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CARATHEODORY AND HELLY-NUMBERS OF CONVEX-

PRODUCT-STRUCTURES

GERARD SIERKSMA

Let Ci and c2 be the CaratModory-numbers of the con-
vexity-structures ^ for Xu respectivily ^ 2 for X2. It is
shown that the CaratModory-number c of the convex-product-
structure ^ © ^ 2 for XL X X2 satisfies the inequality c: -f
c2 — 2 ίg c g d + c2; cl9 c2 ̂  2.

The upper bound for c can be improved by one, resp.
two, if a certain number, namely the so-called exchange-
number, of one resp. each of the structures ^ and ^ 2 is less
than or equal to the CaratModory-number of that structure.

A new definition of the Helly-number is given and Levi's
theorem is proved with this new definition. Finally it is
shown that the Helly-number of a convex-product-structure
is the greater of the Helly-numbers of &[ and ^ 2 .

l Preliminary remarks and definitions. Existing notations
and definitions have been taken from [3], [4] and, in particular,
from [8]. Let ^ be a collection of subsets of a set 1; by Π ^ 7

and U ^ we denote the intersection and the union respectivily, of
the elements of ^ . ^ is called a convexity-structure for X iff
0 e ί f , Xertf and f\^er^ for each subcollection J^c^if; the
pair (X, ^ ) is called a convexity-space. The r^-hull of a set S c l ,
denoted by ^ ( S ) , is defined by ^(S) - Π {C \ Ce <& A Sc: C\. We
shall write ^ ( α ^ , an) instead of ^({alf , αΛ}), and ^ ( p U (A\α))
instead of r^({p} U (A\{α})).

Let Xt be a nonempty set and let ^ be a convexity-structure
for X,; i = 1, 2. Then ^ © ^ 2 = {A x B \ A e ^ Λ B e ^ } is a
convexity-structure for the Cartesian-product Xt x X2. The pair
{Xx x X2, ^ 0 ^ 2 ) is a called the convex-product-space, also called
the Eckhoff-space. Note that the 9fx 0 ίT2-hull of EaXιxX2 is
given by ( ^ 0 ^ 2 ) (£7) = ^(π^E) x ^2(πzE), where τrL is the pro-
jection of Xx x X2 on Xέ; i = 1, 2. Also note that if e19 e2, e3e
Xι x X2 with e1 Φ e2 and πt(e%) = TΓ̂ βs) for ΐ = 1, 2, then β3 e

2* The Caratheodory--number and the exchange-number* A
convexity-structure ^ for X is said to possess the Caratheodory-
number c if c is the smallest nonnegative integer such that ^(S) =
\J{^(T) I TaS Λ I T\ ^ c}, for all S c l . The following lemma is
an immediate consequence of this definition.
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LEMMA 2.1. Let W be a convexity-structure for X with
Caratheodory-number c and let ΐe N (N = 1, 2, 3, •)• Then the
following holds:

( i ) ( 3 i ) [ 4 c l Λ \A\ = c Λ &(A)<ί\J {&(A\a)\ae A}];
(ii) ( 3 A ) [ A c l Λ \A\ = Ϊ Λ

DEFINITION 2.1. The exchange-number of a convexity-structure
for X is the smallest positive integer e, such that

(vA)(Vp)[ A c X A peXΛe£\A\ < <*>

c U {^(P U (A\α)) I α 6 A}] .

Of course, if the exchange-number e of the convexity-structure &
for X exists then e ̂  1; if ^ is a TΊ-convexity-structure (see [4]) then
e^2; if i d , |A|^e and p e 9f(A) then %?(A) = \J{^(PV(A\a))\ae A},
see [5], axiom C3; if the Caratheodory-number c of ^ exists too,
then e <̂  c + 1, which follows directly from Lemma 2.1(ii).

EXAMPLE 2.1. Take X=Rn(neN) and & = conv, the usual
convexity-structure for the Euclidean-space Rn. The classical theorem
of Caratheodory implies that c = π + 1; see [2]. In [6] J. R. Reay
proved that e = π + 1.

EXAMPLE 2.2. Let ΐ f - {X} u {A | A c l Λ | A| ^ I}, ϊe N. Then
c = ϊ + 1 and e = 2.

EXAMPLE 2.3. Take ΛfcX, | M | = m (me JV), and define i f =
{X} U {A I A c X Λ M <£ A}. Because £f (A) - X if Me A, and ^(A) =
A if Λf ςz: A, it follows that c = m and e = m + 1.

EXAMPLE 2.4. The convexity-structure ^ = {X} U {A | A c X Λ
IAI < oo}, with | X | = oo, has no Caratheodory-number, but the
exchange-number is 2.

EXAMPLE 2.5. The convex-product-structure conv φ conv for
R x R has Caratheodory-number 2 and exchange-number 3.

THEOREM 2.1. Let ^ be a convexity-structure for Xi9 XtΦ 0 ;
ϊeί C; α^d ê  6e ί/̂ e Caratheodory-number respectivily the exchange-
number of &£ i — 1, 2. Γfte Caratheodory-number c o/ ^ 0 ^
exists and the following assertions hold:

I. 1/ min (q, c2) = 1 then
a. q + c2 — 1 <: c <: q + c2
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b. (3ί)[i e {1, 2} Λ e, ^ cj =* c = q + c2 - 1.
II. If min (q, c2) ;> 2 £Aew

a. q + c2 — 2 <: c <; q + c2

b. (3i)[ΐe {1, 2 } Λ e i ^ c < ] = > q + c 2 - 2 ^ c ^ q + c a - l
c. (Vί)[i G {1, 2} Λ e< ̂  c«] => c = c, + c, - 2.

Proof. First we show that the Caratheodory-number c of ^ 0 ^
exists and that c <̂  q + c2. Let 0 Φ EdX1 x X2 and (αx, α2) e

^ i ( ^ i ^ ) x ^(π2E). Hence there exists a set S, c
c, such that α* e ^,(5,); ΐ = 1, 2. S, c 7̂ 2? implies,

there exists a set Fi<zE such that ^ . F , = S, and | Ft | = | S* |; i =
1,2. So (αL, α2) G ί f i φ ) x ^ 2 (S 2 ) = ί f i f a F J x <έ?2(π2F2) c ^ ( ^ ( ^ U F,)) x
<&l%lFι U FO) = (^i θ ^ ( ^ i U F2). Obviously | F, U F21 ^ q + c2.
Because ( ^ 0 ^ 2 ) ( F ) c ( ^ 0 ^(JE?) for each f c f i , we have
( ^ © ^ 2 ) ( ^ ) = \J{(^iθ^2)(F)\Fc:EA \F\ ^ q + c2}; hence c exists
and c <̂  q + c2.

To determine the lower bound for c we choose, according to
Lemma 2.1.(i), a set At c X* such that \Ai\ = ci and ^ ( A J ζ£
U {^(A^α) i α £ -AJ; i = 1, 2. Take 6X e ^ and δ2 e A.2, and consider
the set G = (A1x {b2}) U ({£>J x A2)aXι x X2 Obviously | G \ = q + c2 - 1.
There are two cases (take q <̂  c2):

1. Let q = 1. Then A, = {δj and G = {6J x Λ So we have ( ^ 0
- ίfίfo) x ^ 2 ( Λ ) ςz! ^ ( δ j x U ί^2(Λ\δ) I δ G A2} - U {(^i 0
) I ee G}, and it follows from Lemma 2.1(ii) that c ^ q +

c 2 - l .
2. Let q ^ 2. Then also c2 ^ 2. So there exists an element di G Aέ

with cίέ Φ b^y i = 1, 2. Note that ^((6X, δ2)) = π^ίδ^ d2)) and ^((δi, δ2)) =
π2((dίf δ2)). The last remark of § 1 gives us that (δ^ δ2) e ( ^ 0 ^ 2 )
((dίf δ2), (δlf d2)) c ( ^ 0^ 2)(G\(δ x, δ2)). Define F = G\{(blf δ2)}. Clearly
I F\ = q + c2 - 2 and TΓ.F = A,; i = 1, 2. Moreover ( ^ 0 ^ 2 ) ( F ) ςt
\J{(<^i®^?2){F\e)\eeF}. From Lemma 2.1(ii) it follows that c ^
q + c2 - 2.

We now prove I.b and II.b. Let us assume that et ^ q. Take
q, c2 ^ 1, 0 Φ EaXι x X2 and (aίf a2) e ( ^ 0 ^2)(E). We show that
there exists a set F such that

(alf a2) G (ίfί 0 ^ 2 ) (F) , i^c ί? and

The first part of the proof of this theorem implies that there exists
a set Ft such that at e ^ ( T Γ . F , ) , F.CIE and | π.F, \ = | ^ | ^ q;
ΐ = 1, 2. We may assume that | F, | = q Vi e (1, 2}, because if
\Ft\<*ct -1 for some i e {1, 2} then | F1 U î 21 ^ q + c2 - 1, and we
are done. If FιΓ\F2Φ 0 , then define F = F1 U JP2. SO \F\ £ q +
c2 - 1 and (α^ α2) G ( ^ 0 ^ 2 ) ( F ) . If f τ

1 n ί τ

2 = 0 » we distinguish
two cases:
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1. (3i)[ΐe {1, 2} Λ π,F, Π π,F2 Φ 0 ] . Take i = 1. Hence T Γ ^ Π
^1^2 ^ 0 Now there exist elements e1 e JFΊ and e2 e F2 such that
^ ( β j = ^(βs). Note that βx ^ βa. Define F = (FAίeJ) U .F2. Clearly
I J P | ^ q + c2 - 1 and TΓ.JP, C n,F; i = 1, 2. So K α2) G ̂ ( T Γ ^ ) X

^ 2 ( π 2 F 2 ) c ^ f e F ) x ^2{π2F) = ( ^ 0 9f2)(F).
2. (Vi)[i e {1, 2} =* 7 ^ Π TΓ â = 0 ] . Take β 6 F 2 . Then π^e) ί

TC^F^ Because ex ίg q, there exists an element et e F1 such that
a, e ^(Tr^β) U πiF\πx(fid) c ^ ( ^ ( β U FΛβJ). Define ί7 = (FAfβJ) U F 2 .
Obviously | F | ^ q + c2 - 1, α, 6 ^{π^F) and α2G ̂ 2(ττ2F2) c ^ 2 (ττ 2 F).
Hence (a,, a2) e ( ^ 0 ^2){F).

Finally we prove II.c. Take again 0 ^ £ r c X 1 x X 2 and
(al9 a2) e ( ^ 0 ^2){E). We shall show that there exists a set F
such that

(alf a2) G Ci^ 0 ^ 2 ) ( F ) , F c S , and | F\ ^ q + c2 - 2 .

In the proof of II.b we found a set Gtc:E such that | T^G* | =
I G41 ^ c,, α, G &&&) and | G, U G21 ^ q + c2 - 1; ί = 1, 2. As in
the proof of Π.b we may assume that | G< | = cc; i = 1, 2. If

G, U G21 > 1 then define F = Gx U G2, hence α€ € ^faF) and | F | ^
q + c2 — 2, so we are done. The case that IGiΠ G2| = 1 still remains.
Assume Gt Π G2 = {β}, and | G* | ^ 2 for i = 1, 2. Throughout the
remainder of the proof we take i, j e {1, 2} with i + j = 3. Let
β< G Gj, βt 9̂  β. There are two cases:

1. If π^e^ί KtGi then, because e< ̂  q, there exists an element
Ui G Gί s u c h t h a t %, ^= β t a n d a< G ̂ ( T Γ ^ β i ) U ( ^ G i V r ^ ) ) ) c ^ ( ^ ( β * U

2. If TΓ êJ G π ̂ Gi then there exists an element vt e Ĝ  such that
e, and π,(e,) = TΓ^I J ; hence π.G, = πί(β< U (GA^)), so α, G ̂ ( ^ G , ) =

e% U (GA^i))).
We may conclude that in both cases there exists an element

dt G Gi such that dt Φ et and at e ^(π^βi U (GA^i)))-
If d,-= e = d2 then define F = Gx U GA{β} Hence | i^| ^ q +

c2 — 2 and, because βέ e Gjf et Φ e we have {aL, a2) e ^ApSfii U
(GAe))) X ^2(ττ2(β2 U (G2\e))) c ( ^ 0 ^ ( G , U G2\β) = ( ^ 0 ^2){F). If
d< =̂ e for some i e {1, 2} then, taking e.g. i = 1, we define F =
GiUGAfcίJ. Clearly | J P | ^ q + c2 — 2 and because exe G2 we have
(au a2) e ^(πfa U (GA^i))) x ^ 2 (^ 2 G 2 ) c ( ^ 0 ^ ( G , U GA î) - ( ^ 0

It follows that c <̂  q + c2 — 2 and because c ^ q + c2 — 2, as we
have seen already, we may conclude that c = q + c2 — 2. This
completes the proof of Theorem 2.1.
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EXAMPLE 2.6. Take Xx = Rm and X2 = Rn (tn, tt e N), and ^ ==
conv = ^ 2 (see Example 2.1). Because q = ex = m + 1 and c2 =
e2 = tt + 1 it follows from Theorem 2.1. (II.c) that the Caratheodory-
number of the convex-product-structure conv 0 conv for Rm+n is
c = q + c2 — 2 = m + tt.

EXAMPLE 2.7. Take if, = {Xt} U {A | A c X, A \ A \ ̂  ?J, tt ^ 1,
then because e, = 2 <; ϊ< + 1 = c,, Vie {1, 2}, it follows from Theorem
2.1(Π.c) that c - q + c2 - 2 = ϊx + f2.

EXAMPLE 2.8. Take Mt aXi9 | Λf< | = mt and define <g*< = {Xt} U
{A I A c X* Λ Λf< <£ A}; i = 1, 2. Because eέ = m* + 1 > m< = c, it
follows from Theorem 2.1(I.Π.a) that c ^ q + ca = tn1 + m2. We
shall show now that even c = m1 + m2. Consider a set EaX1x X2

such that E = EX\J E2, with | jĝ  | = mu \ πtEt | = 1, πJE^ = Mi and
π^ Π TΓiJ&g = 0 ; ί, j e {1, 2} and i + j = 3. It is easy to see that
Cifiθ^X-E') = -Xi x Xt. However, in general, U {{^i®^(E\e) \ e e
E) = (πxE x X2) U (-Xi x T Γ ^ ) ^ Xx x X2. Hence c = n^ + m2.

EXAMPLE 2.9. Take Λf c Xlf \ M\ = m and <a?i = {JSΓJ U {A | A c
Xx Λ Mςt A}. Take X2 = R« and ^ 2 = conv. We know that q =
m + 1 > m = q, and c2 = n + 1 = c2. From Theorem 2.1(II.b) it
follows that c <S q + c2 — 1 = m + it. As in the previous example
we can show that c = m + rt. In order to prove this we have to
look for a set EaXλ x X2, | JS71 = m + tt, such that the convex hull
of i? is not the union of the convex hulls of proper subsets of E.
Take E= EX\JE2 with | E11 = m, | j021 = tt, | TΓ*^ | = 1, π^Ππ.E, =
0 , π ^ = ikf and <^2{π2E) Φ U {<g*2(πΛE\a) \ a e πJS}; i, i e {1, 2},
i + i = 3. Note that | π2E\ = tt + 1. Now we have ( ^ © ^2){E) =
X, x ^2{π2E). But, in general, U ί ( ^ i θ &J(E\e) \ e e E) Φ Xt x

Hence c = m + π.

The main result of this section, Theorem 2.1, is a generalization
of J. R. Reay's Theorem 1 (first part) together with Example (1) on
pg. 229 of [7]. In fact, Reay proves that the Caratheodory-number
c of the convex-product-structure, whose component spaces are
Euclidian-spaces with dimensions m1 and π2 and with the usual
convexity-structure, satisfies the condition c = m1 + π2. (See Ex. 2.6.)

3. The Helly^number. Let ^ c 2 J , | F \ ̂  ϊ, f e N, for some
set X. Define Γiit)F = {f| A \ A e ^ ι ) . I.e. 0 g Γiω^ implies that
each intersection of ϊ elements of ^ is not empty.

DEFINITION 3.1. A convexity-structure <gf for X has the Helly-
number § if ί) is the smallest integer such that [ ^ c ^ Λ
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< - Λ Θί n<ί>*Ί=*n^=* 0.

Note that if X = 0 then § does not exist, and if ϊ) exists then
ί) IΞ> 1. The following characterization of the Helly-number gives
rise to another definition of it; see also [1] and [4].

LEMMA 3.1. Let ^ be a convexity-structure for X with Helly-
number §. Then the following assertions are equivalent:

( i ) $ ^ i ;
(ii) [^c^Λ|^μf + lΛ0ίn(ί)^Hn^^0;
(iii) μ ^ c J S Γ Λ | A | = ϊ + l ] = > n {^(A\a) \ ae A} Φ 0 ;
(iv) [ A c l Λ ! + l ^ | 4 | < ~] => Γ\{^(A\a) \ ae A} Φ 0 .

A I = f + n (n e N) and define
ϊ + ti. If there exist elements

Proof. We shall go through the following implication-cycle:

(i)=>(iv): Take A c l ,
{ίf(A\α)|αe A}. Note that
a, be A, such that a Φ b and i f (A\α) = ^(A\b) then of course
Π {^(A\a) \ae A} Φ 0 , and we are done. So we may assume that
I j?r I = i _|_ π. If ̂ ' c J^, with 1^"'1 = f, then J^1 Φ ̂  and
there exists an element aιe A such that ^(AVO g ά^'. From
at e A\{a} c ^(A\α) for each ae A, a Φ aly it follows that α ^ Π -
and hence 0 g Π«> - ^ Because § <̂  f we have
0 £ Πu>) ^ Ί From Definition 3.1 it follows that Γl {^(A\a) \ a e A} =

Π^ ^ 0
(iv) => (iii) is trivial and (ii) =* (i) follows by induction. It remains

to be shown that (iii) => (ii): Take J ^ c ί f , \F\ = t + l and 0 ί
n«>-^ L e t - ^ = {̂ i I i = 1, 2, - - , ϊ + 1}. Then 0 ί Γ)w^ =*
Π {^\{F<}} ̂ 0> Vi = 1, 2, - -, ! + 1. For each i = 1, 2, , f + 1
we choose an element α< e Π {-^Λί^tH Define A = {α, | £ = 1, 2, ,
ϊ + 1}. Hence | A\ ̂  ϊ + 1. If | A\ < ϊ + 1, then there exists an index
1 such that ateFt. But then a i e f | / - . Hence Γi^ ^ 0> a n d we
are done. So we may assume that | A\ = t + 1. From (iii) it follows
that Π (^(A\ai) \ i = 1, 2, , ϊ + 1} Φ 0 . For each ΐ = 1, 2, , ! + 1
we have A\{at}c:Fif so ^ ( A ^ J c ^ . Hence Π {(^{A\aι)\i = 1, 2, ,
f + 1} c Π ̂ 9 a n ( i we conclude than Π ̂ " ^ 0

DEFINITION 3.1'. A convexity-structure ^ for X has the Helly-

number ί) if ί) is the smallest integer such that [A c X A \A\ =

$ + 1] => Π ί^(^\α) I α 6 A} Φ 0 .

With the aid of Lemma 3.1. it is easy to verify that Definitions
3.1 and 3.1' are equivalent. We now prove the classical theorem of
Levi with the aid of Definition 3.1'. See [5], Theorem H.



CARATHEODORY AND HELLY-NUMBERS OF CONVEX-PRODUCT-STRUCTURES 281

THEOREM 3.1 (Levi). Let & be a convexity-structure for X.
Then the existence of a Radon-number x implies the existence of a
Helly-number §, such that § ̂  x — 1.

Proof. Each A c X with | A | = x has a ^-Radon-partition; see
[2]. So there exists a set Be: A, with QΪΦBΦA and ^(B) Π
%?(A\B)Φ0. Because ΐf(J3) e f| {&(A\a) \ ae A\B) and ^{A\B)a
Π{^(A\a)\aeB}, we have Π {^(A\a)| α e A} =)if (£)Π<t?(A\B) Φ 0 .
Hence ί) exists and ί) ̂  x — 1.

THEOREM 3.2. Let ^ be a convexity-structure for Xi9 Xt Φ 0 ,
with Helly-number §<; ί = 1, 2. I%ew ί/̂ β Helly-number f) of the
convex-product-structure ̂ φ^for XιxX2 exists and λ =

Proof. We may assume that ^ ^ ^2. Take EaX^x X2 with
IJBΊ = Iλ + 1. There are two posibilities for the projection πtE of
# on Xt; i = 1, 2.

—If I TΓ jE'I <; I}* for some ie{l,2}, then there exist elements
βi, e2e E such that ex ̂  e2 and such that .̂.(ei) = πt{e2). Clearly
π^e,) e ^(π^EXe,)). Hence π^e,) e fl { ^ ( ^ ( W ) I β 6 J?} ̂  0 .

—If I TΓ^I = % + 1, for some i e {1, 2}, then it follows
from Definition 3.1' that fl {^faEXx) \ x e πtE) Φ 0 . Hence
Π {^(^(JSV)) I e G E) =) Γl {^(TΓ.^Tr^e)) | β e £7} ^ 0 and we may
conclude that fl { ^ ( T Γ ^ ^ ) ) | β e E) Φ 0 ; i = 1, 2.

Hence Π ί(^i Θ ^){E\e)} - fl {&ME\e)) x &t(π2(E\e))} Φ 0 ,
and so ^ ̂  ^ = max (&, §2).

Next we show that § ̂  §x. Assuming § = ̂  — 1, A c Xx with
IAI = & and δ e X2 we have, because | A x {6} | = ̂ , fl {(^i Θ ̂ ) ( ( ^ . x
{6})\(α, 6)) I a e A} Φ 0 . Hence Γ) {^i(A\α) | a e A} = Γl {«Ί(^((A x
{6})\(α, 6))) I α e A} ̂  0 . This contradicts the fact that & is the
Helly-number of ^ so that, indeed, Ij ̂  ^ = max (§„ §2) and the
final conclusion is that ί) = ̂  = max (^, §2).

It is well known that the Caratheodory-number c, the Helly-
number § and the Radon-number x of the usual convexity-structure
conv for Rn satisfy the equalities c = § = x — 1 ( = n + 1), that is,
in Levi's theorem equality holds. There are however convexity-
structures <& where the equality does not hold. This is even the
case when ^ is a convex-product-structure:

We know that (see also [8]):

q + c2 - 2 ̂  c ̂  q + c2

ί) = max (^, y

max (xx, x2) ̂  x ̂  x, + x2 — 2
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cif % and x< are resp. the Caratheodory-, Helly- and Radon-number of
ίf«; i = 1, 2.

If ct = fyi = τt — 1, % — 1, 2, then we have:
a. if c< ̂  3 (e.g. when <g*i is ΓJ then c Φ ί).
b. if c = q + c2, then c > x — 1.

if the exchange-number, ex <; q and if x = x1 + x2 — 2 (e.g. in
the case Xt = R^"1, ^ — conv) then c ̂  x — 1.

c. if r > max (x^ x2) (e.g. in the same case as in b) then
$ < x - 1.

The results in this paper can be extended to convex-product-
structures which are products of finitely many convexity-structures.

In a next paper we shall pay more attention to the properties
of the exchange number. For example we shall show that under
certain conditions, the exchange-number of a convex-product-structure
exists and how it can be derived.
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