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OSCILLATORY PROPERTIES OF SOLUTIONS

OF CERTAIN nth ORDER FUNCTIONAL

DIFFERENTIAL EQUATIONS

GARY W. GREFSRUD

With n even and I tn~ιa{t)dt <°°, necessary conditions

for xin\t) + a{t)f{x(g{t))) = 0 to have a bounded nonoscillatory
solution are given. If n = 2, sufficient conditions are also
given. Conditions which insure that solutions of x(n\t) +
f(t,x(g(t))) = 0 are oscillatory or tend monotonically to zero are
also presented in this paper.

Let g(t) and f(t, y) be real valued functions. In this paper we prove
several oscillation theorems associated with solutions of the following
two nth order functional differential equations:

(1) x(n)(t)+a(t)f(x(g(t))) = O, and

(2) *

We use the "normal" definition of oscillatory, that is, x(t) is an
oscillatory solution of (1) or (2) if x(t) satisfies (1) or (2) for large t and
x{t) has arbitrarily large zeros (x(t) Φ 0).

Theorems 4 and 5 are generalizations of results proved by Ryder and
Wend [6], associated with the equation x(π)-f/(r,x) = 0. In fact the
proof of theorem 5 has been omitted because of its similarity with the
corresponding result in [6].

Before stating our main results we give the following lemmas.

LEMMA 1. Suppose f(t) G Ck [a, oo), f(t) g 0 and f(k)(t) is monotone.
Then exactly one of the following is true:

(i) lim,_ffe>(0 = 0,
(ii) limt_/(fc)(r) > 0 and f(t)9 s /(fc"1}(r) tend to oo as t -* ».

LEMMA 2. Ify(t)E Cn[α,oo), y(t)go andy(n\t)^O on [a,™\then
exactly one of the following is true:

(I) y\t), , y(n~1}(/) tend monotonically to zero as t-^>°°.
(II) There is an odd integer fc, l g f c g n - 1 , such that

U m ^ y ( " " / ) ( 0 = 0 for l ^ j ^ k - 1 , l i m f _ y ( " - f c ) ( ί ) ^ 0

0 and y(t\y'{t\ , y(n~k~2)(t) tend to oo as ί-»oo.
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Analogous statements can be made if y(ί) = 0 a n c * y(n)(0 = ° o n

[α,«).
The results of Lemma's 1 and 2, given in [6], will be used throughout

this paper.

THEOREM 1. Suppose that n is even and
(i) α(ί) = 0 for t sufficiently large,
(ii) l i m ^ g ( r ) = +oo,
(iii) y/(y)>0 (y^O), /(y) continuous on (- 0 0 , 0 0 ).

Then a necessary condition for equation (1) to have a bounded

nonoscillatory solution is I tn'ιa{t)dt <<*>.

Proof. Let x(t) be a bounded nonoscillatory solution of (1). Sup-
pose x(t)>0 for t sufficiently large. Thus, since limt_*«,g(f) = + <», we
have that x(g(t))>0 for t sufficiently large. Hence, pick T large
enough so that a(t)^O, x(t)>0 and x(g(t))>0 for t^T. We have
(for t^ T), using Lemma 2, x ^ O ^ O ,

x(n-2)(0 ^ 0, , x(t) ^ 0: lim x(l)(ί) = 0, i = 1, , n - 1.

Thus, jc(f) is a nondecreasing function and since x(t)> 0 and is bounded
we have, limf_^cJt(ί) = limt_0Ojc(g(ί)) = L >0 .

From (1),

(3) x ^ ( 5 )

An integration of (3) n - 2 times from ί to oo yields

(4) (- lfχ(t) ^ f' {U

{~^ly a(u)f(x(g(u)))du

and integrating (4) from 5 to t where T ̂  s ̂ t we have

x(t)-χ(s) ^ f ("n~_\y a(u)f(x(g(u)))du.

Now using the continuity of / we may choose TX^T such that for t ̂  T,,
= Af. Hence for T ^ Γ . g s g ί we have

(5) x(0-x(5) ^ ^-rjjj f («-iΓβ(«)<ί«
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Letting t —> °° in (5) we have

ί (u -s)n~ιa{u)du <oo.

Then for t^2s we have

f <

i.e. I un ιa(u)du <oo.

If jc(r) < 0 for t sufficiently large a similar proof yields the desired
result. Q.E.D.

When n = 2, we establish sufficient conditions for equation (1) to
have a bounded nonoscillatory solution.

THEOREM 2. With n = 2 and
(i) there exists tλ > 0 such that g(t)^ tx for all t i? tu

(ii) g(t) is continuous on [0,<*>),
(iii) /(y) is continuous on ( - 0 0 , 0 0 ) w/ίft y / ( y ) > 0 for y^O,

(iv) |/(yi)| = |/(y2)| if |y i | = |y21»
(v) for each β > 0, ί/tere is α ί > 0 ί^αί satisfies the inequality

(vi) a (f) ^ 0 and /oca//y integrable on [0,») iv/fh a (ί) not identically

zero on any subinterval of [0, °°), i/

(6) ta(ί)dr<o°,

ί/ien ίΛere ex/5ί5 a bounded nonoscillatory solution of (1).

Γ 0 0

Proof. Assuming that I ta(t)dt < » , we note that (v) implies the

existence of some number M > 0 such that

(7) \\a{s)ds ̂
M

where ίi is chosen to satisfy (i). Consider now the integral equation

(8) x(t) = j+ tf~ a(s)f(x(g(s)))ds + £ sa(s)f(x(g(s)))ds.
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We now define a sequence {xk(t)} by

xo(t) = y

(9) xk(t) = f+t]ι a(s)f(xUg(φds

+ P sa(s)f(xUg(s)))ds.
Jti

One concludes that xk(t), k = 0,1,2, , is defined and continuous and,
in fact, is positive on [ίi,00). By induction we have

(10) y g χ f c ( 0 ^ M , fc =0,1,2, — , and

fil l v I #• l ^ * v i t \

T h u s t h e s e q u e n c e { x f e ( 0 ) c o n v e r g e s t o s o m e f u n c t i o n x(t) fo r t^tx a n d
i n d e e d

for ί ^ ίlβ

We now must establish that x{t) is a solution of the integral equation
(8) and thus a solution (nonoscillatory) of (1). For any e > 0, choose T

large enough so that sa(s)ds < e/2/(M). Then we have
JT

xk(t)-%- t Γ a{s)f(x(g(s)))ds -

g tj* a(s)\f(xUg(s)))-f(x(g(s)))\ds

+ ΐ sa

sa(s)\f(xUg(s)))-f(x(g(s)))\ds

+ Γ sa(s)f(xUg(5)))ds + Γ sa(s)f(x(g(s)))ds
JT JT

Si Γ sa(s)\f(xUg(s)))-f(x(g(s)))\ds
Jti

is + 6.
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Letting k —»oo we obtain

M ί00 f'

Thus x(t) is a bounded nonoscillatory solution of (1). Q.E.D.
Restricting our attention now to equation (2), we make the following

assumptions:
(12)

(i) g(t)^t-c for t sufficiently large, c >0, constant,
(ii) f(t,y) is continuous in S = [0, °°)x ( - oo, oo),
(iii) a(t)Φ(y)^f(t, y) if y >0 and f(t,y)^b(t)ψ(y) if y<0,

(ί, y)GS, where
(iv) a(t) and b(t) are nonnegative and locally integrable on [0,oo)

and neither a (t) nor b (t) is identically zero on any subinterval of [0, oo),
(v) Φ(y) and ψ(y) are nondecreasing with y Φ(y) > 0 and yψ(y) >

0 on ( - oo, oo) for y ̂  0.
(vi) there exist positive constants β and δ such that Φ(λy) =

λ^Φ(y), ψ(λy) = λδψ(y), A constant,
(vii) for some a > 0

dK , . . _ „ < o o

J - β φ(u)

THEOREM 3. Let x(t) be a solution of (2), valid for large t, which is
nonoscillatory. If n is odd, assume lim^ooJcίO^O. Suppose conditions
(i)-(vi) of (12) are satisfied. Then there exists a positive number k such
that Φ(x(g(t)))/Φ(x(t))^k if x(t) is eventually positive and

= fc tfx(t) is eventually negative for t sufficiently large.

Proof. Let x(t) be a nonoscillatory solution of (2). Suppose
x(t) > 0 for t sufficiently large. Pick T large enough so that x(t - c) > 0
for t^T. From (2) we have

(13) x^(t)=-f(t,x(g(t)))^-a(t)Φ(x(g(t)))^O if t^T.

Thus from Lemmas 1 and 2, x(t) satisfies one of the following:
(1) Jc(ί) = O, x(t)^0 for t sufficiently large,

lim x(ί) = 0, lim x(t) = L >0.

(2) Jc(i)SO, i ( 0 = 0 for / sufficiently large.
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(3) x(ί)^O, Jc(f)^O for t sufficiently large, with
x(ί), x(t), , x{n~k~2)(t) tending to °o as ί^oo, x^"*"1^) increasing to L
(0<L^oo), jc("-k)(ί) decreasing to M(M^O), and jc(n"k+1)(i),
• ,x ( n l ) (ί) ? tending to zero as t —>α>.

If case (1) applies we trivially have x(g(t))/x(t)^\ for t sufficiently
large.

In either case (2) or (3) we have, since x(ί)^0, x(g(t))^ x(t - c)
and thus x(g(t))/x(t)^ x(t - c)/x(t).

If case (2) applies, then exactly as in [1], we find x(g(f ))/*(*) =
kλ{kλ > 0) for t large.

Now suppose case (3) applies. Consider \\rat^x{t - c)/x(t) which
is of the form o%>o. Using LΉopitaΓs rule a sufficient number of times
we obtain

x(t-c)
~7 =

If L (in case 3) is finite we are done since then

,. x(t-c) L
hm v , λ ' = — = 1.

When L = oo? then again using LΉopitaΓs rule we have

, x(t-c)__ _ r xin-k)(t-c)
l im — , x — — l im /__fcw λ .

If M (in case 3) is positive again we are done since

r x(t-c) M Λlim v ,. ' = — = 1.

However, if Af is zero we then claim that

<"-k-ι)(t - c) Λ

since

l i m [x{n-k~ι\t)- x{n~k-x\t - c)] = l i m xin-k\ξ)c = 0 , t-c<ξ<t.

Thus
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Λn-k-\)ίt _V-c)
-»(r)

- 1
An-k-\)(t _ - \ _)(f Λ\ v(n—k—1)/

V* C j X I
r(n-fc-l)/

€XV

An-k-\)(

where h^T, is sych that xln~k~1)(t1)>0. Summarizing we have
lim,_»x(ί-c)/x(ί)=l Thus for t large enough, x(g(ί ))/*(') =
x(t-c)lx(t)>\.

Now letting fc2 = minβ, fe,}, we have x(g(t))/x(t)g fc2 for ί & T, ̂  T
and

> Φ ( k 2 x ( ί ) ) = . „ Φ ( x ( t ) ) = k β = k

Φ(x(0) = Φ(x(t)) 2 Φ ( ( ί ) ) 2

Now suppose x(ί) is a nonoscillatory solution of (2) which is negative for
t ^ Γ. Again, pick T large enough so that x(t - c) < 0 for t g Γ. Then
(13) becomes

(15) x<">(0=-/(/,x(g(0))^-*(0*(*(g(0))^0 if ί S Γ ,

and we find that x(t) must satisfy one of the following:
(1) x(0 = 0, JC(/)^O for t sufficiently large,

limi(ί) = 0, limx(ί) = L < 0 ,

(2) x(f)^0, i ( 0 = 0 for ί sufficiently large,
(3) x(/)S0, x(0 = ° f o Γ ^ sufficiently large, with x(t%

x(t%":,xin~k'2\t) tending to -α> as t-^><χ>, xin~k~ι\t) decreasing to
L ( - α ) ^ L < 0 ) , xin-k)(t) increasing to M (MSO), and n(n"k+1)(i),
• , x(n"υ(ί) tending to zero as *-»<».

If case (1) applies, we have that limt^x(g(t)) = L since g(t)^t-c and
x(t) is decreasing to L <0. Thus

x(ί) L

In either case (2) or (3)r g(t)^t-c implies x(g( ί))^x( ί-c) and
| | | |

x(t)
χ(κ(t))

x(t) x(t)
= x(t-c)

x(t) •

If we now use arguments similar to those used when x(t) > 0, we obtain
the desired conclusion.
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THEOREM 4. // g(t) is nondecreasing and satisfies (i) and f(t,y)
satisfies (ii)-(vii) of (12) and in addition

(16) Γ tn~ιa(t)dt = Γ tn~lb{t)dt = + oo,
Jo Jo

// n is even each solution of (2), valid for large ί, is oscillatory, while if
n is odd each solution of (2), valid for large f, is either oscillatory or it tends
monotonically to zero together wth its first n-\ derivatives.

Proof. Suppose.x(t) is a nonoscillatory solution of (2), valid for
large t. Assume x(t) is eventually positive. Thus x(t)>0 and

> 0 for t ^ T. From (2)

(17) *<">(*)= -/( i ;x(g(0)) i-α(ί)Φ(x(g(0)) iO.

Thus by Lemma 1 x(n-1)(i) decreases to a nonnegative limit, so from (17)
we obtain

(18) χ<*-»(s) g Γ a{u)Φ(x{g{u)))du.
Js

Suppose case I of Lemma 2 holds. Then an integration of (18) n - 2
times from Mo °o yields

(19) (- lf-2>x(0 s I < ( " w _ y a(u)Φ(x(g(u)))du.

If n is even, integrating (19) from T to ί έ T, we have

x(t) s

Since Φ is nondecreasing

(20) Φ(*(0)/Φ

If we now multiply (20) by

( n - l ) ! α w Φ(x(0)

and integrate from r to s we get, after a change of variable on the left
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(r-D"' j ί f ) Φ(
fr ( π - l ) uy'' Φ(x(ί))

(21)

where

and

S =

Now if by an appropriate choice of r, we can make R S α, then the left

hand side of (21) is bounded above for all s > r, hence I tn~ιa(t)dt < <».
Jo

I f t h i s i s n o t p o s s i b l e t h e n f o r a l l r ^ T

_7)"Γ a(u)du

and the result again follows.
If n is odd, then (19) becomes

(22)

So x{t) decreases to a limit L ^ 0 . Suppose L >0 . Then integrating
(22) from T to °o,

a(u)Φ(x(g(u)))du

using the monotonicity of Φ. But this implies I tn~ιa{t)dt <°o.
Jo

Now suppose that case II of Lemma 2 holds. Integrating (17) a
sufficient number of times we have
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(23) x<-">(ί) i= f ^{y a(u)Φ(x(g(u)))du.

Since xO)(ί) increases to °°, / < n - k - 1, there exists ί, § T such that
x 0 > (0>0 for fSf,, ; = 0 , , π - / c - l . Integrating (23) from ί, to
t>tu

>-*-»(ί) is £ f ("fc _ f)Γ a(u)Φ(x(g(u)))dudsγ(n-k-l

So

(24)

Integrating (24) successively n - k —2 times from ^ to ί we obtain

(25) χ(ί) > j " ̂ 'Iζ a(u)Φ(x(g(u)))du

and integrating (25) from tx to t gives

Now the proof proceeds as in case I.
If x(t) is a solution of (2), valid for large t, such that jc(ί)<θ for

t g T, the proof is the same except a(t) and Φ(w) are replaced respec-
tively by b(t) and ψ(u), and the sense of appropriate inequalities are
changed. Q.E.D.

In the .next theorem, condition (vi) of (12) is changed so that
equation (2) includes the special case

xin)+a(t)xa(g(t)) = 0, 0 S α < l ,

the ratio of odd integers.

THEOREM 5. Letg(t) satisfy (i) andf(t, y) satisfy (ii)-(v) of (12). In
addition suppose /(ί, y) satisfies (vii) there exist positive constants λ0, M, N
and constants j8, γ, vvfrere 0 ^ / 3 < l , 0 ^ γ < l , sucft that
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y>0,

y<0, λi?λo>O.

Then if

C oo C oo

(26) tiH~ι)βa(t)dt = t{n-χ)yb{t)dt = +00,

each solution of (2), valid for large ί, is oscillatory when n is even and is
either oscillatory or tends to zero with its first n - 1 derivative if n is odd.
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