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MONOTONE BASES IN L,
L. E. Dor AND E. ODELL

We prove that every monotone basis (decomposition) for
L,(n), 1< p <=, is unconditional. The structure of such bases
is closely related to that of the usual Haar basis. This structure
is described here, and it is shown that there is an uncountable
number of mutually non-equivalent monotone bases for
L,. The structure of monotone bases in L; is also considered,
and the equivalence question there is characterized in analytic
terms.

Introduction. The Theorem (2.1), that every monotone decom-
position, and in particular every monotone basis for L,(un), 1 <p <, is
unconditional was discovered also by A. Pekczyniski and H. P. Rosenthal
[10]. The remainder of §2 deals with the structure of monotone bases in
L,(u) (1<p <wx). In Theorem 2.2 we obtain a representation of a
monotone basis for L,(0, 1) as a direct ,-sum of what we call generalized
Haar bases (which are in turn a natural generalization of the classical
Haar system). Finally we show that there is a continuum of non-
equivalent generalized Haar bases in L,

In §3 we study monotone bases on L,(0,1). First we show how a
general monotone basis in L,(0,1) is obtained from generalized Haar
bases, and then we characterize analytically the equivalence of two
generalized Haar bases in L,(0, 1).

Section 1 contains notation and preliminaries. Several open ques-
tions are stated throughout the paper.

We wish to thank Professors T. Figiel, W. B. Johnson and H. P.
Rosenthal for many helpful discussions regarding the material presented
here.

1. Notation and preliminaries. We use standard Banach
space notation. A sequence of closed subspaces X, of a Banach space X
is said to be a (Schauder) decomposition if every f € X can be uniquely
expressed as f =27, f, where f, € X; for all i. The decomposition is
called unconditional if 27_, f; converges unconditionally for all f. This is
equivalent to the condition K = sup{|| Pz ||; E C N finite} < c where P is
defined by: Pef = 2,cef. K is called the unconditional constant of the
decomposition. A decomposition is called monotone if P, = Py ,... is a
contractive (i.e. norm 1) projection for all n. Thus a monotone decom-
position corresponds to a sequence (P;) of contractive projections
satisfying PP, = Pinij)-
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52 L. E. DOR AND E. ODELL

If (Q,%, ) is a measure space (u is assumed to be finite unless
otherwise stated), we shall refer to its L,-space as L,(u), L,(¥), or L,()
according to convenience. If Q,CQ we shall identify L,(£,) with
functions in L, () vanishing off Q. If ¢ is a sub o-ring of &, S($) will
denote the support of #; i.e. its greatest element, and the conditional
expectation &,f = &,,.f of f€ L(Q, ¥, n) with respect to # and u is

defined as the unique g € L,(Q,, #, u) satisfying f gdu = f fdu for all
E E

E &€ ¢ &, is a contractive projection of L,(¥) onto L,(¥), for any
p =1. For a function f, S(f) will denote the support of f; for a set A,
~ A will denote the complement of A. m is Lebesgue measure on
[0,1].

The contractive projections in L,(u) were characterized by Douglas
[4] (for p = 1) and Ando [1] (for 1 < p <, p# 2) as follows (cf. also [9]):

THEOREM A. (i) Let 1<p <o, p#2. If Pis a contractive projec-
tion in L,(w), then there is a measure v on &, an isometry T of L,(u) onto
L,(v), and a sub o-ring § of &, so that

TPT' = &,..

(ii) Let p = 1. If P is a contractive projection in L(p.), there are v, T
and ¥ as in (i) and a norm 1(nilpotent) operator N:L,(~ S(¥))
- L,(¥) so that

TPT\(f) = &,.f + N(fi-s)-

We outline the proof, since a similar construction will be used
later. The main part of the proof is to show the following special case:

Fact 1. If Pisa projectionin L,(n) (1=p <, p#2)and yqis in
the range R (P) of P then there is a sub o -algebra § of & so that P = &,.
Also needed is:

Fact 2. Every closed subspace X of L,(n) (1 =p <) contains a
function k with greatest support S(k) (i.e. for all f€ X, S(f)C S(k)
n—a.e.).

Now, let k, be an element with greatest support in R(P), (we shall
then write, S(P)= S(k,)) and let k = ko+ xy_sp). Define v by dv =
|k|?du and T: L,(u)— L,(v) by Tf = f/k,if fE L,(u). Q=TPT'is
a contractive projection in L,(v), and s, = xse) € R(Q). Therefore
by Fact 1, Qusey= &, for some subo-ring § of ¥ with S(#)=
S(P). Denoting Qi sy = N we have:

Of = & (fise)) + N(fi-s»)-
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Now, if 1 <p <, then L,(v) is smooth and hence contractive projec-
tions in L,(v) are uniquely determined by their range, (cf. [3]), implying
that N=0. For p =1, N can be any contraction.

The proof of our first result essentially extends Theorem A to
sequences of contractive projections (P,) satisfying P,P; = P We
then apply the following result of Burkholder and Gundy (cf. [2],
Theorem 9).

THEOREM B. Let 1<p <o, If$ C ¥, C ---isanincreasing se-
quence of sub o-algebras of & which generate the o-algebra §, then the
monotone Schauder decomposition (R(%y, — &), i =1,2,---) for L,(¥)
is unconditional. Moreover, there is a constant K,, depending only on p so
that the unconditional constant of this decomposition is smaller then K,

2. Monotone bases in L, (1 <p << ).

THEOREM 2.1. Let (P,) be a sequence of contractive projections in
L,(Q,% ), (1<p <, p#2), with PP, = Pyy.j. Then there is a mea-
sure v on Q, an isometry T of L,(n) onto L,(v) and a sequence of
subo-rings $,C $,C---C ¥ so that P, = T'¢,T.

Proof. We first note that Theorem A (and the definition of T in its
proof) implies:

*) If h, f € R(P), then h - x5, € R(P).

Let k€ R(P,) with S(k,)=S(P,). If S(P,)2 S(P;) use (*) to choose
k, € R(P,) with S(k,) N S(k,)=Jand S(k,)U S(k,) = S(P,). IfS(P)=
S(P,) we proceed to P; and continue in this manner. We obtain a
(possibly finite) sequence (k,) of disjointly supported functions and
integers n(1)=n(2)=--- with the property that for each each i

n(i)
S(P)=U S(k)

and k; € R(P) for j=n(i). We may assume k =27k, € L,(n) and
proceed to define v and T as in the proof of Theorem A, i.e. dv = |k ["du
and Tf = f/k. Clearly Q, = TP,T " satisfies Q;(x sc,)) = X sy and Q:Q; =
Qumniy- By Theorem A there are subo-rings $,C $,C---C ¥ with
Q =%, for i

COROLLARY 1. A monotone decomposition in L,(n), (1 <p <) is
unconditional with constant = K,, where K, depends only on p.
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Proof. For p =2 this is well known. If p#2, we apply 2.1, and
observe, that in the notation of its proof, we have:

(a) Of = Z XstyEs. (Xswy * f)s feL,(v),

(b) for fixed j the non zero projections f— xsu)&sf in L,(S(k;)) are
conditional expectations with respect to o-algebras on S(k;), and

(c) the direct [,-sum of projections of norm smaller then K, has norm
smaller than K,. The rest follows from Theorem B.

ReEMARK. Corollary 1 holds for arbitrary measures u. In fact, for
any given f € L,(n) we can find a sub o-ring %, C X so that L,(Z,) is
separable, contains f and is an invariant subspace for each projection P,
(cf. [11], Lemma 1 and its proof). Then by Corollary 1,

2 & (P, ~P"-1)f|| = K |If

for all ¢, = =1.

CoRrOLLARY 2. If (X,) is a monotone decomposition for L,(n),
(1< p <) with each X finite-dimensional, then there is a monotone basis
(x,) and integers 1=n0)<n(l)<--- ) that X =
[x;n(i—D=j<n@).

We proceed to describe more precisely the monotone bases in
L,0,1), 1<p<ow,p#2. For clarity of exposition we shall state the
results for separable L,(u) where u is a purely nonatomic probability
measure.

A system of sets (A,,; i =2",n=0,1,2,---)is called a dyadic tree if
for all n and i =2~

An+1,2i—1 N An+1,2i =
and
An+1,2|—1 UA.a = A,

DEerFINITION. Let 1<p <o, and let (A,,i =2 n=0,1,2,---)be a
dyadic tree in &. The generalized Haar system (h,k =1,2,---) with
respect to (A,;) is defined as follows:

hy=hg, = XAo,x/"XA(M”P
and:

hz"_’ﬂ = hmi = Hn,i /” H?l.i "P’
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where
H’M = {X AmZ)—I/,‘L (An2i-1) X An‘z./l-" (Anli)}’

for i=2""", nz=l.

The system (h,;) is determined by the conditions: h,; is a linear
combination of xa,._, and ya,,, which is positive on A,,,-; and satisfies:

[h..]l, =1 and fhm,du =0 (n=1).

If (A,,) are the dyadic intervals in [0, 1] and u is the Lebesgue measure
on [0, 1], this gives the usual Haar system in L,. It is easily seen, that a
generalized Haar system is a monotone basic sequence, which spans the
space L,(#), where ¢ is the o-algebra generated by the A,. If =%
we must have w(A,,)— 0; on the other hand if the A,; are intervals in
[0,1] and m(A,,)—0, then ¥ = &.

THEOREM 2.2. Let (x:) be a normalized monotone basis foi L,(w),
w purely nonatomic, 1 <p <o, p#2. Then there is a measure v, an
isometry T of L,(n) onto L,(v) which sends (x,) to a basis (yi), and a
sequence (possibly finite) of disjoint sets (E,) in &, covering ), so that
(y«) is the union of disjoint subsequences (y%,i=1,2,--+), n=1,2,---
where for each n, (y%,i =1,2,--+) is a permutation of a generalized Haar
basis for L,(E,).

Proof. By Theorem 2.1 we may assume that P, = &, for each i
where $,C #,C -+ - are sub o-ringsof ¥, and P,: L,(u)— [x1,* -+, x,] are
the projections associated with the basis (x;). For each i, we have:
L,(#)=R(P)=[x;,- -, x,] and so # is generated by i atoms. For
each i there are two cases:

1°. S(P)=S(P.) 2°. S(P)2 S(Py).

In case 1°, #, is obtained from #,_, by splitting some set A in #,_, into two
sets. Clearly S(x,)= A and f x,=0. In case 2° #, is obtained from
A

J.-, by adding an atom D disjoint from the i —1 atoms of #,_,. Then
P._ixp =0 so that x, = * x5 /v(D)" (being norm 1). We enumerate all
the x; obtained in 2° as {x}: n =1,2,-- -} and for each n enumerate the
functions {x;: S(x;)C S(x7)} as (x7)7.. This is clearly the required
partition.

ReMARK. In the above Theorem we could have let v = Lebesgue
measure m, on [0, 1]. Indeed there exist disjoint intervals E, C [0, 1] with
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m(E,) = u(S(x}))and a map ¢ from U § into the intervals contained in
[0, 1] which preserves inclusion, disjointness and measure, such that for
any x, of type 2°, ¢({t: x, >0}) is to the left of ¢({z: x; <0}). This map
extends to an isomorphism of the measure space ({1, #, u) onto the
Lebesgue measure space on [0,1]. Thus to study monotone bases in
L,(n), one need only study generalized Haar systems with respect to
dyadic trees and one can assume that the interval where x; is positive is to
the left of the interval where it is negative.

We turn now to the question of equivalence of Haar bases for L,
1<p#2. A basis (x,) is said to be K-equivalent to a basis (y.),

(x,,)*f(y,.), if for all n and all scalars ay, -, a,

S o] <o

If (h.;) is a generalized Haar basis for L, we define its generalized
Rademacher functions r, by:

P =207 (Rag t Bup b oo 4 Rn).

THEOREM 2.3. There exist two nonequivalent generalized Haar
bases for L,(0,1), (1<p <o, p#2).

Proof. Let (h,;), (r) denote the classical Haar and Rademacher
systemis. By Khintchine’s inequality (cf. [12]), (r,) is equivalent to the
usual basis of ;. We shall construct a generalized system (h,,), (r,) so
that (r;») is equivalent to the usual basis for J,, and hence (h.;) # (h ;).

It is easy to check, that if h = ayg — bxg, is a generalized Haar
function, then || ks, approaches 1 as m(E,)/m(E;)—0. (This does not
happen of course for p =1).

We shall have (r;.) ~ usual basis of [, if there are disjoint sets E, so
that:

(1) f [rhc|p >1— 47+ k=12
Ex
and
k-1
@ Dy |p <4 kvr, k=1,2,---
Ex j=1

(see [7], proof of Theorem 2).

Let hg, =1, hi, = h,,, and assume that (h;;) and E; are chosen for
l=sk=2n-1, i=2"" 1=j=n-1, so that (1) and (2) hold for
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k=1,--,n—1. Let (Ai, k=2n-1, i=2*) be the underlying
intervals. For each i =27, divide A,,,; into two disjoint intervals
Asziy and A,y with m(A,,,:) so small that [[Asn, |, | >1— 47, and
Zizn-m(Asnzi) = €, €, >0 being chosen so that M(E)= e, implies

>yl < 4o,

E j=n-1

Let E=U .1 A,,,. Then we have:

22n-1

’ 1 !
J’ l I'n !p = F'{ 2 ” hZ",iIAzn,zi
En 1=1

P >1—4-esr,

Thus (1) and (2) hold for k = n. Define now the functions hjn,,,;, | =2*
by splitting each A,,, into two intervals of equal measure. (This ensures
that m(A,;)— 0 and so (h,;) is a basis for all of L,).

Using an idea of J. Hennefeld [5], we can now prove:

CoROLLARY. There is an uncountable family of mutually nonequi-
valent generalized Haar bases for L,.

Proof. Let (E,) be a partition of [0, 1] into infinitely many disjoint
adjacent intervals, ordered from left to right. Define part of the tree
(A..) as follows: forany n = 11let A,,», = E,,and A, = U;., E. Now,
given a sequence (€,), €, = =1, complete the tree (A,;) so that the
system (h,,) = & satisfies the condition that for €, =1 the sequence
{h € ¥, S(h)C E,} in its natural ordering is equivalent to the usual
Haar basis (without constant term), while for €, = —1 it is equivalent to
the basis h,; of 2.3. Different sequences (e,) yield non-equivalent
systems (h,,;).

Questions. (1) Does every generalized Rademacher system span a
complemented subspace of L,? If so could this be used to construct an &,
space not isomorphic to any of those already known?

(2) Do there exist two non-permutatively equivalent generalized
Haar bases? (We can show that (for p >2) some permutation of the
generalized Haar basis constructed in 2.3 has its generalized Rademacher
system equivalent to the unit vector basis of 1,.)

3. Monotone bases in L;,. Monotone bases in L, are also
built from generalized Haar bases, however the ‘“‘interlace’ is somewhat
more involved, due to the larger variety of contractive projections in L,
(cf. Theorem A(ii).):
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THEOREM 3.1. Let (x.) be a normalized monotone basis for L,(n),
w purely non atomic. Then there is an isometry T of L,(n) onto some L,(v),
which sends (x,) to a basis (y.), and a sequence (possibly finite) of disjoint
sets E, in &, covering (), so that (y.) is the union of disjoint subsequences
(y,i=1,2,--+), n=1,2,---, where for each n, the sequence: xc,/| xz.
y5 Y5, -+ is a generalized Haar basis for L,(E,). Moreover, y} =
CoXe, + fo where ||f. || = || cuxe. || and f, is a combination of the elements (y,)
preceding y?i in the original sequence (y:).

2

Proof. Let (P,) be the projections associated with the basis
(x.). Using Theorem A(ii) and the proof of Theorem 2.1, we get an
isometry T of L,(u) onto some L,(v) and a sequence of sub o-rings
F,CHC---CZ& so that the projections Q; = TP,T™ have the form
Qf = €sf+ N(f-sis)), N being some norm 1 operator from
L(~S(#), % v) to L(Q, F,v). Let y, = Tx,. We have two cases: 1°
S(Q)=S(Q.,) and 2° S(Q,) 2 S(Q.,). In case 1° § is obtained by
splitting an atom A in $_, and y,; is a Haar function supported on A,
while in case 2° ¢; is obtained by adding an atom D disjoint from
S(#-1). In the latter case Q,-y(xp — Ni-ixp) =0, s0 yi = £(xo — Ni-1xp),
where |N_ixo [|=]lxo || and Ni_xp is $,_,-measurable.

In the rest of this section we examine the question when two
generalized Haar bases in L,[0, 1] are equivalent. If (h,;) is such a basis,
then a sequence (h, ), n =0,1,2,---) will be called a chain if S(h,;.)) C
S(hn-1in-1) for all n. Now, two generalized Haar bases (h,;) and (g.;)
are equivalent if (and only if) there is K so that every chain of (h,;) is
K-equivalent to the corresponding chain in (g,;). In fact, suppose that
(h,,;) is built on the dyadic tree of sets (A,;). Then[h,;,1=i=2""0=
k =n]=[xa.;i=2"] and any operator on this space attains its norm at
one of the y a,., since the convex hull of { £ x A,./M (a..), i =2"} is the unit
ball of [xa,.; i =2"]. Buteach y,,, is contained in the span of a chain.

Thus it is enough to consider the equivalence of chains. For
simplicity we shall consider only the chain (h,;), however the results
obviously apply to any chain.

THEOREM 3.2. Let (h,;) be the generalized Haar system based on
the dyadic tree of sets (A.;), and let (g.;) be the generalized Haar system
based on (B,;). Let Th,, = g,,, and define

P =L T(X A/ Man)s G =L T (X 5ol M 10)-

Then (h,;) ~ (8.1) iff M = max {var (p,), var (¢, )} < , and the equivalence
constant K satisfies: M =K =2M +3

<where, as usual, val(p,) = 2, | p “pn+1l) .
n=1
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Proof. Let e,; = xa./M@a.),- We have:
3) €n1 = €1, +2c,h,;, where

“4) € = m(An)/m(A,-1)

(check their integrals on A,_,, and on A,).

Thus for any k =n —1 and i =2* we have:

f Te,, = f Te,_;+ 2cnf 81 = f Te,-11= f Tey,,
): Bk, Bu.i Bk, Bk,

and so

f Te,, = f Te., —[ Te,: = px-1— Dx-
Bx.2 Bi-1,1 Bia

Now, Te,, is constant on By,, (k =n), and B,,, so that:

| Te..|| = Z ] Te,..| + ’ L Te,,

=k§=:] [Per— pic| +1pal.
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Finally, e,, = e,_1;— 2(1 — ¢, )h,,,, similarly to (3), so || Te,.| = | Te,-1.| + 2,
and the unit ball of [h,,;, n = 0,1, - -] is the closed convex hull of the set

{xe,n=1,2---}.

From (3) and the definition of the Haar functions g,; we get that

) p. = m(B.,) {1 +3 /m(Bk,,)}.

Applying Stolz’s theorem (i.e. the discrete version of L’Hospital’s rule,

cf. [8] p. 77, Remark 5) to p,, and putting;

(6) d,=m (Bn,z)/m (Bn—l,1)7

we see that if lim,c,/d, = A exists then lim,p, = A. Given a sequence
(c.), there is a generalized Haar system (h,;) for which (4) holds provided

that:

(7 0<c,<1 and 2 ¢, =
n=1

(The latter condition ensures that m(A,,) = II'; (1 - ¢;)—0). In particu-
lar, if we take ¢, = (n + 1), for fixed 0 < a = 1, then different values of «

give mutually non-equivalent generalized Haar bases.
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The considerations above motivate:
THEOREM 3.3. Let (h,,), (g..) be two generalized Haar systems,

built on the dyadic trees (A,;), (B.;) respectively. Let c¢,=
m(An,Z)/m(An—1,1)5 dn = m(Bn,Z)/m (Bn—l,l)- If

var<c) var(d><M<oo
d, Cn

then the chains (h,,) and (g.,) are equivalent (with constant =2M + 3).

Proof. In formula (5), putting: h,; = g, we get

1=m(B,) {1 +2 dk/m(Bk,x)},

SO
P, = {1 +3 ck/m(Bk,l)}/{l +k21 dk/m(Bk,l)}.

It is enough therefore to apply the following:

LEMMA. Let (a,), (b.) be sequences of reals with all b, > 0, and let

=Zak3 B"=k2=1 bk-

k=1

var (gﬁ) =var (Z:)

Proof. Let a, = t,b,.. Using Abel’s transform, we have:

Then

A,/B, = B! 2 tb. = B! "2 (t — t+1)Bx + t,, which gives:
k=1 -

An+l _ An l .
Bn+1 B,, (B Bn+l) 2 (tk+1 tk)Bk, SO that
AN _ S |Awa A,
var (B,,) - Z:l B.., B,
®© 1 1 n
< - —
= ;Z_l <B,. B,,H) ; [ 1 — t | By

N > (1 1
= 2 Itkﬂ L ‘ . Bkz (B,, - Bn+1) =var (tk )

k=1 n=k
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REMARKS. (1) It is conceivable that the condition in Theorem 3.3 is
also necessary. We can prove only that if (h,;) and (g,,) are equivalent
and either infc, >0 or infd, >0, then var(c,/d,) < .

(2) If (h,;) is a generalized Haar basis for L, then the chain
(h.;; n=0,1,---) spans a space isometric to [, In L, these chains are
conditional bases for /; (by (7), (3) and [6], Lemma 2). As, shown above,
there is an uncountable family of mutually non-equivalent such chains.

For 1 <p#2, we do not know if all chains in L, are equivalent.
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