that, with no condition on b
other than b € E’, if Z(R, bR) is homogeneously H; and R is a local
domain, then R is H;_; and H, Nagata’s examples [5, Example 2, pp.
203-205] support the conjecture. We haven’t been able to prove the
conjecture, but the next result shows that if some £ (R, bR) is H,, then R
is H;-, and H.

ProrosITION 3.5. Let (R, M), a, E, and i >0 be as in (2.10). If
there exists b € E such that £(R, bR) is H,, then R is H,_, and H, hence,
for all ¢ € E, (R, cR) is homogeneously H..

Proof. Assume that £ = %(R,bR)is H, let ®# = R(R, bR), and let
p be a prime ideal in R. If height p = i, then depth p = a — i, as in the
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proof of (3.1.1), so R is H, If height p=i—1, then height p*=
i—1. Also, we may assume that i = a (2.11.1), so p* CM* C M, hence
depth p*¥>1, and so depth p*¥ =a —i+2 (2.42). Therefore, by
(2.2.3), depth p = height #/p*—1=depthp*—1=a—i+1,hence R is
H,_,. Therefore, for all ¢ € E, (R, cR) is homogeneously H; (2.10.1),
q.e.d.

It follows from (3.5) that if R is H, and isn’t H,_,, then there does not
exist b € E such that £(R,bR) is H.

The author doesn’t know if the hypothesis of (3.5) implies that R is
Ci-i. (Of course, this is true if b = 0 (2.6.3).) However, this is true if R
is Henselian, as is shown in (3.8) below.

(3.3) shows that if some £ is homogeneously H, then R need not be
H,._, (for i =1).

We now give some corollaries of (3.5) (and (2.10)).

COROLLARY 3.6. With the notation of (2.10), assume that R is a
local domain such that all maximal ideals in the integral closure of R have
the same height. If there exists b € E such that (R, bR) is homogene-
ously H,, then, for all c € E, (R, cR) is H,.

Proof. As in the proof of (3.1.1), R is H, Therefore, by
hypothesis, R is C,, so the conclusion follows from (2.10.2), q.e.d.

If R is Henselian in (3.6), then the hypothesis can be simplified, as
will now be shown.

COROLLARY 3.7. With the notation of (2.10), assume that R is a
Henselian local domain. If there exists b € E such that £(R, bR) is
homogeneously H,, then, for all c € E, ¥(R,cR) is H,.

Proof. Since R is Henselian, the hypothesis of (3.6) is satisfied, so
the conclusion follows from (3.6), q.e.d.

The next corollary shows that if, in (3.5), R is Henselian, then R is
G

CoROLLARY 3.8. With the notation of (2.10), assume that R is
Henselian. If there exists b € E such that ¥(R, bR) is H, then R is C,_,
and, for all c € E, ¥(R, cR) is H.

Proof. By (3.5), R is H,_, and H, so the conclusion follows from
(2.12), q.e.d.

The next corollary shows that if R is complete in (3.5), then
considerably more can be said.

COROLLARY 3.9. With the notation of (2.10), assume that R is
complete. If there exists b € E such that £(R, bR) is homogeneously H,
then, for all c EE, £(R,cR) is Hy\y, - -+, H,.y.
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Proof. If Z(R,bR) is homogeneously H, then R is H; (as in the
proof of (3.1.1)). Therefore the conclusion follows from (2.13), q.e.d.

REMARK 3.10. If, in (3.9), there exists b € E such that (R, bR) is
H, then, for all c €EE, ¥(R,cR) is H,, -, H,.,.

Proof. By (3.5), R is H,_,, so the conclusion follows from (2.13),
q.e.d.

To prove some further corollaries of (3.5) and (2.10), we need the
following lemma.

LemMMA 3.11. Let R and S be local rings such that R is a dense
subspace of S. If S is H, then R is ;H.

Proof. Let p be a height i prime idealin R. Then every minimal
prime divisor of pS has height i [5, (22.9)] and, since R/p is a dense
subspace of S/pS, there exists a minimal prime divisor q of pS such that
depth g = depth p. Hence, if S is H, then depth p = depth ¢ = altitude
S —i=altitude R —i, so R is H, q.e.d.

Combining (3.8) and (3.11), we Have the following resuft.

COROLLARY 3.12. With the notation of (2.10), let R* be the Henseli-
zation of R.  If there exists b € E such that £(R*", bBR") is H, then, for all
cE€F, ¥(R,cR) is H, and R is C._,.

Proof. If (R" bR")is H, then, foreach c € E, ¥’ = £(R" ¢cR"Y)
is H; (3.8). Also, £(R, cR) is a derise subspace of £’ (since £(R, cR)
and Z(R*, cR¥) are dense subspaces of (R*,cR*), by [10, Lemma
3.2], where R* is the completion of R). Therefore, for all ¢ €E,
Z(R,cR) is H; (3.11), hence R is C_, (2.10.2), q.e.d.

Of course, the conclusion of (3.12) holds if there exists an element
b € R such that either b = 0 or height 8BR” =1 and #£(R", bR") is H,
(by the proof of (3.12)).

Combining (3.9) and (3.11), we have the following corollary to (3.5).

CoROLLARY 3.13.  With the notation of (2.10), let R* be the comple -
tion of R. If there exists b € E such that ¥(R*, bR *) is homogeneously
H, then, for all c € E, £(R, cR) and ¥{R",cR") are H..,," - -, H,...

Proof. If £(R*, bR™) is homogeneously H, then, for each ¢ €EE,
$"=L(R* cR*) is Hyy, -, Hoy (3:9). Also, by [10, Lemma 3.2],
(R, cR) and Z(R", cR") are dense subspaces of £”, so the conclusion
follows from (3.11), q.e.d.

Again, the conclusion of (3.13) holds if there exists b € R* such that
either b = 0 or height bR * = 1 and £ (R *, bR *) is homogeneously H; (by
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the proof of (3.13)). And, if £(R* bR*) is H, then, for all ¢ EE,
Z(R,cR) and #Z(R" cR") are H,, -, H,.; (by (3.10) and the proof of
(3.13)).

It follows from (3.13) and (2.10.2), that if there exists b € E such that
Z(R*,bR*) is homogeneously H, then R and R" are C,---, C,.

To derive some further corollaries to (2.10), we need the following
definitions.

DEFINITION 3.14. A ring R satisfies the first chain condition for
prime ideals (f.c.c.) in case every maximal chain of prime ideals in R has
length equal to the altitude of R.

DEerFINITION 3.15. A ring R satisfies the second chain condition for
prime ideals (s.c.c.) in case, for each minimal prime ideal z in R, depth
z = altitude R and every integral extension domain of R/z satisfies the
f.c.c.

DEefFINITION 3.16. A local ring R is said to be taut (resp., taut level)
in case R is H, for all i=1,---,a (resp., i =0,1,---,a), where a =
altitude R. If P is a homogeneous prime ideal in a graded ring R, then
R, is said to be homogeneously taut (resp. homogeneously taut level), in
case R, is homogeneously H, for all i =1,---,a (resp., i =0,1,-- -, a),
where a = height P.

Numerous properties of rings which satisfy the f.c.c. or the s.c.c. are
known. A summary of the basic properties is given in [11, Remarks
2.22-2.25]. Also, a number of properties of taut semi-local rings are
given in [4] and [13]. We mention only that taut level local rings are the
same as local rings which satisfy the f.c.c. [4, Proposition 7].

With the above definitions, we will now give some additional
corollaries of (2.10).

CoroOLLARY 3.17. With the notation of (2.10), R is taut level if and
only if, for each b € E, ¥(R, bR) is homogeneously taut level.

Proof. By (2.10.1), R is taut level if and only if all £ = £(R, bR)
are homogeneously H,, - - -, H,. Finally, £ is H,., (2.4.1); and &£ is H,, if
R is H, (2.11.2), q.e.d.

We now give a number of results related to (2.10), to the above
definitions, and to (3.17).

ReEmMARk 3.18. Let (R, M), a, and E be as in (2.10). Then the
following statements hold:

(3.18.1) R is taut if and only if, for all b € E, £(R, bR) is
homogeneously H,, - - -, H,,,.



ON REES LOCALITIES AND H;-LOCAL RINGS 187

(3.18.2) If, for all non-zero b € E, £(R, bR) is homogeneously taut
level, then R is taut level.

(3.18.3) For each b € E, £(R, bR) is taut if and only if £(R, bR)
satisfies the f.c.c.

(3.18.4) For all b € E, £(R, bR) may be homogeneously taut, but
not homogeneously taut level.

(3.18.5) £(R, bR) may be homogeneously taut level but not taut
level.

(3.18.6) All £(R,bR) (with b € E) are taut if and only if R
satisfies the s.c.c.

(3.18.7) If there exists b € E such that £(R, bR) is taut, then R
satisfies the f.c.c. and, for all ¢ € E, (R, cR) is homogeneously taut
level.

Proof. The proof of (3.18.1) is similar to the proof of (3.17).

(3.18.2) The hypothesis implies that R is H,---,H, by
(3.1.1). Also, R is H, by (2.11.2).

(3.18.3) Assume that £ = £(R, bR) is taut and let z be a minimal
prime ideal in & It may clearly be assumed that a >0. Then z =
ENRY*ZCM*ZCML, hence, since ¥ is H,, depth z=a+1
(2.4.2). Therefore &£ is taut level, hence £ satisfies the f.c.c. [4,
Proposition 7]. The converse is clear.

(3.18.4) follows from (3.3).

(3.18.5) For an example, let (R, M) be a local domain such that
altitude R =2 and R isn’t G, (that is, there exists a height one maximal
ideal in the integral closure of R) (for example, [5, Example 2, pp.
203-205] in the case m =0 and r =1). Then, for each bEM, £ =
Z(R, bR) is homogeneously taut level (by (3.17)), but £ isn’t H,, since
otherwise R would be C, (2.10.2).

(3.18.6) If all £ are taut, then, in particular, by (3.18.3), R[u]m.)
satisfies the f.c.c., hence R satisfies the s.c.c. [10, Theorem 2.21].
Conversely, if R satisfies the s.c.c., then D = R[X, Y]mxy, satisfies the
f.c.c., by [10, Theorem 2.21], hence, since each £ is a homomorphic
image of D and each £ is H, (since R is H,), all & satisfy the f.c.c., and
so all & are taut.

(3.18.7) If &= #(R, bR)is taut, then L is H,, - - -, H,., (3.18.3), so
R is Hy,---,H, (3.5), hence R satisfies the f.c.c. [4, Proposition
7). Therefore, for all ¢ €EE, £(R, cR) is homogeneously taut level
(3.17), g.e.d.

We now give two more corollaries relating the above definitions and
(2.10).

COROLLARY 3.19. With the notation of (3.12), if there exists b€ E
such that £(R", bR") is taut, then R and R*¥ satisfy the s.c.c.
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Proof. If #(RY bR") is taut, then R¥ satisfies the f.c.c.
(3.18.7). Therefore R and R*¥ satisfy the s.c.c. [10, Theorem 2.21],
q.e.d.

CorOLLARY 3.20. With the notation of (3.13), if there exists b € E
such that £(R*, bR *) is homogeneously taut level, then R and R* satisfy
the s.c.c.

Proof. If £(R*, bR*) is homogeneously taut level, then R* is H,
(2.11.2), hence R is quasi-unmixed (by definition), and so R and R*¥
satisfy the s.c.c. [10, Corollary 2.8], q.e.d.

To prove (3.21.2), we need the following fact [15, (3.13)]: If a local
ring R is Cy, -+, C,-, (a = altitude R), then R is taut and, for each
minimal prime ideal z in R and for each maximal ideal N in the integral
closure (R/z) of R/z, (R/z )\ satisfies the s.c.c. and height N € {1, a}.

REMARK 3.21. With the notation of (3.20), the following state-
ments hold:

(3.21.1) If there exists b € E such that £(R*, bR *) is taut, then R
and R¥ satisfy the s.c.c.

(3.21.2) If there exists b € E such that £(R*, bR™) is homogene-
ously taut, then R is taut and, for each minimal prime ideal z in R and
for each maximal ideal N in the integral closure (R/z), of R/z, (R/z)&
satisfies the s.c.c. and height N €{1, a}.

Proof. (3.21.1) follows from (3.18.3) and (3.20).

(3.21.2) If there exists such b € E, then £(R*, bR*) is homogene-
ously H,, so, by the paragraph preceding (3.14), R is C, -, C.
Therefore the conclusion follows from [15, (3.13)], q.e.d.

This section will be closed with two questions and some comments
on why they are important, and why the results in the first two sections of
this paper lend support for an affirmative answer to each. For the first
question we note that it is known that a local domain (R, M) satisfies the
s.c.c. if and only if R[X]mx, = Z(R, (0)) satisfies the f.c.c. [10, Theorem
2.21], so in (3.22) we restrict attention to 0 # b € M.

QuesTiOoN 3.22. If R is a local domain which satisfies the f.c.c. and
is C,, is it true that, for each 0# b € M, Z(R, bR) satisfies the f.c.c.?

If the answer to (3.22) is yes, then the Catenary Chain Conjecture
holds (that is, if R is a Cy-local domain which satisfies the f.c.c., then R
satisfies the s.c.c.) For, if R is C, and satisfies the f.c.c., then all rings
Z(R,bR) (0# b € M) satisfy the f.c.c., hence R satisfies the s.c.c.
(3.18.6).
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Also, the Catenary Chain Conjecture implies that the answer to
(3.22)isyes. For,if R is C, and satisfies the f.c.c., then, by the Catenary
Chain Conjecture, R satisfies the s.c.c., hence for all b € M, (R, bR)
satisfies the f.c.c., by (3.18.6) and (3.18.3).

By (3.18.3), (3.22) is equivalent to: If R satisfies the f.c.c. and is C,,
does it hold that, for all 0 # b € E, (R, bR) is taut? (2.10) lends, in the
author’s opinion, much support for an affirmative answer to this version
of (3.22). Thatis, by (2.10.2), all £ = £(R, bR) are H}; and, by (2.10.1),
all & are homogeneously taut. Now, by (3.18.5), £ may be homogene-
ously taut and not taut. However, the only examples the author knows
where £ is homogeneously taut and not taut are those for which £ is H,
for all i > 1, but not H, (as in (3.18.5)), and in this case, there exists a
height one maximal ideal in the integral closure of R (so R isn’t C).

Before stating the second question, we note that it is known [12,
(4.3)] that if the Catenary Chain Conjecture holds and R is a local
domain which satisfies the f.c.c., then, for all height one prime ideals p in
R, R/p is C,. We will use this below in showing that an affirmative
answer to (3.23) is equivalent to one of the chain conjectures holding.

QuestioN 3.23. If (R, M) is a local domain which is C_,, is
D = Rlu]pm., C?

The H-Conjecture (that is, a H,-local domain satisfies the f.c.c.)
implies that the answer to (3.23) is yes. Thatis, if R is C_,, then D is H;
(2.6.3). Therefore, for each height i — 1 prime ideal p in D, D/p is H,
(2.4.2), hence satisfies the f.c.c. (by the H-Conjecture). Now the
H-Conjecture implies the Catenary Chain Conjecture [12,
(4.5)]. Therefore, it follows from [12, (4.3)] that, for each height i prime
ideal q in D, D/q(=(D/p)/(q/p) with p Cq and height p=i—1) is
C,. Therefore, since D is H, D is C (2.6.2).

Also, if the answer to (3.23) is yes, then the H-Conjecture
holds. For, if R is an H;-local domain, then to prove that R satisfies the
f.c.c., it may be assumed that R is C, [14, (2.12)]. Then D is C; (by
(3.23)). Now it clearly follows from (2.6.3) that if D is C, then R is
C. Therefore R is C,, hence D is C, (by (3.23)). Repeating, R is
Co, -+, C, hence R is H,,---,H, and so R satisfies the f.c.c. [4,
Proposition 7].

(2.10.2) gives some support for an affirmative answer to
(3.23). Namely, it is known [6, (4.7)] that R is C; if and only if, for all x
in the quotient field F of R such that (M, x)R[x] is proper, R(x)u) is
H. In fact, [6, (4.7)] shows that to prove that R is C, it suffices to
consider only certain subsets of such x € F. (For example, those
x = ¢/b with height (b, c)R =2.) Thus, to prove that D is C, it suffices
to prove that all D[e/d ). are H;,, where height (d, e)D =2 and N is
the maximal ideal in D. Now (2.10.2) shows that many of these rings are
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H, if R is C_,. Namely, for all 0 # b € M, height (b, u)D =2 and
g(R, bR)= D[b/u](Mb/u) 1S I'I, (2102)

4. A generalization. In this section we give a generalization
of (2.10.2) in (4.2), and then derive some corollaries of (4.2).
To prove (4.2), the following corollary of (2.10) will be helpful.

CoROLLARY 4.1. Let (R, M) be a local ring, let i and k be positive
integers, and let P, = R[X,, ", X;Jmxi-x) G =1,2,- ). Then the fol-
lowing statements are equivalent:

(4.1.1) P, is H,..

4.1.2) Py is Gy

4.1.3) ZL(P.-, (b)) is Hisy, for all b € E(P,-,) ={c € P,_,; height
cP.., =1} U {0}.

(4.1.4) ZL(Pi-y, (b)) is Hy,, for all b € E'(Pi-,) ={c € P,_,; height
cP._, =1}

Proof. This follows from (2.6.3), (2.10.2), and (3.1.2), since P,_, is a
local ring and P, = Po [ Xy Jose-oa)y Where My, = (M, X, -+, Xi1) Py,
g.e.d.

We will now prove the following generalization of (2.10.2).

THEOREM 4.2. Let (R, M) be a local ring, and let i and k be positive
integers. If P, = R[X\, ", Xilmxv-xo IS Hiy, then, for all proper
ideals B = (by,- - -, b )R such that height B=1, (R, B) is H.

Proof. Assume that Py is Hi,_,, let B = (b, -+, b,)R be a proper
ideal in R such that height B =1, and let ¥ = #(R, B). Then height
bR =1,forsomej=1, -+, k (since BZ U{z; z is a minimal prime ideal
in R}). Say height bR =1, and let f be the natural homomorphism
from P, onto £'= ZL(Piy, (b)) = Peoi[the, U] paxxeomewy (that is,
f(Xi)=th. and f(Xi.:))=u), and let g be the natural homomorphism
from P, onto & (g(X))=th, (i=1,---,k) and g(Xi.,)=u). Let
K,=Kerf and K =Kerg. Then, with u = X,,,, uX, - b € K; and
(uXi=by, -, uXy —b)PC K. Also, K,CK, since g induces the
natural homomorphism from ¥’ onto ¥ (so ¥ = ¥'/(K/K))).

Assume temporarily that R is a local domain. Then K is prime and
KNR =(0), so by the altitude formula for K relative to R [19,
Proposition 2, p. 326], height K+trd (P../K)/R = height
KNR+(k+1), hence height K=k (since P, /K=% and
trd /R =1). Also, K, is prime and K, N P,_, = (0), so by the altitude
formula for K, relative to P,_,, height K;=1. Further, K;C K and
(P+1)k is a regular local ring (since K N R = (0)), so height K/K, =k — 1
(since regular local rings satisfy the f.c.c.). Therefore, since £’ is H;.r—
4.1), £=Z'/(K/K,) is H; (2.4.2).
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Now assume that R has non-zero divisors of zero, and let w be a
minimal prime ideal in %, so w = z*%, for some minimal prime ideal z in
R. Let P be the minimal prime divisor of K such that P/K = z*¥, so
PNR =2z Let z'=zP,,,. Then K= (uX, — b, z')Pin/2' C(K, 2")/2' C
P/z' and K] is prime [2, Ex. 3, p. 102] (since b, & z implies u, b, + zA is a
prime sequence in A/zA and zA=:z'NA, where A=
Pk~1[u](M,xl,---xk_l,..))- Also,

Ki=Ker(Pin/z'—= £" = L(Pis/ 2Pi-y, (b + 2Pi 1))

and #"=(223) Z/(zP-)*¥' (where (zP.)* = (zP_)Ps[t,u]lN
R (Pyi-1,(b))). Therefore p = (uX, — by, z")P.., is prime and K, Cp C P
(since K;=p/z'CP/z' and p=Ker(Pi,— £'/(zP.-1)*ZL")). Also,
P/z'=Ker(Pin/z' > F =ZL(R/z,(B+2z)/z)) and ¥=ZL/z*F (2.2.3).
Hence, by the domain case, height P/z' = k, and height P = height P/z’
(since z' is the only minimal prime ideal contained in P (since PN R =z
and z' = zP,,;)). Likewise, height p = height p/z’=1. Further, every
maximal chain of prime ideals in (Pc.,)» = (say) D has length equal to
height P (since D/zD is a regular local ring and z is the only minimal
prime ideal in D). Therefore height P/p = height P —height p =
k —1. Therefore, £/z*¥ = P,..,/P = (Pe/K)/(P/K)) = &L'/(P/K),) is
H; (2.4.2), (since P.i/K, is H,+-, (4.1) and k —1 = height P/p = height
P/K, =k —1 (since height P = height P/z'= k and height K,=1)).

Hence, for each minimal prime ideal w in &, #/w is H. Further, if
w is a minimal prime ideal in %, then with altitude R = a, depth
w =a +1ordepth w =i; for, w = z*%, for some minimal prime ideal z
in R, so depth w = depth z + 1 (2.2.3), and depth z = depth zP, — k and
either depth zP, = a + k or depth zP, =i + k — 1 (by (2.4.2) for the case
j =0 (since P is H,._,)). Therefore, £ is H; (2.4.2), q.e.d.

The following remark (which is obvious from (4.2)) will be useful in
the proof of (4.4).

ReEMARK 4.3. If, in (4.2), P iS Hiy-y, "+, Hiwsn (B 20), then
$(R, B) iS H? T I-Ii+h+]~

COROLLARY 4.4. With the notation of (4.2), assume that P, is H;
and let B'= (b, -+, b;)R (1=j=k) be a proper ideal in R such that
height B'>0. Then £ =%(R,B") is H, - - -, Hisi,.

Proof. Let, say, b; such that height ;R =1, let f be the natural
homomorphism from P,,, onto &' = £(P,_y, (b)) (f(X;) = tb;, f(X;11) = u),
let g be the natural homomorphism from P, onto £ (g(X.)= tb,
(h=1,---,j), 8(X;+1)=u), let K;,=Ker f, and let K = Ker g. Then, as
at the end of the first paragraph of the proof of (4.2), ¥=
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Z'/(K/K;). Also, as in the third paragraph of the proof of (4.2), every
minimal prime divisor P/K, of K/K, has height j —1. Further, since P,
is Hivor, Piois Hiyjoy, -+, Hiey (by (2.6.3)). Moreover, as in the last
paragraph of the proof of (4.2), if P is a minimal prime divisor of K, then
either depth P = depth P/K =depth w =a +1 or =i. Therefore, by
4.3), £is H, -+, H.;, q.e.d.

REMARK 4.5. With the notation of (4.2), assume that P, is Hi,,
and let B’ be as in (44) with j<k. Then ZL(R,B’) is
C’ G+1, Tt Ci+k—j—2-

Proof. By (2.6.3), P,y is Cyjp - -+, Ciix—a.  Also, as in the third and
fourth paragraphs of the proof of (4.2), every minimal prime divisor P of
K (the kernel of the natural homomorphism from P,,; onto £(R, B")) is
such that height P =j and either depth P =a +1 or =i. Therefore it
follows from (2.6.2) that L(R,B’) is G, - -, Cix-j—2, q.€.d.

The following known result is an easy corollary to (4.4) (the case
k=a—-1andj=i=1).

CoROLLARY 4.6. (cf. [15, (3.10)].) With the notation of (4.2), let
a = altitude R and assume that P,_, is H,_,. Then R satisfies the s.c.c.

Proof. By (4.4), for all b€ E' (see (3.1)), £=Z%(R,bR) is
H,---,H,.;,s0 R is Cy, " -+, C,-; (3.1.2), hence R[u]m. is Hy, -+, H,~,
(2.10.2). Thus, for all b € E, (R, bR) is taut (2.4.1), so R satisfies the
s.c.c. (3.18.6), q.e.d.

Also, the following known result follows from (4.4) (the case
k=a-2,i=2 and j=1).

CoROLLARY 4.7. (cf. [15, (3.12)].) With the notation of (4.2), let
a = altitude R and assume that P,_, is H,_,. Then R is taut and, for each
minimal prime ideal z in R and for each maximal ideal N in the integral
closure (R/z) of R/z, (R/z)k satisfies the s.c.c. and height N €{1, a}.

Proof. By (4.4),forallb € E’, #(R, bR)is H,, -+, H,_;. Therefore
R is Cy,- -+, C,, (3.1.2), hence the conclusion follows from [15, (3.13)]
(see the paragraph preceding (3.21)), q.e.d.

The converses of (4.6) and (4.7) are true (and are given in the cited
references). Thus, it seems natural to ask if the converse of (4.2) is
true. The author doesn’t know the answer.

The following corollary to (4.2) is a generalization of (2.14).

COROLLARY 4.8. With the hypotheses of (4.4), the following state-
ments hold (where a = altitude R):
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(4.8.1) For all maximal ideals N in ® =R(R,B') such that
NNR=M, Ry is C,--+,Cuv,—» and either altitude Ry =a+1 or
altitude Ry = i.

(4.8.2) For all maximal ideals N in ¥ = %(R,B’) such that
NN(R/B")Y=M|B’, Fyis C_y," -+, Ciui—j-3 and either altitude Fy = a or
altitude v =i —1.

(4.8.3) For all non-zero-divisors c in R and for all maximal ideals N
inA =R[bi/c,---,b/c]suchthat NN R =M, Ayis C,_;," " -, Coy-j-3 and
either altitude Ay = a or altitude Ay =i — 1.

Proof. (4.8.1) Let K be the kernel of the natural homomorphism
from R;,; = R[X}, - -, Xj;,] onto & = R(R, B’), let N be a maximal ideal
in ® such that NN R =M, and let Q be the pre-image of N in
R;.;. Then Ry =L/KL, where L = (R;.;)o- Now there exist polyno-
mials fy, -+, fs1 € Ry such that Q = (M, f, - - -, f.1) and R,,, is integral
over T=R|[f, -, fiu] [5, (14.7)]. (Let f.=f(T)) be the minimum
polynomial for x; = X; + Q over (R/M)[x,,---, xi,] and let f; be ob-
tained from f; by replacing x,, - - -, x,.;, T; by Xi,- -+, X..) Then (R;.1)o is
integral over Tonr = P41, SO Tonr 1S Gy, * *5 Giuk—z, Since Py, is (as in the
proof of (4.5)). Therefore L is C., - -, C1x—2 [15, (3.18)]. Also, if P is
a minimal prime divisor of K, then height P =j and either depth
P =a+1or =i (as in the proof of (4.5), since all prime divisors of K are
contained in (M, X, - - -, Xj.;)R,+; (since all prime divisors of (0) in R are
contained in #)). Therefore, since #y = L /KL, the conclusion follows
from (2.6.2).

(4.8.2) follows as in the proof of (2.14.3), and (4.8.3) follows as in the
proof of (2.14.4), q.e.d.

In (2.10.2) it was seen that if R[X]wx, is H, then all £ = #(R, bR)
(with b € E) are H,. It seems natural to ask are all such & C, when
R[X]mx is C;? The author doesn’t know the answer. However, if the
answer is yes, and if P, is Ci;,-y, then all Z(R, B) of (4.2) are C; (much as
in the proof of (4.2) and using (2.6.2)).
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