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EMBEDDINGS OF SHAPE CLASSES OF COMPACTA
IN THE TRIVIAL RANGE

J. G. HOLLINGSWORTH AND T. B. RUSHING

We show that for compacta X , Y C ^ n , n ^ 5 , satisfying the
small loops condition and having dimensions in the trivial range
with respect to n, Sh(X) = Sh(Y) if and only if Rn - X *
Rn - Y. As a corollary we obtain the following result whose
statement is void of shape: If X, Y C Rn, n ^ 5, are homeomor-
phic compacta satisfying the small loops condition and having
dimensions in the trivial range with respect to n, then Rn - X ~
R

 n - y.

1. Main results and introduction. In this paper we are
concerned with the general problem of classifying the collection Cz of
compacta in a space Z for which the following property holds: Sh(X) =
Sh (Y) is equivalent to Z - X ~ Z - y (~ means "is homeomorphic to")
for all X, Y E Cz. Our results apply to compacta in Rn whose dimen-
sions are in the trivial range with respect to n. After defining a
fundamental homotopy condition and stating our main results, we will
discuss some related work.

Let X be a compactum in a manifold M. We say that X satisfies
the small loops condition (SLC) if for any neighborhood U of X, there is
a neighborhood V of X in U and an e > 0 such that each map of S1 into
V - X of diameter less than 6 is null homotopic in U - X. We say that
k is in the trivial range with respect to (w.r.t.) n if 2 /c+2^n (or
equivalently k ^ [n/2] - 1).

THEOREM 1. Let X, Y C Rn, n § 5 , be compacta satisfying SLC
whose dimensions are in the trivial range w.r.t. n. Then, Sh(X) = Sh(Y)
if and only if Rn - X« Rn - Y.

Theorem 1 generalizes the main result of [6] which we recapture in
the following corollary. (The paper [6] improved upon [4] which was
the first trivial range work of the nature of Theorem 1.) The 1-ULC
hypothesis of Geoghegan and Summerhill is a local condition that
traditionally has been used to show that topological embeddings are flat
or unknotted, whereas the SLC, the cellularity criterion, and the global
1-alg property are three intimately related (see Proposition 1.5 of [5])
global conditions that have traditionally been used to show that topologi-
cal embeddings have nice complements (are weakly flat) or homeomor-
phic complements. We will give an example illustrating this point
following Corollary 3.
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COROLLARY 1. (Geoghegan and Summerhill) Let X, Y C jRn, n ^
5, be compacta whose dimensions are in the trivial range w.r.t. n such that
Rn-X andRn~Y are 1-ULC. Then, Sh(X) = Sh(Y) if and only if
Rn-X~Rn- Y.

The next two corollaries are purely topological, i.e., their statements
are void of shape. However, it is interesting to note that an attempt to
prove these corollaries directly seems to naturally lead one into shape
theory!

COROLLARY 2. Let X, Y C Rπ, n ^ 5, be compact ANR's whose
dimensions are in the trivial range w.r.t. n and that satisfy the
SLC. Then, X and Y have the same homotopy type if and only if their
complements are homeomorphic.

COROLLARY 3. Let X, Y C Rn, n^ 5, be homeomorphic compacta
whose dimensions are in the trivial range and that satisfy SLC. Then,

It is now known that two cells in Rn with 1-ULC complements are
equivalently embedded, and that two cells in Rn satisfying the cellularity
criterion [8] have homeomorphic complements. (In fact, [8] establishes
Theorem 1 for compacta with trivial shape.) Analogously, Bryant [2],
[3] and Stan'ko [13] have shown that two trivial range compacta in Rn

with 1-ULC complements are equivalently embedded, and Corollary 3
shows that two trivial range compacta in Rn satisfying the SLC have
homeomorphic complements.

By considering embeddings of shape classes, we are able to prove
"weak flattening" theorems for a wide class of compacta. Also, shape
theory allows us to obtain converses for "weak flattening" theorems, i.e.,
under certain conditions, homeomorphic complements implies equal
shape. In our opinion, this is one important justification for the theory
of shape.

The following trivial range theorem can be proved by using Theorem
2.4 of [5] and some work of Wall [14]: If X, Y C Rn, n ^ 5, are compacta
in the trivial range that satisfy the SLC and that have the shape of a finite
complex, then Sh (X) = Sh (Y) implies that Rn - X « Rn - Y. (Ross
Geoghegan pointed out the relevance of [14] to this result.) Although
this theorem replaces the 1-ULC hypothesis of Geoghegan and Sum-
merhill with the more desirable SLC, it adds the condition that the
compacta have the shape of a finite complex. It is the purpose of this
paper to show that that condition is unnecessary and to prove the
converse.

Notice that one direction of Corollary 2 follows from the theorem
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mentioned in the last paragraph combined with the recent result of West
[15] that every compact metric ANR has finite type. Our proof will not
use [15].

The authors would like to thank John Bryant for a key observation
concerning the proof of Theorem 1 for the case n = 5.

2. Proof of Theorem 1. We begin by making a
definition. Let X C Rn be a compactum whose dimension k is in the
trivial range w.r.t. n. Then, X is homotopically stable in R" if given a
neighborhood U of X, there is a neighborhood V C U of X such that
regardless of base point τr,(V, V - X ) * 0 for 0 ^ / ^ n-[n/2]. (We
will ignore the base point in this paper.)

Before proving our first lemma, let us state a couple of
sublemmas. The first sublemma follows from Theorem 1.3 of [5].

SUBLEMMA 1. If X C Rn, d i m X ^ n - 3 , is a compactum which
satisfies the SLC, then ^(17, £ / - X ) ~ 0 , i =0,1,2, for each neighbor-
hood U of X.

The next sublemma follows from Theorem 10 (page 342) of
[10]. (H* denotes singular homology with Z coefficients.)

SUBLEMMA 2. Let Vbe an orientable n-manifold and letX C Vbe a
closed subset such that dimX=fc. Then, / ί ( V , V - X ) ~ 0 for i^
n-k-ί. (Thus, if kS[n/2]-l, then Hi(V,V-X)~0 for i^n-
[n/2].)

LEMMA 1. Let X C Rn be a compactum, dimX = k g n - 3, that
satisfies the SLC. Then, X has arbitrarily small neighborhoods V such
that 7Ti(V, V- X ) « 0 for i =g n - k - 1. (Thus, if k g [n/2] - 1, then X
is homotopically stable.)

Proof Choose an arbitrarily small neighborhood V of X satisfying
Sublemma 1. Let V denote the universal cover of V with projection
p: V-> V. Denote p~\X) by X. Since τr2(V, V - X ) ~ 0 , it follows
from the homotopy lifting property that V ~ X (denoted by λί^X) is
the universal cover of V-X with projection p\(V-X). It follows
from Sublemma 1 and the homotopy lifting property that π, ( V, V - X) «*
0 for i =0,1,2. Sublemma 2 implies that H,(V, V^xj^Ojfor i §
n-k-ί. Hence, the relative Hurewicz Theorem yields π f( V, V- X ) «
0 for i ^ n - fc - 1. For ί = 3,4, , n - k - 1, consider the diagram

7r,(V^X)-»7r,(V) -> 0 -> T Γ ^ V ^ X ί ^ T r

A I I I
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An application of the five lemma to this diagram finishes the proof.
For completeness, we will briefly sketch a classical type proof, based

on some remarks in [2], of the next lemma. Alternately, one can prove
Lemma 2 by techniques in §3 of [6] and we prefer that method to the
more classical one outlined below. Let M""3 denote the set of points in
Rn at most n - 3 of whose coordinates are rational.

LEMMA 2. Let X C Rn be a k-dimensional compactum, 2k+1
g n. Then, given e > 0, eυey map ofX into Rn can be e-approxin ated by
an embedding g such that Rn - g(X) is 1-ULC.

Proof. Let M(X, Y) [E(X, Y)] denote the set of all mappings
[embeddings] of X into Y. Then, E(X,Rn) is a dense Gδ subset of
M(X,Rn), c.f., page 57 of [7]. The proof of Theorem V5 of [7] shows
that M(X, MΓ3) is a dense Gδ subset of M(X, Rn). Thus, E(X, MΓ3) =
£(X, l? n )nM(X,MΓ 3 ) is a dense Gδ subset of M(X,Rn). But if
g G £(X, Mn

n~% then Rn - g(X) is 1-ULC by the proof of Theorem 2 of
[2].

REMARK. M. A. Stan'ko [12] has shown that every embedding of a
k-dimensional compactum X, l c ^ n - 3 , into Rn can be approximated
with an embedding g such that Rn - g(X) is 1-ULC. This result could
be used to replace the last part of the above proof.

LEMMA 3. Let Xbe a homotopically stable compactum in R *, n g 5,
and let f:X->Rn be a map such that dist(x,/(JC))< e for each
x E X. Let 0 be an open set containing /(X). Then, there is a
homeomorphism h: Rn -» Rn such that

(1) h = identity outside of the €-neighborhood of X,
(2) Λ(X)C0, ami in fact
(3) ft | X - / in 0 (tfie homotopy may oscillate badly in 0).

Proof Case 1. ( n g 6): (The first part of this is similar to Lemma
2 of [2], however, our hypothesis is too weak to insure that h can be
chosen so that h | X approximates /. Consequently, the existence of the
homotopy specified by (3) is crucial.)

Extend / to a map / of Rn to Rn. Let N be a small polyhedral
neighborhood of X equipped with a triangulation T of small mesh. (We
require that f(N) C 0.) Let T* be the ([n/2] - l)-skeleton of Γ and T*
be the dual (n - [n/2])-skeleton. Approximate / | JV with a PL map /
that is in general position with respect to T (cf. Theorem 1.6.10 of
[13]). Then, f\X is homotopic to / inside of 0 and f\Tt is a PL
embedding. Now there is an e-push hx of (En, T*) by [1] such that
Λ | W | 7
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Since X is homotopically stable, we may employ Stallings' engulfing
Theorem [11] to shift X off of Γ* with a homeomorphism h2, where h2 is
ambient isotopic to the identity by an isotopy that is fixed outside of a
small neighborhood W C N of X. (Of course this isotopy may oscillate
fiercely inside of W.) Now we may use the local join structure between
Γ* and T* to obtain a small push h3 of (Rn, h2(X)) such that h3 h2(X) is
very close to T*. Let h = hx h3h2. By construction, h satisfies (1) and
(2). It remains to see that h \X — f in 0.

We have already observed that f — f\X inside of 0 and so it will
suffice to show f\X — h \X inside of 0. First notice that the identity
l x : X-+X is homotopic (in fact, pseudo-isotopic) to a map p: X-» T*
by a homotopy r, whose track lies in JV. In particular, let r,, 0 ^ t ^ \, be
the restriction to X of the ambient isotopy that realizes h2, and let r,,
\ ^ t ^ 1, be the pseudo-isotopy obtained by pushing h2(X) into T*
straight down the local join structure between T* and T*. Now, notice
that f\X is homotopic to fp = hφ by the homotopy frt that takes place in
/(JV)CO.

We will be through if we also show that h \ X is homotopic to
fp - hxp inside 0. Well, h3h2\X is certainly homotopic to p via the
pseudo-isotopy g, which slides h3h2(X) straight down the local join
structure. But then h1h3h2\X = h\X is homotopic (inside 0) to hφ by
the homotopy hxgt as desired.

Case 2. (n = 5): (the proof of this case involves a modification of
the techniques of proof of Lemmas 1, 2 and 3 of [3]. Again we cannot
hope to have h \ X approximate /, consequently the existence of the
homotopy specified by (3) is important.)

Extend / to a map / of Rn to i?n. Let JV be a polyhedral
neighborhood of X such that f(N) C 0. We now make a claim.

CLAIM A. There exists a cover of X of order 1 by simply con-
nected open sets ί/l5 , l/Γ such that Ui Π U} is connected for each
/,/ = 1, , r. Furthermore, (7, C JV, i = 1, , r.

The proof of Claim A follows the lines of proof of Lemma 1 of [3],
with one modification necessary. This modification occurs at the point
where we want to kill ττi(θM ) by the surgery trick of trading 2-
handles. In particular, suppose we have reached the stage that we have
a PL simple closed curve C in dMλ which represents a generator of
ττi(dΛfi) and suppose we have the PL 2-cell D in N such that 3D =
C. At this point, Bryant uses the fact that En - X is 1-ULC to shift D
off of X with a small shift. We may use our homotopically stable
hypothesis and Stallings' engulfing to shift D off of X by a shift which
takes place in a small neighborhood of X. The proof now proceeds as in
Lemma 1 of [3]. Although we cannot conclude that the resulting L7,'s
are small, as in [3], we nevertheless establish Claim A.
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Consider the cover {Uu- , Ur] of X given by Claim A. O n e may

piecewise linearly embed the nerve P of {Lζ} in U= U [=1 U, as in

[3J. Approximate f\N with a PL map / that is in general position with

respect to P. Then, f\X is homotopic to / inside of 0 and f\P is a PL

embedding. Now there is an β-push hx of (E\P) by [1] such that

h ι \ P = f \ P

Let W be a regular neighborhood of P in ΛΓ such that hx(W) C
0. (Then W deformation retracts to P.) This brings us to another
claim.

CLAIM B. Suppose that { I V , l/J, P, and W are as
above. Then, there is an ambient isotopy et of Rn which is the identity
outside U such that ^(X) C W.

The proof of Claim B is very much like the proof of Lemma 2 of [3];
however, a few comments are in order. Notice that it is not necessary
that the Vys be simply connected (only connected). We would be in
trouble if this were necessary! We can construct the homotopy g: Λf2 x I
-> U even though the l/i's are not small; however, g will not necessarily
be an e-homotopy. The properties of {[/J allow us to apply Zeeman
piping to get an ambient isotopy e) of En such that e) is the identity
outside U and e \( W)D g (M2 x 0). The homotopically stable
hypothesis and Stallings' engulfing suffice to yield and ambient isotopy e]
that moves only in a small neighborhood of X and that shifts X off of
Mn~3. Let e] be the isotopy pushing across the join structure between
M2 and Mn"3 that carries e\{X) into e\(W). Then, et may be taken to be
the composition of the three isotopies e], e] and e), respectively.

We now define h to be hx ex. It is clear that h satisfies (1) and (2);
hence, it remains only to establish (3). We have already observed that
f^f\X inside of 0 and so it will suffice to show that f\X =*h\X inside of
0. First notice that the identity l x : X-*X is homotopic to a map
P: X -» P by a homotopy rt whose track lies in N. In particular, r, is the
homotopy e, | X followed by a deformation retraction of W to P. Notice
that / | X is homotopic to fp = hφ by the homotopy frt which takes place
in /(ΛΓ) C 0.

We will be through if we also show that h \ X is homotopic to
fp = hφ inside 0. Well, ex \ X is certainly homotopic to p via gtβι where
gf is the deformation retraction of W to P. But then hλex\X = Λ |X is
homotopic (inside 0) to /^p by the homotopy ftig,ei as desired.

LEMMA 4. LetXbe α homotopically stable compactum inR", n ^ 5,
and /eί f:X-+Rn be a map which is homotopic to ϊx in an open
neighborhood UofXU f(X). Then, given an open set V where f(X) C
V CU9 there is a homeomorphism h: Rn-+Rn such that

(1) h = identity outside of U,
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(2) h(X)C V, and in fact
(3) h\X~fin V.

Proof. Let et denote the homotopy connecting l x and /. Let € be
one-half the distance between the track of et and Rn - U. Then, by
using Lemma 2 to approximate / and enough levels of et, we may obtain a
sequence of embeddings fuf2, ••-,/* of X into Rn satisfying the follow-
ing properties.

(1) /i = lχ

(2) Λ - / i n V
(3) En - f(X) is 1-ULC for i = 1,3, , k
(4) d(fhfM)<e for i = l,2, , k - l , and
(5) d ( / ( X ) , i ? " - ί 7 ) < 6 for ί = 1,2, ••-,*.

Now, by applying [2] or [3] (fc - 2)-times, we obtain a homeomorphism
hx:R

n-*Rn such that

(1) Λi/2 = Λ
(2) hx\Rn- l/ = identity.

But now we are in position to apply Lemma 3 where (X, /, R", 0, e) of that
lemma corresponds to (X,f2,R

n,h~x\V),e). Let ft2 be the resulting
homeomorphism of JR". Then, it is clear that h = hxh2 is the desired
homeomorphism.

The following lemma corresponds to Lemma 4.1 of [6]. (It is
perhaps worth mentioning here that the statement of Lemma 4.1 of [6] as
well as the statements of several other results in [6] are redundant in that
the requirement "strong Zn_fc_2-set ( f c ^ 0 , n δ 2 f c + 2)" could be replaced
by "strong Z [ n / 2 ]_ rset.")

LEMMA 5. LetX, Y C JR", n g 5, be homotopically stable compacta
whose dimensions are in the trivial range such that Sh(X) = Sh(Y). Let
{fhX,B} and {/•, Y,Λ} be fundamental sequences (in Rn) which are
homotopy inverses to one another Let UQ be a neighborhood of X and let
hbe a homeomorphism ofRn such that Y C h(U0) andh~ι| Yis homotopic
to f\ I Y in Uo for almost all L Then, for every neighborhood Vo such that
Y C Vo C h(U0% there is a homeomorphism q of Rn such that q-h
outside Uo, X Cq ~ι( Vo) and q | X is homotopic tof\X in Vo for almost all

Proof Construct /: X - * V such that /=* h \X in h(U0) just as is
done in the proof of Lemma 4.1 of [6]. Now appeal to Lemma 4 to
obtain the desired q.

Proof of Theorem 1. First assume that Sh (X) = Sh (Y). Lemma 1
assures us that X and Y are homotopically stable. One can show that
Rn - X ~ Rn - Y by meshing a basic system {7 }̂ of neighborhoods for X
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with a basic system {Wt} of neighborhoods for Y just as is done in the
proof of Lemma 4.2 of [6]. In that process, our Lemma 3 plays the role
of Lemma 4.1 of [6J.

Now assume that Rn - X ~ JR n - Y. By Lemma 2, we can find
copies X and Ϋ of X and Y, respectively, in Rn such that Rn - X and
Rn - Ϋ are 1-ULC (hence satisfy the SLC). Now the direction^ of
Theorem 1 already proved implies that Rn - X ~ Rn - X and Rn - Ϋ «
Rn - Y. Theorem 1.2 of [6] implies that Sh{X) = Sh(Ϋ). Therefore,
Sh(X) = Sh(Y) as desired.
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