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ON SUBRINGS OF RINGS WITH INVOLUTION

PJEK-HWEE L E E

We give a systematic account on the relationship between a
ring R with involution and its subrings S and K, which are
generated by all its symmetric elements or skew elements
respectively.

I. Introduction. Let R be a ring with involution * and 5 the
subring generated by the set S of all symmetric elements in R. The
relationship between R and S has been studied by various authors. In
[3] Dieudonne showed that if R is a division ring of characteristic not 2,
then either S = R or SQZ(R), the center of R. Later Herstein [4]
extended this result by proving S = R for any simple ring R with
dimzi?>4 and char.i?^2. The restriction on characteristic was re-
moved by Montgomery [12]. Recently, Lanski [9] proved that if_R is
prime or semi-prime, so is 5. In §2 of this paper, we show that S can
inherit a number of ring-theoretic properties such as primitivity, semi-
simplicity, absence of nonzero nil ideals etc.. In doing so, a notion
called symmetric subring, which is a generalization of S and its *-
homomorphic images, is introduced so that a group of theorems of the
same type, including Lanski's results, can be proved via a more or less
unified argument. We show also that numerous radicals of S are merely
the contractions from those of R. As a consequence, we see that R
modulo its prime radical behaves much like S in many respects.

In §3 we establish a corresponding theory for K, the subring
generated by all skew elements. The only result hitherto known con-
cerning K was as follows [4], [12]: If R is_simple and dimzi? >4, then
K - RL As a matter of fact, the subring K2 is more closely related to JR
than K is. We apply thejtechnique developed in §2 to study the
relationship between R and K2, and then derive some parallel theorems
for K.

II. Symmetric subrings. Our work depends heavily on the
notion of Lie ideals. By a Lie ideal U of R we mean an additive
subgroup which is invariant under all inner derivations of JR. That is,
[uy x] = ux - xu E U for all u E U and x E R. The following lemma
concerning Lie ideals will be referred to frequently in the sequel, and it is
a combination of some results in [5].

LEMMA 1. Let Rbe a semi-prime ring and U a subring and Lie ideal
of R. Then U contains the ideal of R which is generated by [U,U]. If
U is commutative, then u2G Z for all u E U.
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Rings with involution abound with examples of Lie ideals. One can
easily show that any subring, generated by symmetric elements and
containing T = {x + x*|JC G R} the set of all traces, must be a Lie
ideal. In particular, both S and T are Lie ideals.

Another essential property of S follows from the next lemma. We
denote by N the set of all norms, i.e. N = {xx*| JC G R}.

LEMMA 2. Let U be an additive subgroup of R such that T C U C S
andxUx*C Ufor all x G R. IfN C 17, thenxUx*Q U for all x G R.

Proof. We prove by induction that xux unx * G Ό for all x G R
and Mi, , un G (7. The case n = 1 is clear. Assume the assertion
holds for n - 1 then

XM!W2 UnX * = | > , Mj] [U2 Mn, X * ] + ( X M ^ *>M2 Un + UX(XU2 MnX *)

- u1xx*u2- - - un E U

because C7 is a Lie ideal.

DEFINITION. A subring U of R is called a symmetric subring if:
1. U is generated by a set of symmetric elements.
2. TUNCU
3. xUx*QU for all x <Ξ R.

In light of Lemma 2, we know that S is a symmetric subring. From
now on, U will always denote a symmetric subring of R. We call an
ideal I of R a *-ideal if /* = / .

LEMMA 3. // R is semi-prime and I is a *-ideal of R such that
I Π U = 0, ί/ien 7 = 0.

Proof. For any a G /, α 2 = <z(α + a *) — αα * = 0. Then / is nil of
index 2 and hence / = 0.

Recall that a ring JR is called a *-simple ring if JR2 φ 0 and R has no
*-ideal other than 0 and JR. It is well-known that JR is *-simple if and
only if either R is simple or JR = A 0 A * for some simple ring A [8, p.
14]. Let Z + = Z Π S. Then if JR is *-simple, we have Z + = 0 or Z + is a
field.

THEOREM 4. // JR is *-simple, then either U = R or U is a field
contained in Z + .

Proof If U is not commutative, by Lemma 1 it contains a nonzero
*-ideal of R so U = JR. Assume that [£/, t/] = 0; then U C S. In this
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case, we need only to prove [/CZ, for if u E U and u^ 0 then

If R = A φ A * for some simple ring A, then T = U = S. Thus
[C/, I/] = 0 implies [A, A ] = 0 and so R is commutative. If 1? is simple,
then U, being a commutative subring and Lie ideal of R, must be central
unless 2R = 0 and dimzjR = 4 [5, Theorem 1.5]. So let us examine all
possible 4-dimensional cases.

If R is a division ring, then x~ιUx = x~ι{xUx*)x = Ux*x CU for
all x E i? with x ̂  0. Hence U C Z by the Brauer-Cartan-Hua theorem
[7, Theorem 7.13.1,-Cor.].

There remains the case R = F2 where F is a field with char.F =
2. We claim that * must be of symplectic type. Assume the contrary,

[c d\ [ab d

for some a E F with ά = α, where - denotes the * induced automor-
phism on F. Thus

For any α E F, we have

Γ0 a + aΛ\a + d 0 1 Γ 0 l

Lo o J L o oj U o

so a = a. Next, if | , £ t/ then
[ab cj

Γ ft 0 1 Γ α b U O 0 1 ΓO O l Γ α 6 1
[a + c b\ [ab c J L l Oj [ l OJ [ab c_Γ U

and hence α = c. But if I a, 1 £ I/, then

Γα 01 Γl O l Γ α bUl 01
LO OJ L0 O j [ a b a \ [ θ OJ U

yields α=0. S o l / = T = | , ^ f t G F ί which is ridiculous be-

T • u • ^ \ \a bT \d bλ ,
cause T is not a subring. Consequently, , = and

ucs-{[° b

a]Mc
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\a bλ \a' b'Λ^TJ . \a bλ\a' b Ί ^ r τ .
For any L , ; ε l / , we have , , E [/ and

hence be1= b'c by comparing the diagonal entries of the product. If

there exists \a', b,]e U with b'/O, then

where a - c'b'~ι. However,

O 01 ΓO 01 Γα' bΊTO 01
' Oj Ll o J L c ' α ' J L l Q\

forces ί?; = 0, a contradiction. Hence U C (| a \\α,c E F\. On the
ILc α j 1 J

other hand, if

ΓO c l ΓO l Ί Γ α 0 1 Γ 0 1 1

[ O OJ Lθ O J L c α J L o O J e U

implies c = 0. Therefore, U CZ.

Following [11], we say R is *-prime if the product of any two
nonzero *-ideals is still not zero. It is easy to see that J? is *-ρrime if and
only if aRb = a *Rb = 0 implies a = 0 or b = 0. As a consequence, any
nonzero element in Z+ is regular in a *-prime ring R.

We remind the reader of of a well-known fact that a nonzero Lie
ideal of a semi-prime ring always contains elements with nonzero square.

THEOREM 5. If R is *-prime, so is U.

Proof. If [U,U]τ^ 0, then U contains a nonzero *-ideal / of
R. For any two *-ideals A, B of U with AB = 0, we have IAIB C
AB = 0, so either IAI = 0 or B = 0, ending up with A = 0 or B =
0. Assume that u y o while [U,ί/] = 0. By Lemma 1, there exists
u0SU such that UQ E Z but Mo ^ 0. So consider the ring Q of fractions
a/a with α E R and α E Z Π t/, α ̂  0. Q is also *-prime with respect
to the involution given by (a/a)* = a*/α, and [/' = {u/α E Q) u E [/} is
a symmetric subring of Q. As a matter of fact, Q is *-simple. For if J
is any nonzero *-ideal of O, / Γl [/V 0 and hence (v/βf^O for some
v/β EJΠU'. Since v2EZ, v/β is invertible and so / - Q. By the
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previous theorem, U' CZ+(Q) and hence U is an integral domain
contained in Z+(R).

Let CR(V) = {x G R \xυ = vx for all vEV}be the centralizer of a
set V in R.

LEMMA 6. Let j y 0 be an ideal (or *-ideal) of a prime (resp.
*-prime) ring JR. Then CR(I) C Z

/. For a E I, b E CR (I) and JC E i?, we have abx = feαx = αxfe,
or equivalently, α(bx - xb) = 0. That is, /[CR(/),R] = 0. Hence
[CR(/),K] = 0 and so CR(I)CZ.

COROLLARY. Let R be a prime (or *-prime) ring and I a nonzero
ideal (resp. *-ideal) ofR such that [I, I] = 0. Then R is commutative.

THEOREM 7. If R is semi-prime, then Z(U)QZ(R).

Proof Assume first that R is *-prime. If [U, U] = 0, then Z(U) =
UCZ(R) by Theorem 5. If [£/, f/]^0, then U contains a nonzero
*-ideal / of R, so Z( U) C C* (I) C Z(l?) in view of Lemma 6. In either
case, [Z(U),R] = 0. Now assume that R is semi-prime; then R is a
subdirect sum of *-prime rings πa(R). Since πa(U) is a symmetric
subring of πa(R% we know [ττa(Z(U)\ πa(R)] C [Z(τrα(17)), πβ(Λ)] = 0
for all a. Hence, [Z( [/), R ] = 0.

The same reduction to *-prime rings together with Theorem 5 gives
an alternate proof for Lanski's theorem:

THEOREM 8. If R is semi-prime, so is U.

With this established, we are able to consider the relationship
between the prime radicals ?β(R) and ^(U).

THEOREM 9. $( 17) = 17 n W )•

Proof Since U/[UΠ^(R)] - [17 + S$(R)]/ψ(R) which is a sym-
metric subring of the semi-prime ring JR/̂ 3(jR), so U/[U Π?β(R)] is
semi-prime by Theorem 8 and hence ^(U)CUΠ %$(R). On the other
hand, if a E U Γ) ̂ 5(1?), then a E U and any m -system in JR containing a
must contain 0. [7, Theorem 8.2.3]. Certainly, any m -system in U
containing a contains 0. That is, a E^(U).

It is well-known that a ring without nonzero nil ideals is a subdirect
sum of rings with the following property [6, p. 53]:

There exists a nonnilpotent element a such that an(I) E I for all nonzero
ideal I
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One can impose this condition only on the *-ideals and show that it is
a hereditary property. Then, making use of subdirect sum decomposi-
tion, we can prove that U inherits the freedom from nonzero nil
ideals. Instead of doing this way, we prefer to present a direct proof by
considering the nil radical $l(U) of U.

THEOREM 10. // R has no nil ideal other than 0, neither does U.

Proof. Let I be the ideal of JR which is generated by [ 17,17]. Since
JR possesses no nonzero nil ideal, neither does J, considered as a
ring. Hence 9l(U) Π / = 0. For any a G %l(U) and u G [/, we have
[a, u] E 9l(U) Π / - 0. Thus 9l(U) C Z(U). Since U is semi-prime by
Theorem 8,

As an immediate consequence, we have

THEOREM 11. 31 (U) = U Π 9l(R ).

Proceed as above with "locally nilpotent" in place of "nil" and with
Levitzki radical S in place of 9t, we get

THEOREM 12. If R has no nonzero locally nilpotent ideal, neither
does 17.

THEOREM 13. £([/) = U Π £(#) .

In [2] the notion of *-primitive ring was introduced as a ring
admitting a *-faithful irreducible module M (i.e. Mr = Mr* = 0 implies
r = 0). One can easily verify that a ring is *-primitive if and only if it is
either primitive or a subdirect sum of a primitive ring and its opposite
with the exchange involution.

We know that a nonzero ideal of a primitive ring is itself
primitive. The proof is applicable to the following more general fact.

LEMMA 14. Let R be a primitive (or *-primitive) ring. Suppose
that I is a nonzero ideal (resp. *-ideal) of JR, and A is a subring (resp.
*-subring, i.e. A* = A) containing I. Then A is also primitive (resp.
^-primitive).

THEOREM 15. If R is primitive or *-primitive, so is U.

Proof If [ 17, U] 7^ 0, U contains a nonzero *-ideal of JR, so it is
primitive or *-ρrimitive by Lemma 14. Assume that U is
commutative. Then 17 C Z + and every element in JR is quadratic over
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Z+. Hence R satisfies a polynomial identity. According to Ka-
plansky's theorem [6, Theorem 6.3.1], R is *-simple and hence U is a
field by Theorem 4.

Using the fact that a semi-simple ring is a subdirect sum of
*-primitive rings, we get immediately

THEOREM 16. If R is semi-simple, so is U.

In fact, the semi-simplicity of 5 was first proved by Herstein. His
elegant proof was the inspiration of our next theorem which relates the
Jacobson radicals of R and U.

THEOREM 17. %(U)=UΠ %(R).

Proof. For a E $(L/) and x E JR, we have

ax oax* = ax + ax* + axax* = a(x + x* + xax*)e%(U)UC%(U).

Thus aR is quasi-regular and hence a GU n $(!?). Conversely, if
α ε i / Π S C R ) , α ° & = 0 for some 6 e Λ, then & = 6°(α°fc)* =
(f)ofe*)oα*G I/. That is, UΠ^(R) is a quasi-regular ideal of U, so

With Theorem 17 in hand, we are ready to study some non-semi-
simple rings. Following [7], we say R is semi-primary, primary, or
completely primary according as R/%(R) is an artinian, simple artinian,
or division ring respectively. Since U/$(U) is isomorphic to a symmet-
ric subring of R/J(R)? by Theorem 4 we have

THEOREM 18. // R is primary or completely primary, so is U.

As to semi-primary rings, we need some information about the
descending chain condition. In a paper [10] which is to appear, Lanski
proved that if JR is artinian and \ E R, then so is S. For our purpose, we
prove

LEMMA 19. If R is semi-prime artinian, so is U.

Proof. By the Wedderburn-Artin theorem, we may write R =
-RiΘ'" * ®Rn where each Rt is *-simple. Denote by e, the identity of
jRi, then ex E Z + and so eJJex is a symmetric subring of Rx for each /. By
Theorem 4, each eJJe, is artinian, so is U = eJJex 0 φ enUen.

THEOREM 20. // JR is semi-primary, so is U.
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We remark that the assertion corresponding to Lemma 19 for
ascending chain condition is not true even if R is a commutative integral
domain. A counter example can be found in [13].

Let 9ϊ stand for any of the four radicals Sβ, 2, 9? and $. We have
shown 9t(I7) = 17 n 91(1?). If 9t(ϊ7) = U, then C/C9»(JR), so 0 is a
symmetric subring of the semi-prime ring R/ΐR(R), and hence ?R(R) = R
by Lemma 3. That is, if U is locally nilpotent, nil or quasi-regular, so is
R.

On the other hand, 91(17) = 0 need not imply 91(1?) = 0. For
example, let 1? = F + A be the algebra obtained by adjunction of an
identity to a trivial algebra A over a field F with char. Fφ 2. Define
(a + a)* - a - a for a E F and a E A. Then S - F is a field, while
9t(JR) = A is a nilpotent ideal. In case A has infinite dimension, this
example shows also that JR is not artinian although S is.

However, we still have some results on 9Ϊ(JR). For if 91(17) = 0,
then the *-ideal 9ΐ(l?) has trivial intersection with 17, hence is nil of index
2. Thus we have aRa = 0 for any a E 9ΐ(l?) and consequently 91(1?) =

Besides, U is isomorphic to a symmetric subring of
Realizing this fact, one might not be surprised to see that

), instead of 1? itself, satisfies the same properties as U does.

LEMMA 21. Let R be a semi-prime ring and e the identity of
U. Then e is also the identity of JR.

Proof By Theorem 7, eEZ(U)CZ(R). Since e E S, 1 =
{x - ex \x E JR} is a *-ideal of 1?. If a - ea E 17, then a — eα =
β(α - eα) = 0. Thus / Π [/ = 0 and so / = 0. In other words, e is the
identity of JR.

The case when JR is semi-prime and S is simple was thoroughly
studied by Lanski [9]. An example was given there that 1? is an integral
domain but not simple while S is. In the presence of an identity, we
have

THEOREM 22. Let R be a semi-prime ring. If U is a *-simple ring
with identity, so is R.

Proof Let I be any nonzero *-ideal of 1?. Then / Π U^ 0, and
the ^simplicity of U implies UCl By Lemna 21, U contains the
identity of JR, SO / = 1?.

Even if U is a field, 1? can be semi-prime but not simple. The
simplest example is the direct sum of two copies of a field with the
exchange involution. This example illustrates why we deal with only
*-primeness and *-primitivity in what follows.
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THEOREM 23. (1) If U is semi-prime, ψ(R) is nil of index 2. (2) //
U is *-prime, so is R/^(R)

Proof We have proved (1) in the discussion before Lemma 21. As
to (2), we may assume without loss of generality that R is semi-
prime. Let / and / be *-ideals of R such that I/ = 0. Then
(/ Π U)(J Π U) = 0, so / n U = 0 or / Π U = 0, ending up with / = 0 or
J = 0.

Suppose that JR is a *-prime ring and I a nonzero *-ideal of R. If /
possesses a *-faithful irreducible module M, write M = ml for some
m E M and m ̂  0, and define a map from M x R into M by sending
(ma, r) to m(ar). One can easily check that such a map is well defined
and that M becomes a *-faithful irreducible R -module. This is the
content of

LEMMA 24. Let R be a *-prime ring and I a nonzero ideal of R. If
I is ""-primitive, so is R.

THEOREM 25. (1) // U is semi-simple, then %(R) = ̂ (R) is nil of
index 2. (2) // U is *-primitive, so is R/^(R)

Proof We have seen the proof of (1) earlier. As to (2), we assume
that R is semi-prime. By Theorem 23, JR is *-prime. If [U, U]^0,
then U contains a nonzero *-ideal / of JR. Lemma 14 shows that I is
itself *-primitive and hence JR is also *-primitive by the previous
lemma.* If U is commutative, it is *-simple with identity. It follows
from Theorem 22 that R is ""-primitive.

THEOREM 26. // U is semi-primary, so is R.

Proof It suffices to show that if R is semi-prime and U is artinian,
then JR is also artinian. In this case, we have U - UXQ) 0 Un, where
each Ui is *-simple artinian. Let e, be the identity of L/i; then
eieZ(U)CZ(R). Since 1 = ex+ + en, R=R1φ'"®Rn, with
Ri = eR. Each Rt is then semi-prime and contains C7, as a symmetric
subring. By Theorem 22 Rt is *-simple, so either Lζ = Ri or L/j is a
field. If Ui is a field, then R< satisfies a polynomial identity and hence is
a finite dimensional algebra over a field contained in Z(JRr). In either
case, Ri is always artinian. Hence R must be also artinian.

III. Subrings generated by skew elements. In contrast
to S, K is not necessarily a Lie ideal of i?. For instance, in F2 with
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char. F^2 and transpose as *, ^ = if "b A \a,beFγ Although

[Λ ]
r o - 1 1 r o l i p on r i o i r o η
L - i o J L - i oJLo o j Lo o J t - i o j

falls outside of K. However, both K2 and Kl, where Ko =
{x - x * I x E JR}, are always Lie ideals.

DEFINITION. By. a skew subgroup V of R we mean a subgroup of R
such that K0Q VQK and xVx* C V for all x E JR.

Henceforth we shall use V to stand for a skew subgroup of R
without further explanation.

LEMMA 27. V2 is a Lie ideal of JR.

Proof For vu v2 E V and x E R, we have

[VιV2, X] = ϋi(lλ>* + X * ϋ 2 ) - ( ^ i X * + Xϋi)ϋ2E V2.

If Wi, , wn E V2 and x E R, then

[>! wn,x] = W![w2 wn, x] + [wl9 x]w2 " wn.

Hence, this lemma can be proved by induction.

LEMMA 28. Let Rbe a semi-prime ring and n a natural number If
v2" = 0 for all v E V, then V = 0.

Proof If v2 = 0 for all v E V, then for any JC E JR (ux + x*ι;)2 = 0 so
(vxf = 0. By Levitzki's lemma [5, Lemma 1.1], v=0 for all
v E V. Assume that n > 1. For any v E V and x E 1?, we have
( ϋ ^ x - x ^ 2 " " 1 ) 2 " = 0 and hence (v2nlχ)2n+1 = 0. Applying Levitzki's
lemma again and using the induction hypothesis, we conclude that V = 0.

One might have noticed that the study of a symmetric subring U in
R is based on the fact: If R is semi-prime, either U C Z+ or U contains a
nonzero ideal ofR. For a skew subgroup V, we have a parallel result for
V2.

LEMMA 29. If R is *-prime and [V2, V2] = 0, then V2CZ and
[ V, V] = 0. Further, R satisfies the standard identity S[xu x29 *3, x4] in 4
variables.
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Proof. Consider first the situation when R is *~simple. If R =
A φ A * for some simple ring A, then K0=V=K, and so [ V\ V2] = 0
implies [A2, A 2 ]~0. Since A2-A, R is also commutative, and the
conclusions follow trivially. Assume that R is simple. Then V2CZ
unless possibly 2JR = 0 and dimzjR = 4. Jf_JR is a_division ring, we have
xV^jr1==jcVjc*(χ-1)*Vjr1C V2, so xV2x~xQV2 for all x E R9

x^O. Hence V2QZ by the Brauer-Cartan-Hua theorem. Suppose
that R = F2 for some field F with char.F = 2. If Z Π TV 0, say,
α = α + α * E Z for some α£S,_then 1 = α-'α+(α"1α)*G ΓC V and
hence JV C V. By Lemma 2, V is a symmetric subring. Since V =
l VCV 2, [ V, V] - 0 so V C Z by Theorem 4. If Z Π Γ - 0, then

Z C S and * must be of transpose type, namely , = , ,

for some α E F . In this case. VC S = j , |α, 6,c E FK Since

Γ0 11 ^ Γ0 1] Γ a bΛ , _ Γ0 11 Γ a1 bΊ f

Λ £ T , A L commutes with L/ J for

any . L ,, , E V. Comparing the (1, l)-entries of the pro-

ducts, we get ca' ~ ac'. An argument like that in Theorem 4 shows

y - T - ί ί 0 , * 1 | 6 E F } . Hence V2 = Z. Thus we have V2QZ

always. By Lemma 28, there exists v E V such that v2^0 provided
O. Then v is invertible. Further, v~ι = v~ι(- v)(v~1)* E V, so

C Z and V C Zϋ. Consequently [ V, V] = 0.
Now assume that i? is *-ρrime and V^ 0. By Lemmas 1 and 28,

Φ 09 so we may consider the quotient ring Q =
|α E 1?, a EZ+, a^ 0}. O can be equipped with * by defining

(a/a2)* = a*la2. Then Q is *-prime and V = {v/a2<= Q \v E V} is a
skew subgroup of O If there is a nonzero *-ideal I of Q such that
j n W 0 , then / C 5 ( O ) and hence [/,/] = 0. By the corollary to
Lemma 6, Q is commutative and we are done. Suppose that / Π V ^ 0
for any nonzero *-ideal / of O Since / Π V contains an element a
such that a4& Z and α 8 ^ 0 by Lemmas 1 and 28, and a8 is invertible, we
have J = Q. In other words, Q is *-simple and so Vf2CZ(Q) and
[ V\ Vf] - 0. Hence V2 C Z(i?) and [ V, V] = 0.

Since Ko C V, we have [i^0, ^o] = 0 and hence R satisfies
•S4[*i, JC2, Jt3, JC4] by Amitsur's Theorem [1].
__ We are now in a position to prove a series of theorems concerning
V2. Since the proofs are parallel to those for U, we shall omit them
unless some modification is needed.

THEOREM 30. If R is *-simple and V^ 0, then eitheτΎ2 = R orΨ2

is a field contained in Z+.



142 PJEK-HWEE LEE

Proof. By Lemmas 1, 27 an<d__29, we have either V2=JR or
V2 C Z+. So it suffices to show that V2 contains_with invertible elements
their inverses. First α ' 1 V = α~1_V^(α~1)*α^C VV2 if aJΞ V2. Similarly,
Va-1 C V2V_ and hence a~ιV2a~* C V2 if aE V2. Thus a'1 =
a^aa^E V2, if a E V1 and is invertible.

THEOREM 31. If R is prime or *-prime, so is V2.

THEOREM 32. If R is semi-prime, then z(V2)CZ{R).

THEOREM 33. If R is semi-prime, so is V2.

THEOREM 34. Sβ( V5) = V 2 Π $(J?).

THEOREM 35. 7/1? has no nil ideal other than 0, neither does V2.

THEOREM 36. 9?( V5) = V2 Π 9ί(i?).

THEOREM 37. // JR ftαs no nonzero locally nilpotent ideals, neither
does V2.

THEOREM 38. S( V5) = V2 Π 2(i?).

THEOREM 39. // JR is primitive or *-primitive, so is V2 provided

WO.

THEOREM 40. / / J R is semi-simple, so is V2.

THEOREM 41. %(v~2) = V2 n

It suffices to show that if a G V2 and a°b =0= b°a then
6 G Γ . The argument used in Theorem 30 shows that (1 + b)V\l +
b)QV2. (The formal use_of the symbol 1 is all right.) Then b =

+ α 2 )( l + 6)G V2.

THEOREM 42. 7/1? is semi-primary, primary, or completely primary,
so is V2 provided V-έ J(R).

In the example given in [13], 2R = 0 and 1 G R, so K2 = S. Hence
K2 need not be noetherian even Jf JR is a commutative noetherian
domain. However, K2, as well as S, inherits Goldie conditions when R
is semi-prime. The proof of the next theorem is based on Lanski's
argument [10] but is a little simpler.

THEOREM 43. If R is a semi-prime Goldie ring, so is V2.
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Proof. Since the a.c.c. on__right annihilators is inherited by sub-
rings, it suffices to show that V2 has PC infinite direct^ sum of nonzero
right ideals. Let {ρa} be a set of right ideals of_V2jsuch that Σaρa

is direct. Denote by / the ideal of R generated by [ V2, V2]. Then ΣaρJ
is a direct sum__£f right ideals of R, so ρal = θ and hence paQ
V2 Π Ann./ C Z ( V2) for almost all a. Being a commutative semi-prime
subring of a Goldie ring, Z(V2) is itself a Goldie ring and hence pa = 0 for
almost all α.

Let R = F 2, where F is a field with char.F = 2 and * is given by

transpose. In this case, f = Ko = { ί* α, Z> E Ff possesses the nil-

potent ideal j α E F even though R is simple. This example

kills the hope for f or Ko to inherit those nice properties we have
discussed so far. Fortunately, the behavior of K is not that bad.

THEOREM 44. If R is *-simple, either K = R or K is a commutative
*-simple ring provided K^ 0.

Proof If char./? = 2, then K = S and hence the assertion follows
from Theorem 4. Assume that chaτ.R^l. If [K2, K2] ^^_ then K
a]so contains_the nonzero *-ideal of R generated by [K2,K2], so
K = R. If K2 is commutative, then K2 C Z + by Theorem 30. Suppose
that Z £ S, then a* ^ a for some α 6 Z , so β = a - α * ^ 0 . Thus,
Sβ~xQK and hence S C JKΓ/8. Therefore, j R = S + ί C K Next, as-
sume that Z C S. Then i? must be simple. By Lemma 29, 1? satisfies
an identity of degree 4 and hence dimzl? S 4 by Kaplansky's
Theorem. If R is a division ring, choose α 6 K , α ^ 0 , then KaΓ1 CK2Q
Z. So KCZaC K, that is, K = Za. Hence K = Z(a) is a field. If
R = F2 for some field F, the commutativity of K forces * to be of

transpose type, say, , = , . f o r some σ E F. Then

K = 11 , α, fe E Ft. If - σ is not a square in F, K is a field;

while if - σ = π2 for some π E F, X = L j φ L 2 where Li =

i α 6 F and L2 = i α E F are two

llπa a J J U - π α α J| J

fields which are isomorphic via the map induced by *.

THEOREM 45. If R is *-prime, so is K.

Proof If K} isjiot commutative, then K also contains the ideal
generated by [K2, K2]. An argument exactly like that jn Theorem 5
proves the *-primeness of K. Now we assume that K2 is a nonzero
commutative ring. The quotient ring Q = {a I a \ a E i?, a E Z + , a/ 0}
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is either a *-simple ring or a commutative *-prime ring relative to the
involution (a/a)* - a* I a. In the former case, K(Q) is a commutative
*-simple ring by the previous theorem. So in either case K(R) is
contained in a commutative *-prime ring and hence is *-prime.

LEMMA 46. // R is semi-prime, then CV(V2) = Z(V).

Proof. Assume first that R is *-prime. If _V̂  is not commutative,
then it contains a nonzero_jMdeal J of JR, so Cv(V2)CCR(I)CZ(R) by
Lemma 6 and hence Cy(V2) = Z(V). If [V2, Vjj= 0, then V2_C Z{R)
and [V, V] = 0 by Lemma 29 and hence CΫ(V2)= V = Z(V). The
semi-prime case can be built up easily via subdirect sum.

The next lemma is crucial in the study of K.

LEMMA 47. Let R be a semi-prime ring and I a * -ideal of K. If
IΠK = 0, then 1 = 0.

Proof. If / Π K = 0, then JJZ S. For any α G J and k E K, ak =
(ak)* = - ka. Hence IC CR{K2) = Z(K) by Lemma 46. Thus IK C
/ ΓΊ K = 0, so 7K = 0, and in particular I2 = 0. For any a E I and JC E 1?,
we have α(jc-jc*) = θ, that is, ax = ax* and hence αxα = a(xa)* =
α2x* = 0. Since JR is semi-prime, it follows that / = 0.

LEMMA 48. // JR is semi-prime, and k EJC with kKk = 0, tfien
k =0.

Proo/. For any JC G JR, fc(χ-χ*)fc=0 so kxk = kx*k. Then
kxkxk = k(xkx*)k = 0 and hence /ci? is nil of index 3. So, fc = 0 by
Levitzki's lemma.

THEOREM 49. // R is semi-prime, so is K.

Proof Let / be a *-ideal of K such that I2 = 0. For any a G / Π K,
we have αKα C /2 = 0 so a = 0 by Lemma 48. Lemma 47 shows / = 0,
so K has no nonzero nilpotent *-ideal and hence is semi-prime.

THEOREM 50. // JR has no nil ideal other than 0, neither does K.

Proof. Let / be the ideal of R which^ is generated Jby
[K2,K2]. Then 9i(/) = 0 and / C K If a G WJC) Π K and b G K2,
then a2b_-ba2Ein$l(K) = 0. Thus a2EZ(K2) and by Lemma 46
a2EZ(K). But JSΓ is semi-prime and a is_nilpotent, so α2 = 0 for all
a E yi(K) Π K. In view of Lemma 28, $l(K) ΠK = 0 because $l(K) is
itself a semi-prime ring. Hence, it follows from Lemma 47 that $l(K) =
0.
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A similar argument proves the following

THEOREM 51. If R has no nonzero locally nilpotent ideal, neither
does K.

The proof of the next theorem is exactly like that of Theorem 39.

THEOREM 52. If R is *-primitiυe, so is K provided K^O.

THEOREM 53. // R is semi-simple, so is K.

Proof. Let a G %(K) Π K. For any x6J?,we have

ax o ( - ax*) = a(x - x* - xax*)G %(K)K C%(K).

Hence aR is quasi-regular, so a = 0. By Lemma 47, $ ( £ ) = 0.

THEOREM 54. If R is semi-prime artinian, so is K.

Proof. Immediate from Theorem 44.

Unlike S, the semi-prime assumption on R is not sufficient to get the
converse theorems for K or K2. For example, let F be a field with
char.F^ 2, σ an automorphism on F with σ2 = 1, and A a commutative
semi-prime algebra over _F Put J R = F 0 Λ and define (a,a)* =
{a\ a). Then K = F and K2 = F σ are fields provided σ ^ 1, while R is
not even *-prime. Further, if A possesses an identity and dimFA = oo?

then R is neither artinian nor Goldie.
On the other hand, the *-primeness is sufficient for our

purpose. To begin with, we prove a lemma which is analogous to
Lemma 3.

LEMMA 55. Let R be a *-prime ring and I a nonzero 3t'-ideal of R
such that IΠKl = 0. If K0^0, then 1 = 0.

Proof. If / Π Kl = 0, then (/ Π KQ)2 = 0. Since / is itself a semi-
prime ring, and / Π Ko is a skew subgroup of /, so / Π Ko = 0 by Lemma
28. Hence I CS. For any a E I and x E R, we have ax = (ax)* =
x*α. So if α, fc G J and x G K, then αfcx = αx*b = xαb = abx*. That
is, /2K0 = 0. Since R is *-prime and Ko ̂  0, it follows 7 = 0.

LEMMA 56. Let R be a *-prime ring and e the identity of K or
V2. If e ̂  0, then it is the identity of R.
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Proof, Since the only nonzero central symmetric idempotent in a
*-prime ring_te the identity, it suffices to show that e E Z(R). If e is the
identity of V2, then ex - xe EL V2 for all x E R because V2 is a Lie
ideal. If e works for K, then ex - xe = e(x - x*) + (ex* - xe) E K for
all x E R. Hence e(ex - xe) = ex - xe — (ex - xe)e and this implies
that eEZ(R).

On the basis of Lemma 55, we can prove the converse theorems by
using an argument parallel to that for U.

THEOREM 57. // R is *-prime, and K or V2 is a *-simple ring with
identity, so is R,

THEOREM 58. IfR is *-prime, and K or V2 is * -primitive, so is JR.

THEOREM 59. Let R be a *-prime ring and * not the identity
map. If K or V2 is semi-simple, so is R.

Proof Since 3(V2) = 1V2D^(R), so %(R) n K2

0 = 0 if V2 is semi-
simple. By Lemma 55, R must be also semi-simple. In case K is
semi-simple, so is K2 by Theorem 41, and hence R is also semi-simple.

THEOREM 60. // R is ""-prime, and K or V2 has no nil ideal other
than 0, then neither does R.

THEOREM 61. If R is *-prime, and K or V2 has no nonzero locally
nilpotent ideal, then neither does R.

We close this paper with two theorems on chain conditions.

THEOREM 62^ Let R be a *-prime ring. If * is not the identity map
and either K or V2 is artinian, then so is R.

Proof By Theorems 31 and 45, both K and V2 are *-prime. Say,
if K is artinian, then it is^*-simple with identity, so R is also *-simple by
Theorem 57 and hence K = R or K is commutative by Theorem 44. In
the later case, R satisfies a polynomial identity, and is finite dimensional
over a field contained in Z. Hence, R is artinian. The situation when
V2 is artinian is the same.

For a E R, let rR(a) = {x E R\ax = 0} be the right annihilator of a
in R. Denote by #(/?) the right singular ideal of R, that is,
{a E R I rR(a) Π p^ 0 for any nonzero right ideal p of R}.

THEOREM 63. Let R be a * -prime ring. If V2 is a Goldie ring, so is
R.
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Proof. If R is commutative, then Q = {a I a \ a E R, a E 5, a ^ 0} is
a commutative *-simple ring, and hence R is a Goldie ring. Assume
that JR is not commutative, while [ V\ V2] = 0. Then V2 C Z + and
Q = {α /α I α E JR, α E Z+, t* ̂  0} is a *-simple ring. Since [ V, V] = 0, it
follows that Q satisfies a polynomial identity, and hence is artinian. So,
JR is a Goldie ring. Lastly,_assume that [ V2, V2) ^ 0 and let I be the
ideal of R generated by {V2, V2]. Suppose {ρa} is a set̂ of right ideals of
R which forms a direct sum. Then pj Cρa Π IC V2 and pj = 0 for
almost all α. Consequently pa = 0 for almost all a. Consider
#(JR)n/. If a Eβ(R)ni then for any nonzero right ideal p of /,
plVO, so rR(a)Π pI^O and hence rj(α)Πpτ^0. In other words,
$(jR)ίΊ IC$(I) = 0 because / is itself a semi-prime Goldie ring. So
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